Multi-Robot Complete Coverage

- Multiple Robots:
 - Efficiency
 - Robustness
 - Higher Complexity
- Inter-Robot Communication Abilities
- Guarantee of Complete Coverage

Multi Robot Complete Coverage Limited Communication: Main Ideas

- Communication is limited to Line of Sight
- Coverage of a single cell
 - Robots have two roles:
 - Explorers
- Tear coordination for complete coverage of the environment
 - Limited communication
 - Deterministic approach
 - Team splits only once

- Each team of *N* robots has:
 - 2 explorers, N-2 coverers
- The explorers trace the top and bottom border of the Cell maintaining the same X-coordinate until the Line of Sight is broken (i.e. a critical point is detected)

- Each team of *N* robots has:
 - *2* explorers, *N*-*2* coverers
- The explorers trace the top and bottom border of the Cell maintaining the same X-coordinate until the Line of Sight is broken (i.e. a critical point is detected)
- The coverers use an up-and-down motion to cover the interior of the cell

Critical Point Detection

The explorers are able to detect all critical points:
Forward Concave CP (encountered only at start-up)
Reverse Concave CP (explorers approach each other)
Reverse Convex CP (Line of Sight breaks)
Forward Convex CP (Explorer reverses direction)

Reverse Concave Critical Point

The circles represent the robot position not the sensor footprint.

Forward Convex Critical Point

position not the sensor footprint.

.

Reverse Convex Critical Point

The circles represent the robot position not the sensor footprint.

Team Coverage

- The team splits only once into two sub-teams in order to encircle an obstacle
- One sub-team moves clockwise around the obstacle, the other sub-team moves counter-clockwise
- If a sub-team encounters a dead-end it backtracks
- Guaranteed re-joining of the two sub-teams

Team Splitting and Rejoining

Coverage direction

Coverage Example

Multi-Robot Coverage Paradigm

Multi Robot Complete Coverage Main Ideas

- Unrestricted Communication / Good Localization
- Environment is divided into as many stripes as robots
- Cooperative Exploration
 - Each robot explores the boundaries of its stripe
 - Robots Auction parts of the non reachable parts of their stripe
- Cooperative Coverage
 - Connectivity of the environment is known
 - Each robot covers the closest cell
 - Robots Auction coverage tasks

Example

• See it on vlc...

Auctions!

- Used to improved performance
- A central coordinator or one team member call/administer the auction
- Robots bid for tasks based on some estimated reward/cost

• Marsupial Robots

Also watch: http://www.youtube.com/watch?v=hCGgoPS91Rw

From: http://www.nosc.mil/robots/resources/marsupial/marsupial.html

• Marsupial Robots

From: http://distrob.cs.umn.edu/demos.php

• Formations

800

• Cooperative Localization, Mapping, and Exploration

Cooperative Localization

 Pose of the moving robot is estimated relative to the pose of the stationary robot.
 Stationary Robot observes the Moving Robot.

 $\mathbf{X}_{m_{est}}$

Robot Tracker Returns:

<φ,θ,φ >

$$(k+1) = \begin{pmatrix} x_{m_{est}} \\ y_{m_{est}} \\ \theta_{m_{est}} \end{pmatrix} = \begin{pmatrix} x_s + \rho \cos(\theta + \theta_s) \\ y_s + \rho \sin(\theta + \theta_s) \\ \pi - (\phi - (\theta + \theta_s)) \end{pmatrix}$$

Laser Robot Tracker

Robot Tracker Returns:

<
ho ,heta , ϕ >

Exploration and Mapping (Triangulation)

- If the line of visual contact is not interrupted during the motion, then the triangle [R_s,T₁,T₂] is free space.
- Connect the triangles of free space in order to construct a map of the environment.

Triangulation Algorithm: Main Ideas

• **Bounded Area:** The range of the tracker sensor is larger than any diagonal of the environment

Triangulation Algorithm: Main Ideas

Robot Position:

- Stationary Robot: Positioned at the corners of the environment (vertices of the polygon).
- Moving Robot: Follows the walls.
- **Exploration order:** The two robots explore the free space by following the Dual Graph of the Triangulation.
- **Decision points:** Reflex vertices.

Cooperative Exploration

Rekleitis, Dudek, Milios

Experimental Results (Triangulation)

Mapping of two Laboratories

Moving out

2 Laboratories, Sonar Data

2 Laboratories, Laser Data

<u>Scan</u> <u>Matched</u>

Using S. Gutmann s/w based on Lu and Milios algorithm.

