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Bayesian Filter

• Estimate state x from data Z
– What is the probability of the robot being at x?

• x could be robot location, map information, locations of 
targets, etc…

• Z could be sensor readings such as range, actions, 
odometry from encoders, etc…)

• This is a general formalism that does not depend on 
the particular probability representation

• Bayes filter recursively computes the posterior 
distribution:
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Iterating the Bayesian Filter

• Propagate the motion model:

• Update the sensor model:
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Compute the current state estimate before taking a sensor reading by 
integrating over all possible previous state estimates and applying the 
motion model

Compute the current state estimate by taking a sensor reading and 
multiplying by the current estimate based on the most recent motion 
history
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Mobile Robot Localization
(Where Am I?)

• A mobile robot moves while  collecting sensor 
measurements from the environment. 

• Two steps, action and sensing: 

– Prediction/Propagation: what is the robots pose x after 
action A?

– Update: Given measurement z, correct the pose x’

• What is the probability density function (pdf ) that 
describes the uncertainty P of the poses x and x’? 

(X,Y,θ)
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State Estimation
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• Propagation

• Update
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Traditional Approach  Kalman Filter

• Optimal for linear systems with Gaussian noise

• Extended Kalman filter:

– Linearization

– Gaussian noise models

• Fast!
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Monte-Carlo State Estimation
(Particle Filtering)

• Employing a Bayesian Monte-Carlo simulation 
technique for pose estimation. 

• A particle filter uses N samples as a discrete 
representation of the probability distribution function 
(pdf ) of the variable of interest: 

where xi is a copy of the variable of interest and wi is  a 
weight signifying the quality of that sample.

In our case, each particle can be regarded as an 
alternative hypothesis for the robot pose.
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Particle Filter (cont.)

The particle filter operates in two stages:

• Prediction: After a motion () the set of particles 
S is modified according to the action model 

where (n) is the added noise. 

The resulting pdf is the prior estimate before 
collecting any additional sensory information. 
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Particle Filter (cont.)

• Update: When a sensor measurement (z) becomes 
available,  the weights of the particles are updated 
based on the likelihood of (z) given the particle xi

The updated particles represent the posterior 
distribution of the moving robot. 
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Remarks:

• In theory, for an infinite number of particles, 
this method models the true pdf.

• In practice, there are always a finite number of 
particles.
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For finite particle populations, we must focus 
population mass where the PDF is substantive.

•Failure to do this correctly can lead to divergence.

•Resampling needlessly also has disadvantages.

One way is to estimate the need for resampling based 
on the variance of the particle weight distribution, in 
particular the coefficient of variance:

Resampling
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Prediction: Odometry Error Modeling

• Piecewise linear motion: a simple example.

• Rotation: Corrupted by Gaussian Noise.

• Translation: Simulated by multiple steps. Each step models 
translational and rotational error.

Single step:

Small rotational error 
(drift) before and after 
the translation.

Translational error 
proportional to the 
distance traveled.

All errors drawn 
from a Normal 
Distribution.CS-417 Introduction to Robotics and Intelligent Systems 12



Odometry Error Modeling
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Odometry Error Modeling
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Odometry Error Modeling
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Odometry Error Modeling
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Odometry Error Modeling
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Prediction-Only Particle Distribution
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Propagation of a discrete time system 
(dt=1 sec)
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Where        is the additive noise for the linear velocity, and

is the additive noise for the angular velocity
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Continuous motion example

• Dt=1sec

• Plotting 1 sample/sec all the particles every 5 sec

• Constant linear velocity

• Angular velocity 

changes randomly

every 10 sec
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Continuous motion example
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Prediction Examples Using a PF

Piecewise linear motion 

(Translation and Rotation)

– Command success 70%

– Start at [-8,0,0]

– Translate by 4m

– Rotate by 30o 

– Translate by 6m

CS-417 Introduction to Robotics and Intelligent Systems 22



Start [-8,0,0o]
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Translate by 4m

30% stayed
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Rotate by 30o

30% stayed
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Translate by 6m
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Update Examples Using a PF
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Environment with two red doors
(uniform distribution)
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Environment with two red doors
(Sensing the red door)
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Sensing four walls
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Four possible areas
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Cooperative Localization

• Pose  of the moving robot is 
estimated relative to the pose 
of the stationary robot. 
Stationary Robot observes 
the Moving Robot.
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Robot Tracker Returns:

<,,>
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Laser-Based Robot Tracker

Robot Tracker Returns:

<,,>
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Tracker Weighting Function
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Example: Prediction

CS-417 Introduction to Robotics and Intelligent Systems 35



Example: Update

CS-417 Introduction to Robotics and Intelligent Systems 36



Example: Prediction
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Example: Update

CS-417 Introduction to Robotics and Intelligent Systems 38



Variations on PF

• Add some particles uniformly

• Add some particles where the sensor indicates

• Add some jitter to the particles after propagation

• Combine EKFs to track landmarks
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Keep in Mind:

• The number of particles increases with the 
dimension of the state space
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Complexity results for SLAM

• n=number of map features 

• Problem: naïve methods have high complexity

– EKF models O(n^2) covariance matrix

– PF requires prohibitively many particles to 
characterize complex, interdependent distribution

• Solution: exploit conditional independencies

– Feature estimates are independent given robot’s path
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Rao-Blackwellization

Figure from [Montemerlo et al – Fast SLAM]
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RBPF Implementation for SLAM

• 2 steps:

– Particle filter to estimate robot’s pose

– Set of low-dimensional, independent EKF’s (one per 
feature per particle)

• E.g. FastSLAM which includes several 
computational speedups to achieve O(M logN) 
complexity (with M number of particles)
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Questions

• For more information on PF:

http://www.cim.mcgill.ca/~yiannis/ParticleTutorial.html

• Thanks to D. Meger for his help with the RBPF work
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