
Fundamental Problems In Robotics 

• What does the world looks like? (mapping)
– sense from various positions

– integrate measurements to produce map

– assumes perfect knowledge of position

• Where am I in the world? (localization)
– Sense

– relate sensor readings to a world model

– compute location relative to model

– assumes a perfect world model

• Together, these are SLAM (Simultaneous Localization and 
Mapping)



Path Planning

• Visibility Graph

• Bug Algorithms

• Potential Fields

• Skeletons/Voronoi Graphs

• C-Space

• PRM’s

• RRT’s



Motion Planning

• The ability to go from A to B

– Known map – Off-line planning

– Unknown Environment –Online planning

– Static/Dynamic Environment

qgoalqinit

qgoal

qgoal
qinit

qinit



Path Planning

Robot Map

World

•Topological

•Metric

•Feature Based

•1D,2D,2.5D,3D

•Mobile

Indoor/Outdoor

Walking/Flying/Swimming

•Manipulator

•Humanoid

•Abstract

•Indoor/Outdoor

•2D/2.5D/3D

•Static/Dynamic

•Known/Unknown

•Abstract (web)



•Connect initial and goal locations with all the visible vertices

•Connect each obstacle vertex to every visible obstacle vertex

•Remove edges that intersect the interior of an obstacle

•Plan on the resulting graph

Visibility Graph

qgoal

qinit



Bug 1

“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing

walls/obstacles   encoders

1) head toward goal

2) if an obstacle is encountered, 

circumnavigate it and remember 

how close you get to the goal

3) return to that closest point (by 

wall-following) and continue

Insect-inspired “bug” algorithms

Vladimir Lumelsky & Alexander Stepanov Algorithmica 1987



A better bug?

“Bug 2” algorithm

1) head toward goal on the s-line

2) if an obstacle is in the way, 

follow it until encountering the 

s-line again.

3) Leave the obstacle and 

continue toward the goal

OK ?

s-line



head-to-head comparison

What are worlds in which Bug 2 does 

better than Bug 1 (and vice versa) ?

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2 “zipper world”



Limited Sensor Range Tangent-Bug



Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)
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Free Space with Topological Map (GVG)

•Access GVG
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Generalized Voronoi Graph (GVG)
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Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG

•Follow Edge

•Home to the MeetPoint

•Select Edge



Local techniques 

Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal

let the sum of the forces control the robot

To a large extent, this is computable from sensor readings



SONAR modeling using Occupancy Grids 

• The key to making accurate maps is combining lots of data.

• But combining these numbers means we have to know what they are !

What should our map contain ?

• small cells

• each represents a bit of 

the robot’s environment

• larger values => obstacle

• smaller values => free

what is in each cell of this sonar model / map ?



Arc Carving Sonar Model

• Represents a sonar return as 

a cone with an arc base

– The arc approximates the 

sonar response

– The interior of the cone 

represents a region of likely 

freespace



Occupancy Grid Sonar Model

• The arc carving model 

may be viewed as a binary 

approximation of the 

model used by Moravec 

and Elfes

– An Arc with nonzero 

probability of occupancy

– A cone with nonzero 

probability of freespace



Configuration Space



Tool: Configuration Space
(C-Space C)
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Tool: Configuration Space
(C-Space C)



Road Maps

• PRMs

• RRTs



RRT-Connect: example

Connection made !



Coverage

• First Distinction

– Deterministic

– Random

• Second Distinction

– Complete

– No Guarantee

• Third Distinction

– Known Environment

– Unknown Environment

Demining

Vacuum Cleaning



Cellular Decomposition

Direction of Coverage

Cell 0

Critical Point (CP)



Single Cell Coverage

Direction of Coverage



Cellular Decomposition

Direction of Coverage

Cell 0
Cell N

Cell 1

Cell 2

CP0

CP1

CP2

CPm-1

CP3

CPm

Reeb Graph



Multi-Robot Coverage

• Team based

• Distributed

– Auctions



Localization

• Tracking: Known initial position

• Global Localization: Unknown initial position

• Re-Localization: Incorrect known position

– (kidnapped robot problem)



Graphical Models, Bayes’ Rule and the 

Markov Assumption

States x1 x2
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Derivation of the Bayesian Filter

101111 ),...,|(),|()|()(  ttttttttt dxoaxpaxxpxopxBel 

1111 )(),|()|()(  tttttttt dxxBelaxxpxopxBel 

First-order Markov assumption shortens middle term:

Finally, substituting the definition of Bel(xt-1):

The above is the probability distribution that must 
be estimated from the robot’s data



Iterating the Bayesian Filter

• Propagate the motion model:

• Update the sensor model:

   1111 )(),|()( tttttt dxxBelxaxPxBel

)()|()( tttt xBelxoPxBel 

Compute the current state estimate before taking a sensor reading 
by integrating over all possible previous state estimates and 
applying the motion model

Compute the current state estimate by taking a sensor reading 
and multiplying by the current estimate based on the most recent 
motion history



Different Approaches

Discrete approaches (’95)

• Topological representation (’95)

• uncertainty handling (POMDPs)

• occas. global localization, recovery

• Grid-based, metric representation (’96)

• global localization, recovery

Particle filters (’98)

• Condensation (Isard and Blake ’98)

• Sample-based representation

• Global localization, recovery

• Rao-Blackwellized Particle Filter

Kalman filters (late-60s?)

• Gaussians

• approximately linear models

• position tracking

Extended Kalman Filter

Information Filter

Unscented Kalman Filter

Multi-hypothesis (’00)

• Mixture of Gaussians

• Multiple Kalman filters

• Global localization, recovery



The Kalman Filter
• Motion model is Gaussian… 

• Sensor model is Gaussian…

• Each belief function is uniquely characterized by 

its mean m and covariance matrix 

• Computing the posterior means computing a new 

mean m and covariance  from old data using 

actions and sensor readings

• What are the key limitations?

1) Unimodal distribution

2) Linear assumptions



What we know…

What we don’t know…
• We know what the control inputs of our process are

– We know what we’ve told the system to do and have a model for what the 
expected output should be if everything works right

• We don’t know what the noise in the system truly is
– We can only estimate what the noise might be and try to put some sort of 

upper bound on it

• When estimating the state of a system, we try to find a set 
of values that comes as close to the truth as possible
– There will always be some mismatch between our estimate of the system 

and the true state of the system itself.  We just try to figure out how much 
mismatch there is and try to get the best estimate possible



Kalman Filter Components
(also known as: Way Too Many Variables…)

Linear discrete time dynamic system (motion model)

ttttttt wGuBxFx 1

Measurement equation (sensor model)

1111   tttt nxHz

State transition
function

Control input
function

Noise input
function with covariance Q

State Control input Process noise

StateSensor reading Sensor noise with covariance R

Sensor function Note:Write these down!!!



Computing the MMSE Estimate of the 

State and Covariance

What is the minimum mean square error estimate
of the system state and covariance?

ttttttt uBxFx  ||1
ˆˆ Estimate of the state variables
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  Estimate of the sensor reading
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The Kalman Filter…

Propagation (motion model):
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…but what does that mean in 

English?!?
Propagation (motion model):

Update (sensor model):

- State estimate is updated from system dynamics

- Uncertainty estimate GROWS

- Compute expected value of sensor reading

- Compute the difference between expected and “true”

- Compute covariance of sensor reading

- Compute the Kalman Gain (how much to correct est.)

- Multiply residual times gain to correct state estimate

- Uncertainty estimate SHRINKS
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Kalman Filter Block Diagram



Some observations

 The larger the error, the smaller the effect on the 
final state estimate
 If process uncertainty is larger, sensor updates will dominate 

state estimate

 If sensor uncertainty is larger, process propagation will 
dominate state estimate

 Improper estimates of the state and/or sensor 
covariance may result in a rapidly diverging estimator
 As a rule of thumb, the residuals must always be bounded 

within a ±3s region of uncertainty

 This measures the “health” of the filter

 Many propagation cycles can happen between 
updates



Particle Filters



Environment with two red doors
(uniform distribution)



Environment with two red doors
(Sensing the red door)



Sensing four walls



Four possible areas



Example: Prediction



Example: Update



Example: Prediction



Example: Update


