Coverage

Motivation Humanitarian Demining

Motivation Lawn Mowing

Motivation Vacuum Cleaning

Robotic Coverage

- More than 2 million Roombas sold!
- Automated Car Painting

myroombud.com

Roomba Costumes

From: http://www.myroombud.com/

Coverage

- First Distinction
 - Deterministic **Demining**
 - Random Vacuum Cleaning
- Second Distinction
 - Complete
 - No Guarantee
- Third Distinction
 - Known Environment
 - Unknown Environment

Non-Deterministic Coverage

- Complete Random Walk
- Ant Robotics
 - Leave trail
 - Bias the behavior towards or away from the trails

S. Koenig Ant Robotics, terrain coverage

Deterministic Coverage

- Complete Algorithm
- Guarantees Complete Coverage

Cell-Decomposition Methods

Two families of methods:

Exact cell decomposition
 The free space F is represented by a collection of non-overlapping cells whose union is exactly F
 Examples: trapezoidal and cylindrical decompositions

Boustrophedon Cellular Decomposition

The way of the Ox!

Cellular Decomposition

Cellular Decomposition

Critical Points

There are four types of critical points:
Forward Concave critical point
Reverse Concave critical point
Reverse Convex critical point
Forward Convex critical point

Demining in Action (almost)

Cell decomposition for Path Planning

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Trapezoidal decomposition

Dividing free space into pieces and using those...

sweepline algorithm

Optimality

Obtaining the *minimum* number of convex cells is NP-complete.

Trapezoidal decomposition is exact and complete, but not optimal -even among convex subdivisions.

9 cells

there may be more detail in the world than the task needs to worry about...

Cell-Decomposition Methods

- Two families of methods:
- Exact cell decomposition
- Approximate cell decomposition
 F is represented by a collection of nonoverlapping cells whose union is contained in F Examples: quadtree, octree, 2ⁿ-tree

further decomposing...

Approximate cell decomposition

Quadtree:

recursively subdivides each *mixed* obstacle/free (sub)region into four quarters...

further decomposing...

Approximate cell decomposition

recursively subdivides each *mixed* obstacle/free (sub)region into four quarters...

further decomposing...

Approximate cell decomposition

Again, use a graph-search algorithm to find a path from the start to goal

is this a **complete** path-planning algorithm? i.e., does it find a path when one exists ?

Octree Decomposition

Coverage of Known Worlds

From: X. Zheng and S. Koenig. Robot Coverage of Terrain with Non-Uniform Traversability. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pg. 3757-3764, 2007

STC

Multi-Robot Complete Coverage

- Multiple Robots:
 - -Efficiency
 - Robustness
 - -Higher Complexity
- Inter-Robot Communication Abilities
- Guarantee of Complete Coverage

Multi Robot Complete Coverage Limited Communication: Main Ideas

- Communication is limited to Line of Sight
- Coverage of a single cell
 - Robots have two roles:
 - ExplorersCoverers
- Team coordination for complete coverage of the environment
 - Limited communication
 - Deterministic approach
 - Team splits only once

- Each team of *N* robots has:
 - 2 explorers, N-2 coverers
- The explorers trace the top and bottom border of the Cell maintaining the same X-coordinate until the Line of Sight is broken (i.e. a critical point is detected)

- Each team of *N* robots has:
 - -2 explorers, *N*-2 coverers
- The explorers trace the top and bottom border of the Cell maintaining the same X-coordinate until the Line of Sight is broken (i.e. a critical point is detected)
- The coverers use an up-and-down motion to cover the interior of the cell

Critical Point Detection

The explorers are able to detect all critical points:
Forward Concave CP (encountered only at start-up)
Reverse Concave CP (explorers approach each other)
Reverse Convex CP (Line of Sight breaks)
Forward Convex CP (Explorer reverses direction)

Reverse Concave Critical Point

The circles represent the robot position not the sensor footprint.

Forward Convex Critical Point

The circles represent the robot position not the sensor footprint.

Reverse Convex Critical Point

The circles represent the robot position not the sensor footprint.

Team Coverage

- The team splits only once into two sub-teams in order to encircle an obstacle
- One sub-team moves clockwise around the obstacle, the other sub-team moves counter-clockwise
- If a sub-team encounters a dead-end it backtracks
- Guaranteed re-joining of the two sub-teams

Team Splitting and Rejoining

Coverage direction

Coverage Example

Multi-Robot Coverage Paradigm

Multi Robot Complete Coverage Main Ideas

- Unrestricted Communication / Good Localization
- Environment is divided into as many stripes as robots
- Cooperative Exploration
 - Each robot explores the boundaries of its stripe
 - Robots Auction parts of the non reachable parts of their stripe
- Cooperative Coverage
 - Connectivity of the environment is known
 - Each robot covers the closest cell
 - Robots Auction coverage tasks

Example

• See it on vlc...

Auctions!

- Used to improved performance
- A central coordinator or one team member call/administer the auction
- Robots bid for tasks based on some estimated reward/cost

More Multi-Robot Ideas

• Marsupial Robots

Also watch: http://www.youtube.com/watch?v=hCGgoPS91Rw

From: http://www.nosc.mil/robots/resources/marsupial/marsupial.html

More Multi-Robot Ideas

• Marsupial Robots

From: http://distrob.cs.umn.edu/demos.php

More Multi-Robot Ideas

• Formations

