
IEEE TRANSACTIONS ON ROBOTICS 1

A Simple Tactile Probe for Surface Identification by
Mobile Robots

Philippe Giguere and Gregory Dudek

Abstract—This paper describes a tactile probe designed for
surface identification, in a context of all-terrain low-velocity
mobile robotics. The proposed tactile probe is made of a small
metallic rod with a single-axis accelerometer attached near its tip.
Surface identification is based on analyzing acceleration patterns
induced at the tip of this mechanically robust tactile probe, while
it is passively dragged along a surface. A training data set was
collected over ten different indoor and outdoor surfaces. Classifi-
cation results for an artificial neural network were positive, with
89.9% and 94.6% success rate for 1 and 4 second time-windows
of data, respectively. We also demonstrated that the same tactile
probe can be used for unsupervised learning of terrains. For 1
second time-windows of data, the classification success rate was
only reduced to 74.1%. Finally, a blind mobile robot, performing
real-time classification of surfaces, demonstrated the feasibility
of this tactile probe as a guidance mechanism.

Index Terms—Tactile Sensing, Terrain Identification, Outdoor
Mobile Robots, Accelerometer, Unsupervised Learning

I. INTRODUCTION

TERRAIN identification is a fundamental task for mo-
bile robots operating in unstructured environments. By

identifying terrain types, mobile vehicles can better navigate
their environment. For example, they can avoid certain terrain
types known to be difficult, adjust their gaits based on some
prior knowledge about terrains, or use the extra information
for mapping and localization purposes. While cameras, range
sensors or ground penetrating radar have been considered for
terrain identification purposes, tactile sensing can provide an
economical and robust solution to this problem, by collecting
information directly related to the mechanical properties of
terrain surfaces.

Over the years, a number of terrain identification techniques
have also been developed, based on vehicle-mounted inertial
sensors [1][2][3][4][5][6] or visual sensors tracking targets
in the visual plane [7]. These techniques exploit measurable
changes in overall system dynamics as the robot is traversing
different surfaces. In essence, they represent a form of tactile
sensing, with the wheels of the vehicles acting as tactile
probes. The quality of the terrain information gathered by such
systems is, however, limited by the mechanical response of
the wheels and the vehicle assembly itself [5][8]. This me-
chanical response cannot be modified in a manner that would
significantly improve terrain identification, without affecting
the mobility of the robot itself.
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On the other hand, tactile sensors have the potential to be
a more discriminative approach to terrain identification. In
its simplest expression, a tactile probe can be used to detect
anomalous surface conditions, such as holes in the ground or
obstacles. More interestingly, a tactile probe can be designed to
provide subtle information related to the mechanical properties
of terrains, thereby facilitating their identification. This ability
to identify terrains can be exploited to enhance robot mobility,
by altering behavior based on the terrain type. For example, a
blind robot could be made to navigate a bounded area, by
relying on surface texture differences between a particular
target area and its surroundings.

Tactile sensing can also be used when surface properties,
used for identification purposes, cannot be directly observed
by optical sensors, such as in the presence of fog or superficial
dust. Another potential application employing rich tactile in-
formation is the automatic training of monocular vision terrain
identification systems for mobile robots. In this paradigm,
training examples are collected by a tactile sensing modality,
and these examples are used to train a vision system. This topic
has been explored in Krebs et al. [9], where local information
captured by an inertial measurement unit mounted on the robot
was mapped to the remote information gathered by a vision
system. Angelova et al. [10] presented a similar strategy, where
the measured slip is used to train a vision system to identify
regions of potentially high slip, for a Martian rover. In all these
cases, improved local terrain sensing by a tactile probe has the
potential to improve the overall performance of the system.

The rest of this paper is divided as follows. In Section
II, we first present a number of approaches that have been
proposed for surface sensing using tactile probes. In Section
III, we present the design of our tactile probe, along with the
features extracted for classification purposes. The discrimina-
tion capabilities of this tactile probe are evaluated in Section
IV with an artificial neural network trained on a data set
of ten terrains. Section V shows how the tactile information
captured by our tactile probe can also be used in a context of
unsupervised learning. Finally, we demonstrate in Section VI
how this terrain identification probe can be used to guide a
blind robot, based on surface identification.

II. PREVIOUS WORK

Tactile feedback has been considered in several forms by
the robotics community, either using indirect measurements
from effector performance (such as wheel slip or leg traction)
or via direct measurement. Tactile feedback is a fundamental
and ubiquitous navigation aid in the animal kingdom; whiskers
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in animals have been known to be able to collect some
information about surface texture or shape [11], [12]. They
compensate for the lack of good vision in rats: the typical
visual acuity of a rat is 1 cycle per degree, compared to 30
cycles per degree in humans [13]. In robotics, one of the first
examples of touch sensors is Grey Walter’s tortoise robot [14].
It relied partially on a switch to modify the behavior of the
robot, avoiding obstacles in its quest for reward.

One possible application of tactile sensing is obstacle dis-
tance or surface shape estimation, using whiskers. Jung et
al. [15] proposed distance estimation from whisker deflection
measured by a potentiometer. Along the same line, Cowan et
al. [16] used an artificial antenna made of FlexTM sensors
to measure distances. In Russell [17], a flexible whisker was
mounted on a Puma robotic arm, and the whisker deflections
were measured using a potentiometer. Scholz et al. [18] and
Clements et al. [19] employed a whisker attached to the shaft
of an electrical motor to perform similar profile measurements.
The contact point location on the whisker was estimated by
analyzing the force measured at the base of the whisker, by
a 6-axis load cell. In Russell et al. [20], an array of eight
whiskers was used for object recognition by a mobile robot.
The deflection of each of the metallic whiskers was measured
by a potentiometer. The application of these sensors to terrain
identification is limited, as they are not sensitive to surface
texture, an important cue in terrain identification.

Closer to what we present in this paper is the use of
whiskers for surface texture identification. This topic has
been extensively explored in the scientific community, with a
number of different designs proposed. For example, Schultz et
al. [21] used strain gauges, located near the base of an array of
whiskers, to pick up friction-induced vibrations. They explored
the idea of using power spectral analysis on the strain gauge
signals to differentiate between smooth and rough surfaces,
although no formal classification results were produced. Their
experiments, however, were limited to a small set of artificial
surfaces: one smooth surface, and two surfaces with different
ridge pattern densities.

Hipp et al. [22] present more extensive results regarding
surface texture classification, for actuated whiskers. Whisker
vibrations were picked up by magnetic sensors, excited by
the motions of a small magnet fixed on the base of each
whisker. The power spectra of the magnetic sensor signals
were computed and a Fisher transform was applied to re-
duce the dimensionality of the measurements. Classification,
using multidimensional Gaussian density estimators, achieved
a success rate of 39% for eight different grades of sand paper.
Results over natural surfaces or terrains were unspecified.

Fend et al. [23] used a microphone as transducer to record
the vibrations induced in a genuine rat whisker. A servo
motor swept an array of eight whiskers, with each whisker
being attached on a different microphone. Experiments were
conducted over 11 surfaces: seven pieces of sand paper with
different grain sizes, foam, mouse pad surface, carpet, and
metal. The power spectra of individual sweeps were computed,
smoothed, and combined together to generate an average
power spectrum. By comparing the Euclidean distances be-
tween these power curves, they concluded that texture identi-

fication could be improved by using all whiskers at the same
time, and by increasing the number of sweeps. The design of
this whisker sensing system might be too fragile in the context
of mobile robots in outdoor environments.

Surface texture sensing has also been developed for finger-
like devices than can be used with manipulators. Howe et al.
[24] created an artificial finger, made of a rubber skin mounted
on soft foam. A small accelerometer was attached to the inside
of the rubber skin, in contact with an object. This device
was able to detect slip conditions, as well as provide some
form of surface texture sensing. More recently, de Boissieu
et al. [25] created another finger-like device, by encasing
a three-axial MEMS force sensor in a simulated finger of
epoxy, covered with a hard rubber skin. Their device exhibited
excellent sensitivity to friction forces, which depended on
the surface type. This high sensitivity made it possible to
differentiate between printed and non-printed areas on a sheet
of paper, for dimensions as small as 1 millimeter. Classification
experiments were performed on a database of 10 types of
paper, with a success rate around 70%, an impressive result
considering the small differences in surface textures. The
authors noticed, however, significant wear for the rubber tip.
This lack of physical robustness reduces the applicability for
outdoor surface exploration.

Roy et al. [26] presented a case where the tactile probe
is not rubbed, but instead tapped against a surface. A small
microphone, mounted at the tip of an aluminum boom,
recorded the acoustic response of the impact. Classification
was achieved by comparing the windowed power spectrum
of the recorded impact to a collection of labeled prototype
responses. Six surfaces were probed: wood, plastic, cement,
metal sheeting (box), solid metal (I-beam), and glass. The
classification success rate over this set was 95%, but it is
not clear if this success rate would be as high for similar
indoor surfaces, such as linoleum and terazzo. Moreover, this
approach cannot be use to differentiate surface textures, an
important cue in identification.

Seth et al. [27] discussed how the behavior of a wheeled
robot could be modified by whisker-based sensing. The
whiskers were made by gluing two polyamide strips back-
to-back, and deformation was measured by sensing the strips’
resistivity changes. The robot explored a walled environment,
where two strikingly different peg arrangements (vertical or
diagonal) were present. Over time, they showed that their
simulated neural architecture learned to avoid the peg arrange-
ment associated with a negative reward. The Whiskerbot robot
(Pearson et al. [28]) also served as a demonstration platform
for touch-based behavior adaptation. It used whisker arrays,
actuated by shape-alloy metal fibers. Strain gauges were used
to measures forces, and a simulated Primary Afferent neural
network was stimulated by the amplified outputs of the strain
gauges. The main goal of their project was to demonstrate
a possible neural mechanism by which rodents analyze and
interpret whisker vibration patterns; no significant surface
classification results were provided.

Some of the work presented in this paper has been intro-
duced previously in Giguere et al. [29]. In particular, part of
the tactile probe design itself in Section III, the classification
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results with an artificial neural network in Section IV and the
blind navigation task in Section VI were presented in [29].
The rest of this paper is, however, original contribution.

III. TACTILE PROBE DESIGN

A. Mechanical Design

Our tactile probe was designed to gather as much relevant
information as possible, in terms of terrain identification. It
also had to be robust, so that it could be readily deployed in
the field. The first kind of information that we were interested
in collecting was related to the surface profile height h(x). A
common approach to modeling surface height h(x) is through
a random process, with an associated power spectral density
H(ωx) [30][31]. This approach has been used with success
in civil engineering for the description of road surfaces.
Moreover, the majority of terrain identification methods for
wheeled vehicles are based on analyzing the power density
spectrum of the vibrations of the chassis [1][2][3][4][5], which
are directly related to H(ωx). The probe had to be sensitive to
the mechanical properties of surfaces, such as viscoelasticity.
By being sensitive to these properties, our probe had a better
chance of being able to distinguish surfaces or terrains of
similar profile H(ωx), but made of entirely different materials.

The probe design is depicted in Fig 2. The body of the
tactile probe was made of solid aluminum, a stiff material,
with a Young’s modulus of EY = 70 GPa. This material
has been selected so to be harder than most common ground
surfaces, except for concrete and asphalt. A simple physical
interpretation helps explain this particular choice of material.
For instance, it would be difficult to differentiate between a
hard and a soft surface if one uses a very flexible probe, since
they would both “feel” soft. In the same manner, one can better
sense the damping factor of a surface by tapping on it with a
hard object, as was done in Roy et al. [26].

A similar conclusion regarding the importance of using stiff
materials for tactile probes was reached by Lungarella et al.
[32]. They compared the frequency responses of sensors made
of different types of whiskers (polyvinyl fiber, rat whisker
and human hair) when rubbed against a moving surface.
They noted that the amplitude of vibration of a whisker was
monotonically related to its stiffness, with the stiffer whisker
(polyvinyl fiber) having vibrations with 17 times more energy
that the softest whisker (human hair). This higher level of
vibration serves as an indicator of the greater sensitivity of
stiff probes.

The top end of the tactile probe was attached to the vehicle,
using flexible rubberized fabric. With this fabric attachment,
the probe was able to rotate in all three axes, for small angles.
Moreover, this attachment reduced the mechanical coupling
between the vehicle and the probe. This avoided sending
parasitic vibrations generated within the vehicle itself to the
rod. A single axis hinge mechanical design, by comparison,
would have constrained the rod rotation in pitching motion,
and increased unwanted mechanical coupling between the
probe and the vehicle. The location of the attachment on the
vehicle was selected to maintain the probe at an angle around
θr = 45 deg, relative to the surface.

Passive tactile probes collect information about surfaces
typically by being excited through some sort of forcing action.
This action is generally a rubbing or dragging motion over the
targeted surface, in a direction parallel to it. This action results
in a combination of motion of the contact point perpendicular
to the surface, and horizontal motion x. If a surface profile
h(x) has large variations, the probe tip motion, as a function of
probe location x, will also present large variations. The probe
tip motion strongly depends on its shape: a smaller tip is better
at tracking fine surface details than a bigger tip. The tip radius
effectively acts as a low-pass spatial filter. For this reason, a
wheel makes for a poor probing mechanism, compared with a
tactile probe with a fine tip. This will naturally limit the terrain
identification capacities for wheel-based vehicles relying on
inertial sensors mounted on the chassis [1][2][4][5].

B. Choice of Transducer

An important design aspect of any sensing apparatus is the
appropriate choice of transducer technology. A transducer is a
device that converts one form of energy or physical property
into another form, such as voltage, for the purpose of sensing.
Ideally, a transducer:
• does not disturb the physical quantity it is measuring,
• has high sensitivity,
• has good resolution,
• has low noise,
• is accurate,
• has a high bandwidth.

The characteristics and limitations of a transducer used with
a tactile probe determine its range of applications. For the
purpose of surface identification, one of the most important
factors is the frequency response of the transducer. When a
tactile probe is rubbed against a surface, the surface spatial
spectrum H(ωx) gets partially captured by the tip of the tactile
probe. The forward velocity vc of the probe transforms a spa-
tial spectrum density H(ωx) into a temporal spectral density
of vibrations. In order to capture high spatial frequencies in
H(ωx), corresponding to fine surface texture or features such
as cracks, the transducer must possess a large bandwidth to
capture the high frequency vibrations. The frequency response
E(ωt) of the transducer is particularly critical if the surface
profiles power spectrum H(ωx) differ mostly in the region of
high spatial frequencies ωx.

The relationship between transducer frequency response
E(ωt) and target application of tactile probes can be seen
in many whiskers-based sensing projects. For cases where the
target application is to only measure distances, a variety of
low-frequency transducers (< 10 Hz) have been employed to
measure whisker deformation. Electrical contacts, such as in
Walter [14] or Russel [33], certainly represent the simplest
type. More sophisticated schemes used potentiometers to mea-
sure springy whisker deflections (Jung et al. [15], Russel [17]).

For cases where tactile probes have been designed for
surface identification purposes, a number of large bandwidth
transducers have been proposed. Strain gauges (Pearson et
al. [28], Schultz et al. [21]), load cells (Scholz et al. [18],
Clements et al. [19]), Hall-Effect sensors (DaeEun et al. [34]),
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or miniature magnetic sensors (Hipp et al. [22]) have reason-
ably large bandwidths (100 to 1000 Hz). These transducers can
also be employed to perform whisker deflection measurements,
since their frequency responses extend down to 0 Hz. Micro-
phones, having a band-pass frequency response with a low
cutoff frequency around 10-30 Hz, cannot be used to perform
deflection measurements. Their high cutoff frequency, in the
tens of kHz, means on the other hand that they can be used for
surface texture identification. These microphones have been
used, for example, to pick up vibrations generated when a
whisker is being rubbed on a surface (Fend et al. [23]), or to
record the acoustic response of surfaces impacted by a probe
(Roy et al. [26], Krotkov et al. [35].)

In wheeled vehicles, the transducer most frequently used
for terrain identification purposes is an on-board accelerometer
[1],[2],[5],[4],[8]. This type of transducer has the significant
advantage of being more sensitive to rapid changes in motion
than any of the transducers listed above in whisker appli-
cations. Indeed, the frequency response to probe motion for
an ideal accelerometer is proportional to the square of the
temporal frequency of motion:

Eaccel(ωt) ∝ ω2
t (1)

The sensitivity of an ideal accelerometer is, however, low
for slow variations of position i.e. low frequencies ωt. At
first glance, this sensor would be a poor choice to measure
deflection, as the latter corresponds to the lower part of surface
spatial spectrum H(ωx).

By orienting the transducer and designing the tactile probe
properly, the ability to measure slowly changing probe de-
flections can be recovered. This is accomplished by having
a change of the height of the probe tip inducing a change
in the orientation of the accelerometer, with respect to the
gravity vector ~g. Assuming that the tactile probe is oriented
at an angle of θr = 45o deg with respect to the surface, and
that the gravity vector ~g is perpendicular to the surface, the
frequency response Etilt(ωt) of an accelerometer placed on
the tip of this probe, as a function of change in tip height is:

Etilt(ωt) =
g

l
+

√
2

2
ω2
t (2)

With such a design, slow changes in variation of the height
of the probe can be measured. This is because the frequency
response Etilt(ωt), as seen in Fig. 1, extends all the way down
to 0 Hz. This leads to the probe configuration shown in Fig. 2.
In this design, the upper end of the tactile probe is attached to
the vehicle or robot. For terrain sensing purposes, the height
of the top-end of the probe is assumed to be fixed. This is due
to the support system of the vehicle (wheels or legs), the mass
of the robot, and possibly a suspension system, that average
out rapid changes in surface height h(x).

The transducer we used on our probe was a solid-state,
single axis accelerometer model ADXL05JH from Analog
Devices. It had a 5 milli-g resolution and a maximum range
of ±5g. Its -3 dB cutoff frequency was set to 4 kHz using an
external capacitor of 0.01 µF , and the attenuation beyond this
frequency is -20 dB/decade. The accelerometer was placed
near the tip of the probe, as to capture as much vibration

Fig. 1. Frequency response Etilt(ωt) described in Eq. 2 of an accelerometer
located at the tip of an inclined tactile probe of length l = 0.1.

Fig. 2. Design of the tactile probe with an accelerometer. Given its
direction of sensing (shown as arrow in the image) and the probe design, the
accelerometer is capable of sensing both the angle of the probe θr and the
acceleration of the tip of the probe. A close-up view of the flexible attachment
is shown on the right.

produced at the contact point. The accelerometer sensitivity
orientation was in the pitching direction (sagittal plane of the
robot), corresponding to upward and downward motions of the
probe.

This design was mechanically passive, since the mechan-
ical energy used to probe the surface was provided by the
forward motion of the robot. By contrast, active whiskers
[17][18][19][22] employed an extra actuator to perform mo-
tion. Our tactile probe was also low-power, only requiring a
few hundred of mW to power the accelerometer. Given its
simplicity and lack of mobile parts, our design is robust, and
easy to be made waterproof. Some drawbacks can be asso-
ciated with this design. The main one is that no information
about the surface can be collected when the robot is immobile.
Also, the location of the probe is entirely dependent on the
position of the robot. Consequently, we cannot perform surface
identification independently from the robot position. A lesser
problem is that the mechanical design of the rod attachment
has to be able to accommodate for backward motions of the
vehicle, which is accomplished by allowing the rod to rotate
in multiple directions via the flexible attachment.

C. Selected Features for Classification

A significant number of surface identification techniques
have relied on features extracted from power spectra, for ana-
lyzing vehicle accelerometer data [1][2][3][5], visual servoing
errors in a camera [7], or tactile probe vibration patterns
[21][22][23][25][26]. Spectral analysis, however, ignores im-
portant cues contained in the phase spectrum. For example,
signals a) and c) in Fig. 3 have identical amplitude spectra
but different phase spectra: the second signal was generated
by randomly assigning phase values to the previous one, and
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performing the inverse Fourier transform. One can see that
these signals are very different in the temporal domain. In
particular, the sharp spikes visible in Fig. 3 a) are no longer
present in Fig. 3 c). For this reason, we extracted some of the
features in time domain, in order to improve the robustness of
classification.

Fig. 3. Two signals a) and c) with identical amplitude spectra but different
phase spectra. Signal in a) was captured by dragging the tactile probe over
tiled linoleum, while signal in c) was generated by replacing phase spectrum
of a) with random phase values. Important features in time-domain that
are contained in the phase spectrum are lost: the histograms b) and d)
are significantly different. This points to limitations for terrain identification
methods based solely on frequency amplitude spectrum.

We employed a set ftactile of eight features extracted
from the accelerometer signal a(t) in the time and frequency
domains. These features were extracted from time-windows of
size W , as was done similarly in Weiss et al. [4]. The seven
features in the time domain were:
• mean,
• variance,
• skewness,
• kurtosis,
• fifth moment,
• number of times 20 uniformly separated thresholds are

crossed,
• sum of the variation over time:

W−1∑
t=1

|a(t)− a(t+ 1)|,

and one was in frequency domain:
• sum of higher half of amplitude spectrum.
Overall, the variance of the signal was a good indicator

of the amount of vertical motion experienced by the rod,
which was typically large for uneven surfaces, such as grass
and gravel. The skewness of the histogram helped identify
cases with asymmetric distribution of accelerations a(t), seen
frequently for surfaces with regular but infrequent asperities,
e.g. cracks between tiles. The sign of the skewness played
an important role too, as some terrains tended to have a
distribution of accelerations a(t) more skewed to the top than
the bottom. This asymmetry is visible in Fig. 4 between tiled
linoleum a) and Interblock e). The presence of high-frequency
components helped differentiate hard surfaces from others,

since a stiff surface is required to sustain high-frequency
vibrations in the tactile probe.

IV. SUPERVISED LEARNING ON A DATA SET OF TEN
COMMON SURFACES

We evaluated the performance of our tactile probe and
feature extraction for surface identification. An artificial neural
network was selected as a classifier. It was trained to identify
various terrain surfaces in a data set ~Xtactile, described below.
The terrain identification performance was equated to the
testing error rate of this classifier. More advanced classifier
techniques could have been employed, such as Support Vector
Machine [36], but the immediate goal of this evaluation was
to determine the quality of the information returned by our
sensor, and not the classification power of the classifier itself.

A. Data Collection

We attached the tactile probe to a cardboard box of dimen-
sion 12 cm x 12 cm x 30 cm. We manually dragged this box
using a string, at an approximate forward velocity of 70 cm/s,
in order to simulate a low-velocity land rover. Ten different
surfaces were sampled during the experiments, over the course
of a few days. Six of them were indoor surfaces, and four were
outdoor terrains:
• wood bench,
• tiled linoleum flooring,
• untiled linoleum flooring,
• terazzo,
• short hair carpet,
• large tiles for raised computer floors,
• grass,
• paving made of concrete bricks similar to Interblock,
• large gravel, and
• small gravel on packed dirt.

Fig. 4 shows these ten surfaces, along with a corresponding
sample of the tactile probe acceleration signal. The accelerom-
eter signal was sampled at 4 kHz, with 11-bit resolution, using
an IsaacTM stand alone data acquisition system. The fact that
the sampling frequency was not twice the cut-off frequency of
the accelerometer might have induced some aliasing. However,
the good classification results presented later in this Section
indicate that the actual measured signals were not significantly
aliased. The captured signals were manually spliced, to keep
samples captured during a steady motion of the device. The
samples were manually labelled, and in total between 250 and
500 seconds of actual data was available for each surface,
depending on the amount of data originally captured. This
constituted our training data set ~Xtactile.

B. Classifier

We employed the NETLAB [37] library implementation
of an Artificial Neural Network as a classifier. The neural
network had eight inputs (one for each feature), ten outputs
(representing each of the ten terrains), and 20 neurons for each
of the two layers. The output activation function was chosen to
be linear. These classifier parameters were chosen empirically
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Fig. 4. Picture of the ten surfaces, along with an associated probe signal, used in evaluating the performance of our probe. The probe signals collected over
these ten surfaces formed the labelled data set ~Xtactile.

TABLE I
AVERAGE TESTING CLASSIFICATION RATE FOR A NEURAL NETWORK

TRAINED ON THE TEN TERRAINS IN THE ~Xtactile DATA SET.

Time-Window Size Time-Window Size
1 s 4 s

Indoor and Outdoor 89.9± 0.4% 94.6± 0.6%
Outdoor only 98.85± 0.08% 99.96± 0.02%

by trial and error, and are unlikely to be optimal. Given
this sub-optimality, the classification results we achieved here
represent a lower bound on the actual discrimination power of
the probe itself, for the dataset of surfaces we have sampled.

The performance of this classifier was evaluated through re-
peated random sub-sampling validation. During this procedure,
the data set was split randomly with 70% of the data going
for training and 30% used for testing. Results were averaged
across all splits. In total, 25 random trials were generated per
window size W . Training was accomplished by using a scaled
conjugate gradient method, with 2,000 iterations.

C. Classifier Testing Results

The testing success rate over all ten surfaces (Table I) was
89.9 ± 0.4% and 94.6 ± 0.6% for time windows of 1 and
4 seconds. These results indicate that our sensor has good
discrimination capabilities for this set of surfaces. It compares
favourably against Larson et al. [7], which reported a success
rate of 90.0% for 5 simulated outdoor terrains. Fig. 5 shows
the confusion matrix for time windows of 1 second, and
Fig. 6 for time windows of 4 seconds, averaged over the 25
random trials. When only outdoor terrains were considered
in the testing phase for the neural networks trained on all

ten surfaces, success rate climbed to 98.85% and 99.96% for
time windows of 1 and 4 seconds, respectively. This result
was expected, as the sampled outdoor surfaces were quite
different from one another. By contrast, the sampled indoor
surfaces were smooth with few distinct features. For example,
the main difference between tiled and untiled linoleum was the
presence of small cracks. As a side note, the carpet surface
was sometimes confused with the small gravel outdoor terrain.
This confusion can probably be explained by the fact that they
both were irregular soft surfaces.

We did not directly test the behavior of the trained neural
network when samples from unknown terrains were being
classified. Instead, we present in Section V a method to
train the system with unlabelled data sets. This unsupervised
method could then be used to partially alleviate the problems
associated with novel terrains.

V. UNSUPERVISED LEARNING FOR TERRAIN
IDENTIFICATION WITH TACTILE PROBE DATA

In most terrain identification strategies for ground vehicles,
supervised learning methods have been employed to train the
classifiers [1][2][3][4][5]. These algorithms require, by defini-
tion, a manually labelled training data set. Moreover, these sys-
tems are static in terms of knowledge acquisition; they cannot
incorporate new knowledge as they explore unknown terrains.
Consequently, employing unsupervised learning (clustering)
techniques for terrain identification is an attractive option to
increase the autonomous capabilities of such vehicles, as the
labelling of data samples is no longer required. It is generally
more challenging, however, to perform unsupervised learning
than supervised learning. In particular, two key aspects can
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Fig. 5. Confusion matrix for testing phase of the trained neural network on
the ~Xtactile data set. Time-window size was 1 seconds. Results shown as
percentage, averaged over 25 randomly training sets. Entries less than 0.05%
are rounded down to 0.

Fig. 6. Confusion matrix for testing phase of the trained neural network on
the ~Xtactile data set. Time-window size was 4 seconds. Results shown as
percentage, averaged over 25 randomly training sets. Entries less than 0.05%
are rounded down to 0.

potentially impact the performance of unsupervised learning
systems: the quality of the information collected by the sensors
and the clustering algorithm itself.

Srebro et al. [38] empirically demonstrated that the per-
formance of some clustering techniques depends on how
distinct the data clusters are, in feature space. More pre-
cisely, they have shown that increasing the relative distance
|µa−µb|
σa

between normally distributed classes with means
µa, µb and identical standard deviation σa positively impact
clustering algorithms. Our tactile sensor increases this relative
distance, since the extracted features from the tactile probe
measurements vary widely between terrain types, while being
relatively stable for the same terrain. This increase in distance
is due to the greater sensitivity of our tactile probe to terrain
properties, compared to an accelerometer mounted on the
chassis of a vehicle. For this reason, our probe is well suited
for unsupervised learning of terrains by ground vehicles.

The other key aspect, the unsupervised learning technique

itself, was previously addressed in complementary work by
ourselves [39]. In that work, we presented an unsupervised
learning technique that explicitly used temporal coherence in
sensor measurements, to improve robustness of clustering. For
a mobile robot traversing a number of terrains, a temporal
coherence is generally present in sensor measurements affected
by the terrain’s mechanical properties. This is due to the fact
that spatial coherence is generally present in terrains, even
in unstructured environments. For example, beaches in littoral
settings are narrow patches of sand with a minimum width of
a few meters. Environments adapted by humans (sidewalks,
grassed areas and roads) are patchy by design, occupying areas
rarely smaller than a few square meters. Briefly speaking, this
unsupervised learning technique segments time-series of sen-
sor measurements, using a classifier trained in an unsupervised
manner. This training is performed by finding the classifier
parameter values ~θ that minimize an objective function related
to the time-variation of the posterior probabilities p(ci|~x, ~θ) of
samples x ∈ X , for all classes ci ∈ C:

argmin
~θ

|C|∑
i=1

∑T−1
t=1 (p(ci|~xt+1, ~θ)− p(ci|~xt, ~θ))2

var(p(ci| ~X, ~θ))2
(3)

This unsupervised learning technique is known to perform
well for cases where the temporal coherence is weak but still
present, e.g. spanning 3 consecutive samples such as ~xt−1, ~xt
and ~xt+1.

Weiss et al. [40] also introduced an unsupervised online
technique for terrain identification, but based on novelty
detection and an implicit assumption of spatial coherence.
New terrain types in the sensor measurements were discovered
by identifying outliers of a trained Gaussian mixture model
on known terrains. Data points considered as novel were
collected until a sufficient amount was reached, upon which
a new Gaussian in the novelty detector was trained on this
accumulated set. The same new data set was used, also, to train
a new k-Nearest Neighbors classifier. Data not judged as novel
were classified using the already existing k-Nearest Neighbors
classifiers. The fact that a novel terrain had to be present for a
sufficiently long period of time before another novel terrain
could have been admitted indicates an implicit assumption
of spatial coherence in their algorithm. For example, 20
novel samples had to be accumulated before training the new
Gaussian novelty detector and k-Nearest Neighbors classifier.
If data coming from another unseen terrain were captured
during this accumulation period, then these novel terrains risk
being grouped together.

A. Unsupervised Learning of ~Xtactile Data Set

We evaluated the performance of combining the information
gathered by our tactile probe with the unsupervised learning
algorithm described by Eq. 3, over synthetic time-series ~Ai
generated from the tactile probe data set ~Xtactile. Tests were
done for various number u ∈ {2, 3, 4, 5, 7, 10} of terrains. For
each value of u, we tested for all possible combinations of
terrains in our data set ~Xtactile:

C10
u =

(
10

u

)
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Temporal coherence in the time-series ~Ai was simulated by
having an average duration within a single terrain of 5 seconds.
To avoid having the transitions aligned with temporal windows
wt, this duration was normally distributed with a standard
deviation of 2 seconds. Finally, transitions between the u
selected terrains had equal likelihood. The total duration of
the time-series ~Ai was variable, depending on the number of
terrains u and the number of data samples available for the
selected terrains. An example of a time-series ~Ai used for
testing is shown in Fig. 7.

Fig. 7. a) Subsequence of one of the time-series ~Ai used in the unsupervised
learning of tactile probe data, generated from u = 3 different terrains. b)
Ground truth displaying the terrain transition.

Each synthetic time-series ~Ai was divided in non-
overlapping time-windows wt of 1 second. With |wt| = 4000
samples, a time-series ~Ai contained

nw =

⌊
| ~Ai|
4000

⌋
time-windows, and the same eight features ftactile presented
in Section III-C were extracted from each wt. This resulted
in a 8-by-nw training set Bi. After mean centering, Principal
Component Analysis was applied on Bi to find the 8 eigen-
vectors. The data was projected along these eigenvectors to
create Yi. All eight components were kept, as this was done
mainly to re-align the data along the principal axis.

We employed spherical Gaussian models for the classifiers
p(ci|~xt, ~θ) in Eq. 3, trained with five random restarts of
simulated annealing, on each data set Yi. This classifier was
selected, in order to reduce the number of parameters ~θ of
the classifier, compared to the neural network in Section IV.
It enabled also a more direct comparison against a Hidden
Markov Model (HMM), since the later was using spherical
Gaussians as observation models. For reference purposes, three
non-temporal clustering methods were also compared on our
sensor data set ~Xtactile: k-means, full covariance Gaussian
Mixture Model, and spherical Gaussian Mixture Model, all
trained with Expectation-Maximization.

The clustering success rates reported were for time-windows
wt that strictly contained one type of terrain. Clustering results
for time-windows containing more than one terrain were not
taken into account in the performance measure, but were still

present in the clustering process as they might negatively
impact clustering. The optimal mapping between clusters and
ground truth was found, and used in computing the average
classification success rate of Fig. 8. In these tests, our ap-
proach (shown as Cost in legend) ranked first in a statistically
significant manner for u > 2 terrains. This indicates that
a strong emphasis on preserving temporal coherence does
improve unsupervised learning of terrains, when employed
with a tactile probe with good sensitivity. The same results
also indicate that the performance of unsupervised learning
over 10 terrains (74.1%) is in the same range as the in case
of supervised learning (89.0%), when compared to a random
classifier having a 1

10 = 10% chance of correctly identifying
a terrain. We suspect that employing a more sophisticated
classifier in Eq. 3, such as k-Nearest Neighbors, as well as
having access to a training data set with more samples, should
further close the gap between supervised and unsupervised
learning of terrains.

Fig. 8. Results of employing unsupervised learning techniques on the tactile
probe data set. Error bars indicate 95% confidence interval.

VI. PRACTICAL APPLICATION: MOBILE ROBOT
NAVIGATION BASED ON SURFACE TEXTURE

We explored the concept of blind navigation for mobile
robots, using a tactile probe. This navigation was based on
the real-time terrain identification of surfaces, using a trained
classifier and our tactile probe mounted on a mobile robot.
This was analogous to an insect using its antenna to avoid
certain areas that have been previously identified as danger-
ous. The navigation task we selected consisted in having a
differential-drive robot navigating a bounded area Sin, near
its edge. The surface of Sin had a distinct surface texture,
compared with the surrounding surface Sout. Using our tactile
probe, the mobile robot was able to detect when it left or re-
entered the surface Sin. A simple control strategy relying on
terrain identification was designed and tested in simulation.
Results were validated using a real differential-drive robot,
with a medium-sized carpet as the target surface Sin, placed
on top of a tiled floor representing surface Sout.
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This control algorithm worked as follows. When the robot
was on Sin, it went forward at a velocity Vnominal. When the
tactile probe detected a transition to Sout, the robot reduced
its speed by half, and started turning towards Sin. Once the
probe located on Sout re-entered the target surface Sin, it
drove straight for a brief moment, in order to move away
from the border. It then rotated in the opposite direction, for
half the duration it took to bring the outer sensor back on the
target area Sin. This counter-rotation maneuver was done to
orient the robot parallel to the edge of the surface Sin.

For this experiment, a smaller version of the tactile probe
was built and fitted on a differential-drive wheeled robot.
Fig. 9 shows this probe mounted on the left hand side of
the iRobotTMCreateTMrobot used during this experiment. The
transducer signal of the probe was captured using a standard
audio input on a 3.0 GHz laptop. The same laptop performed
signal classification and executed the control code. Control
commands, based on the algorithm described above, were sent
to the robot via a serial interface built in the CreateTMrobot.
The target surface Sin to patrol consisted in a 3x3 m carpet
placed on top of a tiled floor in a computer lab. We employed
the unsupervised learning technique described in Section V, so
that training could be achieved on-the-spot without the need
to label the data manually. Reusing the train neural network
of Section IV was not an option: the body of the tactile probe
used in this experiment was different than from the one used
to collect ~Xtactile, and the measurements by a tactile probe
depend on its mechanical properties.

Qualitatively the robot performed very well. Five test runs
were executed, with an average duration of five minutes per
run. Fig. 9 presents a time-lapse series of pictures taken
while the robot was executing a re-entry maneuver. In total,
the robot exited the carpet area 80 times, and successfully
managed to re-enter this surface every time but once. Two
main reasons explain this high success rate. First, the tactile
probe mounted on the robot was able to reliably differentiate
the carpet surface from the computer room flooring. Indeed,
the entries in the confusion matrix of Fig. 5 corresponding
to carpet and computer room flooring shows no (0) confusion
for the ~Xtactile data set, thus indicating that these surfaces are
reliably identified by the tactile probe. Second, the generally
good mobility performance of the CreateTMrobot ensured that
the sent velocity and rotation commands were well executed.

VII. DISCUSSION AND FUTURE WORK

In this paper, we presented a novel tactile probe for surface
and terrain identification, for low-speed mobile robots. The
probe design consisted of a metallic rod, with a solid-state
accelerometer attached to its tip. Terrain classification was
based on eight features extracted from the accelerometer’s
measurements, in the time and frequency domains. This was
in contrast with most prior terrain identification techniques,
which usually rely on features extracted in the frequency do-
main only. The good discrimination capabilities of our tactile
probe were established using a non-sophisticated classifier,
a neural network, on a data set captured over 10 different
indoor and outdoor surfaces. In particular, our probe was

Fig. 9. Series of frames taken during the carpet and computer room flooring
experiments with a CreateTMrobot. Theses frames show one of the re-entry
maneuvers executed by the robot, after leaving the carpet. Frame sequence is
left-to-right, top-to-bottom. After re-entry, the robot oriented itself parallel to
the carpet edge, using information gathered during the exit and re-entry.

sensitive enough to be able to differentiate between tiled and
untiled linoleum, something that cannot be achieved with
an accelerometer mounted on a wheeled vehicle. We, also,
demonstrated how the information captured by this tactile
probe can be used in the context of unsupervised learning
of terrains.

A demonstration for a novel application for tactile probes
in mobile robotics was also presented. It consisted in having
a mobile robot navigating an area that could be differentiated
from its surroundings, using surface texture information cap-
tured by our tactile probe. As such, this experiment represented
a weak form of localization, based on tactile information.

This work might be improved in a number of manners.
For example, we are currently assessing the impact of the
tactile probe material (wood, plastic, glass and steel) on
the sensitivity. The current probe design is using a single-
axis accelerometer. Using a 3-axis accelerometer is a natural
evolution, and it might be able to capture information about
stick and slip behaviors. These have been shown in [25] to
be important cues in surface identification. Moreover, the
experiments have been conducted at a single velocity (70
cm/s). It is important, therefore, to further investigate how we
can perform surface identification at other velocities, possibly
employing a technique similar to [2]. In particular, we expect
the quality of the information to gradually decrease at lower
velocities, in part due to the fact that a lower velocity implies
that less surface is probed, per unit of time. Finally, we are
looking into how this rich tactile information can be exploited
in the context of self-training of a vision system on a mobile
robot, similarly to [9]. In particular, we intend to include
the concept of curiosity, with the robot navigating towards
unknown visual textures, in order to probe them.
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