
Adapting Learned Robotics Behaviours through Policy Adjustment

Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek

Abstract— We present an approach to learning control
policies for physical robots that achieves high efficiency by
adjusting existing policies that have been learned on similar
source systems, such as a similar robot with different physical
parameters, or an approximate dynamics model simulator. This
can be viewed as calibrating a policy learned on a source
system, to match a desired behaviour in similar target systems.
Our approach assumes that the trajectories described by the
source robot are feasible on the target robot. By making this
assumption, we only need to learn a mapping from the source
robot state and action spaces to the target robot action space,
which we call a policy adjustment model. We demonstrate our
approach in simulation in the cart-pole balancing task and a
two link double pendulum. We also validate our approach with
a physical cart-pole system, where we adjust a learned policy
under changes to the weight of the pole.

I. INTRODUCTION

This paper describes a method for quickly adapting learned
controllers for a robot, so as to robustly handle changes
in the dynamics that make the original controller fail. To
avoid having to re-train the controller from scratch we take
an approach based on the idea of transfer learning, which
consists of reusing prior data and models to obtain savings in
the computation and data requirements to learn a new task.
Such savings are crucial for practical robotics systems. Every
deployment to collect new data has a high cost in terms of
human labour, and has a high risk of damaging the target
robot system.

The process of transferring a source controller to optimize
some desired behaviour involves experimentation with the
target robot. Trials on the target provide insight that allows
evaluation of differences from the source system and of the
controller performance. A transfer method is responsible for
utilizing these differences to adjust the controller appropri-
ately. Adjusted controllers can be attempted again on the
target, leading to new experience, further rounds of adjust-
ment, and repetition until convergence. The goal of such a
method is to use less interactions with the physical robot
than tabula rasa learning, which is done without knowledge
transfer from a source system. Transfer is attractive because
methods that learn from scratch, such as PILCO [1] and
Guided Policy Search (GPS) [2] which have been shown to
enable powerful and flexible learned behaviours, have high
a computational cost.

Some recent approaches to transfer [3], [4] use prior data
to bias policy optimization in the target environment. While

The authors are part of the Center for Intelligent Machines
and the School of Computer Science, McGill University,
Montreal, Canada. This work was supported by NSERC through
funding for the NSERC Canadian Field Robotics Network
{gamboa,dmeger,dudek}@cim.mcgill.ca

these methods are promising, since they are effective in
reducing the number of interactions with the target robotic
system, these methods have a computational cost comparable
to learning from scratch.

To address the issues of high computational cost and
minimizing the interactions with the physical system, we take
inspiration from dataset aggregation approach for learning
from demonstration [5], [6]. That is, we treat control learning
(or transfer) as a supervised learning task, significantly
reducing the computational complexity. We seek to imitate
the optimal behaviour from the source system in the target
system. Thus we build a dataset where the inputs are state-
control pairs from trajectories obtained by applying the
optimal controller in the source system, and the outputs are
the controls in the target system that would reproduce such
trajectories. Instead of searching for the target controls, we
build an inverse dynamics model from data obtained in the
target system. Using this dataset, we train a policy adjustment
model that transforms the source controller into one that
replicates the source trajectories in the target domain.

With such data driven models, we are making the as-
sumption that the optimal behaviour in the source system is
feasible in the target system. This is a non-trivial assumption
that should be carefully considered. The target robot may not
even be physically able to follow the trajectories from the
source system due to physical limits. Even if the trajectories
are feasible, they may describe a suboptimal behaviour in
the target system. However, we believe that many practical
scenarios do satisfy our conditions. We demonstrate our
approach in scenarios when the conditions are true, achieving
rapid and effective policy adjustments.

To further motivate our approach, consider the illustrative
example of learning swimming controllers that stabilize an
underwater robot in fresh water (e.g. as the scenario in [7])
and trying to apply the same controllers in salt water. As
the density of the fluid changes, the hydrodynamics will
be different enough for the original controllers to fail in
performing the task. Different forces are required to counter-
act different effective buoyancy. However, the ideal stable
path described by the robot in the source environment (fresh
water in our example) contain information that can be
exploited to speed up the learning on the target environment.
A similar situation can be found for flying robots that slightly
bend a wing or ground robots that puncture a tire.

We describe a method for training such policy adjustment
model, using data from the source sytem and an inverse
dynamics model of the target system to generate a dataset
for supervised learning. We demonstrate our approach in
simulation in the cart-pole balancing task and a two link



double pendulum. We also validate our approach with a
physical cart-pole system, where we adjust a learned policy
under changes to the weight of the pole. We show how this
method requires drastically less computation than tabula rasa
learning, and discuss its limitations and future improvements.

II. BACKGROUND

A. Learning motor behaviours

The method proposed in this work requires an algorithm
that optimizes motor controllers on a source robot system.
Several algorithms have been proposed in the literature,
using techniques based on stochastic optimization, dynamic
programming or heuristic search. In the experiments reported
on this paper, we used Probabilistic Learning in Control
(PILCO) [1] to train the source controllers, a method which
works by building a model of the system dynamics to
perform policy optimization, while minimizing the amount
of interaction with the physical system.

Our work is mostly related to methods that use guiding
examples to train the behaviors using supervised learning.
The Dataset Aggregation DAGGER algorithm [5] takes as
an input a control policy provided by expert demonstrations
and uses supervised learning to train a policy that mimics
the expert. Then, the policy is iteratively updated by exe-
cuting the policy on the target system and adding the new
experience data to the dataset for training the policy. This is
similar to the algorithm described below, except in our case
the expert demonstrations come from a source environment
with different dynamics to those of the target environment.

Guided Policy Search [2] uses a similar idea, except
that it uses a trajectory optimization algorithm to generate
the example trajectories. In their work, the authors use
Differential Dynamic Programming (DDP) to obtain a locally
optimal trajectory that performs the desired behaviour. Based
on this solution, the authors construct a model for sampling
trajectories that will be used for estimating the gradient of
the control policy and to estimate the performance of the
control policy. The procedure is run iteratively, aggregating
the sample trajectories at each iteration in a similar way
as [5]. The resulting algorithm also has a strong similarity
to our work, except our formulation is based on the transfer
learning paradigm [8].

B. Transfer Learning

Recent work [3], [4] showed how data from low fidelity
simulators can be used to bias policy optimization in the
target environment. The data transferred from low fidelity
simulators includes value functions, state transition models,
learned policies, and experience data. This is done in order
to reduce the number of interactions with the target robotic
system. In these approaches, the learning algorithm for the
source and target environments is the same. Only the initial
conditions (e.g., the prior mean predicting robot motions)
differ due to the transferred data. While the authors have
shown less trials are required on the target system, the
computational cost of learning is still roughly as high as

Fig. 1. The controller used in the target robot system T , consists of the
original source policy π(S) and the policy adjustment model.

when learning from scratch, which can be a significant
burden for complex systems.

Cully et al. [9] demonstrated a system for gait adaptation
that relies on equipping a robot with a simulator model
and a library of pretrained behaviours. This system fits a
transferability score function that attains high values when
the physical robot experience agrees with the simulated
behaviour, and low values when there is a discrepancy. The
authors demonstrated how this system could be used to adapt
gaits on a hexapod robot when deployed on a physical robot
with a variety of electrical and mechanical failures. This is
similar to our work in the sense that the target system data
is used to modify a controller trained in a different setting.
The difference is that they use the data to select a previously
trained controller from a library, while we use the data to
adjust a previously trained controller.

As mentioned in the previous sections, we do not con-
tinue the learning process with the same algorithm, since
this might be quite computationally expensive. Instead, we
make a powerful assumption allowing a much more efficient
approach, and avoid repeating the expensive computations
done to obtain the source policies.

III. ADAPTING LEARNED POLICIES THROUGH
POLICY ADJUSTMENT

Our goal is to restore performance of a robotic system
performing a task after a change occurs that impacts its
dynamics; making its original controller fail at performing
the task. We aim to do so by using previous learning
experience as a guide. Ideally, we would like to find a new
controller that optimizes the same objective as the original
one, e.g. to find an optimal policy under the new dynamics.

We propose an approach consisting of computing a policy
adjustment model πadj ; which maps control policies π(S),
from the source environment S, to a new policy π(T ), in
the target domain T , that reproduces the original behaviour.
We define the policy adjustment model to have the following
form

πadj : X × U → U (1)

For our proposed method, we make the following assump-
tions about the source S and target T environments.

• Tasks in both S and T can be represented as
discrete time Markov Decision Processes (MDP):
(X ,U , T (S), c) and (X ,U , T (T ), c).



• The state and action spaces of S and T correspond to
the description of the same robotic system.

• Although the state transition dynamics T (S) and T (T )

may differ, any sequence of states in S drawn according
to the optimal policy π(S) has non-negligible probability
in T , under some policy π(T ). In other words, the opti-
mal behaviour of the robot in S is physically plausible
in T .

• The sampling period for the discrete time MDP is small
enough so that the one timestep inverse kinematics of
T can be approximated by a bijective function.

Note that, although the ideal solution would be to find
a new controller that optimizes the accumulated costs (ob-
tained by evaluating c), reproducing the original behaviour
under the new dynamics might be suboptimal. Figure 1
illustrates how we integrate the adjustment model in the
target robot’s controller. At every time step t, the target
controller π(T ) takes as input the robot’s current state x(T )

and computes the action u(S) that would have been optimal
in S. The adjustment model will modify this action in order
to reproduce the state transitions observed in the source
data, producing the target control output u(T )

t . Note that the
policy adjustment model may be trained with different source
policies, as both the action and the state are inputs to the
adjustment. In our experiments, we let the adjustment model
fall back to the original controller in the regions of the state
space where there is no data, as explained in the following
subsections.

Our method consists of the following steps
• We sample trajectories using the learned controller to

be used as examples of the desired behaviour in T .
• Next we fit an inverse dynamics model from trajectories

sampled in T .
• Finally we use the inverse dynamics and the example

trajectories to generate a dataset for learning the policy
adjustment using supervised learning.

Figure 2 provides an illustration of our method. The
last two steps are performed iteratively in order to gather
useful data to train the policy adjustment model. We provide
a more detailed explanation of the steps of our method
in the following sections, and summarize our method in
Algorithm 1.

A. Source Learning and Trajectory Sampling

Given a desired task specification for a robotic system, in
the form of a target state and a cost function, we use any
existing algorithm that produces a control policy π(S) that
minimizes the cost associated to the task. In our experiments,
we use the PILCO to obtain source policies in the form of
radial basis functions (RBF) networks.

Given π(S), we sample a set of example trajectories D(S)

from S. By sampling we mean picking slightly different
starting locations for the system, and introducing noise in
the case of using a deterministic simulation. In the case of a
physical system we skip the noise injection and rely on the
non-deterministic behaviour of the physical system. These

(a) Source domain (b) Target domain

Fig. 2. The goal of the policy adjustment πadj is to replicate trajectories
from the source domain in the target domain. We do this by generating a
dataset (x(S)

t ,u
(S)
t ,u

(T )
∗ ), where u

(T )
∗ = g(T )(x

(S)
t ,x

(S)
t+1), and training

πadj by supervised learning; e.g. GP regression

sampled trajectories are stored as state-action-state triples,
(x

(S)
t ,u

(S)
t ,x

(S)
t+1), which we will use to guide the desired

behaviour in T ; i.e. we aim to imitate the behaviour described
by this set of trajectories.

B. Target Trajectory Sampling and Learning Inverse Dynam-
ics

Increasing our knowledge of the target system requires
choosing exploratory actions to gather new data, which is
a canonically difficult problem. Two standard approaches
to sample trajectories in T are (1) random behaviour (to
explore); or (2) by applying π(S) (to exploit). The expected
benefits of these two simple approaches will depend on how
related S and T are. If S and T are the same, the obvious
choice is to use the policy directly to obtain the desired
behaviour as rapidly as possible. On the other hand, as the
difference between S and T becomes more pronounced, it
will become harder to find the actions that replicate the
trajectories from S in T . As real systems fall across a mix
of these scenarios, we attempt to intelligently accomplish
both factors. We apply the source policy while encouraging
exploration by adding a small amount of noise to the applied
controls. Specifically, we select this noise proportional to
the confidence of our policy adjustment model, as will be
explained later. The sampled trajectories are stored as a
dataset of state-action-state triples D(T ).

From this dataset, we obtain a representation of the inverse
dynamics in T ,

g : X (T ) ×X (T ) → U (T ) (2)

which maps pairs of states to the action that may cause the
transition. We currently assume that g is locally bijective,
i.e. there is only one action that explains any given state
transition, which we have found reasonable for a small
enough time discretisation period. This allows us to use
any data-driven approach to fit an inverse dynamics model
instead of performing a costly search, or deriving an exact
inverse dynamics model. We found that using a Gaussian
Process (GP) Regression for fitting g allows us to filter
predictions of inverse dynamics based on confidence levels.



C. Training the Policy Adjustment Model

The policy adjustment model produces a new policy for
T , πadj , by transforming the output of π(S) into an action
that replicates the behaviour from S in T , as illustrated in
Figure 2.

To obtain πadj , we take a state-action-state triplet
(x

(S)
t ,u

(S)
t ,x

(S)
t+1) from the example trajectories in D(S) and

use the inverse dynamics model g to obtain the action u
(T )
t

that is most likely to produce the same transition in T .
For every input pair (x

(S)
t ,x

(S)
t+1) we obtain u

(T )
t ,Σ

(T )
ut

from the inverse dynamics model g; i.e. the mean prediction
and its covariance, which is diagonal in the case g is a GP
model with deterministic inputs. We use Σ

(T )
ut to filter out

samples with low confidence. We repeat this procedure for
all the example trajectories from S and form a new dataset
D(adj) consisting of triplets (x

(S)
t ,u

(S)
t ,u

(T )
t ) for training

πadj .
We chose to use GP regression to train πadj from D(adj).

In our implementation, we set the prior mean of the GP for
πadj to be zero, and train the adjustment model on triplets
(x

(S)
t ,u

(S)
t ,u

(T )
t −u

(S)
t ); i.e. the output is an additive change

we need to apply to the source controls. At test time, we
compute the controls to apply at a state x as u = π(S)(x)+
πadj(x, π

(S)(x)). This allows the target controller to fall
back to the source controller in regions where it has no data,
as the prior prediction from πadj is zero with high variance.
Using a GP model allows us to implement the previously
mentioned exploration strategy for sampling trajectories in
the target system. When executing the controller π(T ), we
will sample u

(T )
t from the output normal distribution given

by the mean and covariance of the prediction from π(T ).
Since we filtered out the predictions from the dynamics
model with low confidence, the variances in the predictions
from πadj will be large in regions where we have no data,
which will result in samples that are considerably different
from the mean, leading to more aggressive exploration.

Our method continues by sampling trajectories from the
target domain, fitting the inverse dynamics and training the
policy adjustment model multiple times, each time gathering
more data to train the policy adjustment model. We summa-
rize our method in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Adjusting Policies in Simulation

We have tested our approach in the cart-pole and inverted
double pendulum tasks. In both cases the task is to balance
the pendulum in an upright position. The source tasks were
learned by training Radial Basis Function (RBF) policies via
PILCO [1]. For the cart-pole experiment, each trial has a
time horizon of 4.0 seconds, the time step for controlling
the system is 0.1 seconds, and the controller is composed of
10 RBF units. For the double pendulum experiment, the time
horizon is 3.0 seconds, the time step is 0.1 seconds, and the
controller is composed of 100 RBF units. The cart-pole task
took 5 iterations to converge, while the double pendulum
task took 10 iterations.

Algorithm 1: Policy Adjustment

Inputs: Source MDP S :
(
X ,U , T (S), c

)
Target MDP T :

(
X ,U , T (T ), c

)
Policy Learning algorithm L1

Supervised learning algorithm L2

Supervised learning algorithm L3

The maximum number of target trials NT

Output: A policy adjustment model πadj
1: π(S) ← L1

(
X ,U , T (S), c

)
2: Sample D(S) applying π(S) in S
3: D(T ) ← ∅
4: i← 0

5: πadj ← π(S)

6: while i < NT do
7: D(adj) ← ∅
8: Sample D(T )

i by applying πadj in T
9: D(T ) ← D(T ) ∪D(T )

i

10: g ← L2

(
D(T )

)
11: for each

(
x
(S)
t ,u

(S)
t ,x

(S)
t+1

)
∈ D(S) do

12: u
(T )
t ← g

(
x
(S)
t ,x

(S)
t+1

)
13: D(adj) ← D(adj) ∪

(
x
(S)
t ,u

(S)
t ,u

(T )
t

)
14: end for
15: πadj ← L3(D(adj))

16: end while
17: return πadj

The target systems shared the morphology of the source,
but had balanced links with twice the mass of the original.
This change is sufficient that the source policies produce very
poor performance, and adjustment is a pressing need; how-
ever, the the change is not so large as to break our method’s
assumptions. We performed numerous repetitions of both
learning the original source policy and also performing the
adjustment to the heavier target system in order to verify the
repeatability of our approach. For each learning repetition
of adjustment, the only inputs are the policy and sample
trajectory from the source system. Our method is given no
knowledge at all about what has changed in the target, and
must interact with it over a sequence of episodes to determine
the appropriate adjustment (the simulator is automatically
reset to a start state to begin each episode).

The results of these simulated trials, displayed in Figure 3,
illustrate the effectiveness of our transfer approach on this
task. The dashed blue lines represent the mean accumulated
cost over 50 different runs in the source environment. The
solid red lines represent the variability in performance per
learning iteration. The thinner solid lines are the minimum
and maximum values over the 50 runs. Our method was able
to match the original performance without having to learn
from scratch, in 3-7 iterations (12-28 seconds of experience)
for the cartpole task, and 15-20 iterations (45-60 seconds
of experience) for the double pendulum task. Both of these
results represent a fraction of the computational cost, as we



(a) Cart-pole.

(b) Inverted double pendulum.

Fig. 3. Results of our policy adjustment method in two simulated domains.

will now examine.

Timing results from these experiments show that our
method is considerably faster than learning from scratch.
Each of the cart-pole learning iterations in PILCO (learning
a dynamics model plus doing a policy search iteration)
takes, on average, 6 minutes on an machine with a Intel(R)
Core(TM) i7-6700HQ CPU @ 2.60GHz. In contrast, our
method takes 5-10 seconds for training the inverse dynamics
and the adjustment model. The computational cost of each
iteration of our method is dominated by the training of
the inverse dynamics and policy adjustment functions, for
which efficient approximation methods exist [10], [11]. For
comparison, a single learning iteration with PILCO requires
training a dynamics model (of similar complexity as our
method), and evaluating the gradient of the policy over the
sequential controls and dynamics rolled out over the entire
episode length, which is the most computationally intensive
part. Our method does not require computing policy gradients
or roll-outs, requiring much less computation time. Note
however that our algorithm decreases the computation time,
but not necessarily the hardware interaction time.

B. Adjusting Policies on a Physical Cart-Pole System

In order to verify the effectiveness of our method on real
robot hardware and to avoid simulation bias, we constructed
a single-motor cart-pole system illustrated in Figure 4. We
verified that tabula rasa learning with PILCO was able to
perform balancing on this original system, which has a pole
weight of 45 g, as well as several modified systems, where
a range of weights (27.5 g, 45 g, 90 g and 180 g) were
attached roughly two thirds of the way towards the end of
the pole. This lead to effective masses of 1.5x, 2x, 3x and
5x compared with the original system. For each case PILCO
learning resulted in effective balancing, but required around
7 attempts with the real hardware interspersed with learning,
which amounted to roughly 45 minutes of overall elapsed
time.

We then conducted a set of policy adjustment experiments,
always taking the learned policy from the lightest system (the
one with no added weight) as the source input, while the cart-
pole was weighed down by the additional masses. Figure 5
displays one sequence of state-space trajectories followed
by our system during policy adjustment for the pole with
2x the original mass. Based on learning from one execution
of the source policy in the target to gather data, Adjusted
Traj. 1 is the first path followed by our system, and while
it is improved, it still falls short of balancing, with the pole
quickly falling and dragging the cart far to the positive X
direction. This performance yields additional fruitful data for
our method to exploit, as can be seen from Adjusted Traj. 2,
which manages to pass through the target balancing point,
however with too great a velocity, leading to the pole over-
rotating. With this additional data and another 10 seconds
of computation, the next learned policy produces Adjusted
Traj. 3, which produces stable balancing, following a close
approximation to the SRC in Source trajectory which was
considered the optimal performance learned by PILCO on
the source system.

Figure 6 summarizes the outcome of applying the pro-
posed policy adjustment algorithm to each of the 4 added-
mass target scenarios. The left column shows the progression
of cumulative cost per episode, where quick convergence to
low or zero cost represents effective learning. The middle and
right columns show single dimensions of the state space, with
stabilization at the dotted blue lines indicating successful
balancing has been achieved. The accompanying video shows
the experiments that were run in order to obtain these results.

It is evident that learning from scratch with PILCO on the
source system was effective, as is our adjustment method
when applied to added weights of up to 3x. In the 5x
added weight scenario, our method did not converge to
successful balancing. We observed that the motor torques
being attempted by the adjusted policies in this case saturated
our actuator, so it is likely that this dynamic system is
not able to follow the guiding trajectories from the source
that our method attempts to match. Solving this heaviest
scenario may require an additional swing back-and-forth,
which our method will never attempt. We note that, while



Fig. 4. Our experimental setup for the cart-pole domain. The solid arrow
denotes the rotation axis of the pendulum. The dashed line denotes the
rotation axis of the actuator.

the adjustment failed, this can be easily corrected, as the cost
progression shows a lack of convergence, so a hybrid system
could initiate the learning of a new policy from scratch if
desired.

V. CONCLUSIONS

We have described a policy adjustment approach capable
of learning to perform tasks on difficult dynamical systems
in only seconds through the use of an existing policy and
example trajectories from a similar system as a strong guide
to learning. Our method is based on two primary compo-
nents: (1) experimentation with the target system’s dynamics
to produce an efficient data-driven inverse dynamics model
using a Gaussian Process; and (2) guided-sampling using
trajectories that were known to be effective in the source
system to build up a dataset of samples that inform a super-
vised learning policy optimization. The combined method
has been successful in learning on cart-pole and double
pendulum tasks in simulation as well as on a physical cart-
pole robot. In all cases, the mass of the balanced links can
be doubled or more, completely invalidating the effectiveness
of the original learned policy, and our approach is able to
restore performance in just a handful of trials and typically a
minute of elapsed time. To our knowledge, ours is the fastest
adaptation algorithm that has been demonstrated to date for
this particular task.

While the demonstrations in this paper have been focused
on technical efficacy, it is interesting to consider the potential
of our method for use on-board practical fielded robotic
systems. The reader will recall that our method depends
on an effective policy for the source environment. If this
is learned from scratch, it will, of course, be expensive.
However, our approach allows for paying the price of an
expensive computation only once. As the robot’s dynamics
change (such as picking up tools or wearing a tire), applying
the policy adjustment algorithm is quick and easy. This
reveals that our approach is well-suited to being a back-
ground optimization process on board robots that interact
with difficult environments and are likely to experience
minor failures or wear-and-tear that results in subtle, but
not catastrophic changes in dynamics (e.g., swimming robots
with flexible flippers, tire wear, manipulators that become

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Cart X Position (m)

-1

0

1

2

3

4

5

6

7

8

P
ol

e 
A

ng
le

 (
ra

d)

SRC in Source (optimal)
Adjusted Traj. 1 (A1)
Adjusted Traj. 2 (A2)
Adjusted Traj. 3 (A3)
Start Location
Goal Location

Fig. 5. The sequence of trajectories performed by our system for a
physical cart-pole system with an additional 45 g weight added near its end,
effectively doubling the pole mass to be balanced. Our adjustment algorithm
sequentially improves the target behaviour to match the optimal trajectory
known for the source system, rapidly converging to strong performance in
only three trials.

slightly fouled).

One of the main outstanding issues that we hope to
investigate in the future is the selection of which data points
to include in the dataset used for supervised training of
πadj . Selecting starting states from the source domain x

(S)
t is

desirable as it defines the trajectory that we want to follow,
but it has the problem that we may not have enough data in
D(T ) to compute the inverse dynamics g(T ) for such states.
On the other hand, selecting starting states from the target
domain x

(T )
t is desirable because this corresponds to regions

of the state space where we can compute g(T ). However
these states might have not been visited when training the
source policy, and would not help bringing the robot closer
to the optimal behaviour. Our current approach of weighting
samples by their uncertainty has proven the most effective
amongst those we attempted, but it will be interesting to
continue additional techniques in future work.

Unlike the prior work on using a simulator in RL [12], [3],
we are not continuing to optimize the policy in the target
domain, using the source policy to seed the optimization.
Instead, we use our assumption to synthesize a control policy
through the policy adjustment model πadj , which should
work for multiple tasks. Our approach has strong similarities
with the Dataset Aggregation DAGGER algorithm [5], except
that we have no expert that could demonstrate the trajec-
tories, other than the policy trained on a different domain
(perhaps a simulator). It will be promising to pursue methods
that can appropriately utilize guidance from multiple sources,
such as a human expert as well as a policy that has been
learned from a similar domain, and we believe our efficient
approach is well-suited for the real-time requirements that
would be presented by such an integrated system.



Fig. 6. Results for numerous configurations of the physical cart-pole system. The first row shows learning from scratch with a simple pole (no weights
added), which includes 4 random trials (R1 and R3 shown) and 7 iterations of expensive policy-gradient optimization (L1, L3, L5 and L7 shown), in 45
minutes elapsed time. Rows 2 through 5 show adjustment to successively heavier added weights. Our method first executes the policy from the source
(SRC) to begin collecting data and then runs 5 trials with adjusted policies (A1 through A5). Up to the 3x heavier configuration, our method learned to
perform the task as well as in the source system; by trial A3 and in less than 1 minute elapsed time. Our method was unsuccessful in adjusting to the 5x
heavier system, likely because our motor torque limits prevented matching the source trajectory.

ACKNOWLEDGMENT

We would like to acknowledge the NSERC Canadian Field
Robotics Network (NCFRN) for its funding support. We
would also like to thank Anqi Xu for the useful discussions
and script used for Figure 6, and Nikhil Kakodkar for the
helpful comments.

REFERENCES

[1] M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI), 2014.

[2] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of
The 30th International Conference on Machine Learning, 2013.

[3] M. Cutler and J. P. How, “Efficient reinforcement learning for robots
using informative simulated priors,” in IEEE International Conference
on Robotics and Automation (ICRA). Seattle, WA: IEEE, May 2015.

[4] M. Cutler, T. J. Walsh, and J. P. How, “Reinforcement learning with
multi-fidelity simulators,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA’14), 2014.

[5] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” arXiv
preprint arXiv:1011.0686, 2010.

[6] S. Ross and J. A. Bagnell, “Agnostic system identification for model-
based reinforcement learning,” arXiv preprint arXiv:1203.1007, 2012.

[7] D. Meger, J. C. Gamboa Higuera, A. Xu, P. Giguère, , and G. Dudek,
“Learning legged swimming gaits from experience,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[8] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learn-
ing domains: A survey,” The Journal of Machine Learning Research,
2009.

[9] A. Cully and J.-B. Mouret, “Behavioral repertoire learning in robotics,”
in Proceedings of the 15th annual conference on Genetic and evolu-
tionary computation. ACM, 2013, pp. 175–182.

[10] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and
A. R. Figueiras-Vidal, “Sparse spectrum gaussian process regression,”
The Journal of Machine Learning Research, 2010.

[11] Y. Gal and R. Turner, “Improving the gaussian process sparse spectrum
approximation by representing uncertainty in frequency inputs,” in
Proceedings of the 32nd International Conference on Machine Learn-
ing (ICML-15), 2015.

[12] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey,”
in Reinforcement Learning. Springer, 2012, pp. 579–610.


	INTRODUCTION
	BACKGROUND
	Learning motor behaviours
	Transfer Learning

	ADAPTING LEARNED POLICIES THROUGH POLICY ADJUSTMENT
	Source Learning and Trajectory Sampling
	Target Trajectory Sampling and Learning Inverse Dynamics
	Training the Policy Adjustment Model

	EXPERIMENTAL RESULTS
	Adjusting Policies in Simulation
	Adjusting Policies on a Physical Cart-Pole System

	CONCLUSIONS
	References

