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We show how a neural network can be used to allow a mobile robot to de-
rive an accurate estimate of its location from noisy sonar sensors and noisy
motion information. The robot’s model of its location is in the form of a
probability distribution across a grid of possible locations. This distribu-
tion is updated using both the motion information and the predictions
of a neural network that maps locations into likelihood distributions
across possible sonar readings. By predicting sonar readings from loca-
tions, rather than vice versa, the robot can handle the very nongaussian
noise in the sonar sensors. By using the constraint provided by the noisy
motion information, the robot can use previous readings to improve its
estimate of its current location. By treating the resulting estimates as if
they were correct, the robot can learn the relationship between location
and sonar readings without requiring an external supervision signal that
specifies the actual location of the robot. It can learn to locate itself in
a new environment with almost no supervision, and it can maintain its
location ability even when the environment is nonstationary.

1 Introduction

We describe a method that allows a robot equipped with a ring of sonar
range finders to learn to compute its location within an initially unfamiliar
environment. The obvious way to solve this problem is to build an explicit
map of the environment. An interesting alternative, however, is for the
knowledge of the environment to be implicit in the weights of a neural
network that relates sonar readings to locations.

The robot, of small trash-can proportions, has internal sensors that de-
tect the movement in the wheels. These motion sensors may not be entirely
accurate (they are blind to skidding) and therefore are not sufficient for ac-
curate navigation over long periods of time. Each of the 12 uniformly spaced
Polaroid sonar transducers crowning the robot acts as both transmitter and
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receiver, measuring the return time of the first echo from an emitted chirp.
The time is converted into a distance r, and the vector r of all 12 readings
obtained at a point is called a sonar signature. The sonar sensings, too, are
affected by various forms of noise, both reproducible and irreproducible.
For example, the sound emitted by each sensor spreads out in a cone, and
rays within the cone may make different numbers of bounces before return-
ing. This can lead to phantom walls and phantom holes in corners (Dudek,
Jenkin, Milios, & Wilkes, 1993; Wilkes, Dudek, Jenkin, & Milios, 1990), de-
pending on the configuration and reflective properties of objects in the room.
In addition, faulty sensors, cross-talk between transducers, energy dissipa-
tion of the sonar signal, unreturned echos, and very nearby objects can lead
to irreproducible random effects that have no apparent structure. Moreover,
even the accurate sensings can be assumed to have approximately gaussian
additive noise.

In this work, we have used simulator-based data, as will be described in
section 3.1, and have assumed that the robot’s orientation is known.

2 Learning a Model That Relates Locations to Sonar Readings

2.1 Predicting the Location from the Sonar Readings. There is an ob-
vious way of using a feedforward neural network to derive a location from
a set of sonar readings. The inputs to the net are the sonar readings, and the
outputs are the location, which may be represented as two real-valued coor-
dinates or may be a probability distribution over a grid of possible locations.
Although this type of net works moderately well (Dudek & Hinton 1992), it
has some major drawbacks. During the initial training, the network requires
supervision in the form of accurate information about the true location of
the robot, and further supervision is required whenever the environment
changes. The network is also poor at handling situations in which a sonar
sensor is unreliable or a small change in location causes the sensor to return
the maximum value rather than the distance to a small, close surface. When
this happens, the input to the network changes a lot, but the outputs should
change only slightly. Such slight changes are hard to achieve in a standard
feedforward network because the outputs must be sensitive to at least some
of the inputs.

2.2 Integrating Sonar Information over Time. Instead of using a neural
network to predict locations from sonar readings, we could predict in the
opposite direction and then use Bayes’ theorem. For each sonar signature,
r, the same feedforward neural network is applied once at each possible
grid cell, g, to estimate the likelihood, P(r| g;), of obtaining that signature
from that cell. Instead of integrating over all possible locations within each
cell, the neural net takes as input the location, x;, of the center of the cell
and produces as output a conditional probability distribution under which
the density of r is computed. The likelihood of r at each cell is then multi-
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plied by the robot’s prior probability of being at the cell, and the products
are renormalized! to obtain a posterior probability distribution that incor-
porates the information in the current sonar readings. In the case that we
know the environment is stationary (a common assumption), we can im-
prove the efficiency of the tracking algorithm by a large factor, once the
neural network has been trained, by keeping the density distribution func-
tions P(r|g;) in a lookup table, and thus eliminating the need for any more
forward passes through the network:

P(rt |gf)P, rior(gi)
P;:vosterior(gi) = + - i . (21)
Zj P(r 'gj)Ppri()r(g/)

To make the updating straightforward, we need to assume that the prior
probabilities of cells are independent of the likelihoods obtained for the cur-
rent sonar readings. This independence assumption is dubious because the
prior probability distribution was derived using the same neural network
and the same sensors on earlier nearby locations. To see just how bad the
independence assumption can be, imagine what would happen if the robot
stayed at exactly the same location and kept repeating its sonar readings. It
would eventually be certain that it was in the cell that had the highest like-
lihood of producing the observed distribution of sonar signatures, even if
many other cells had a likelihood almost as high. It is well known that max-
imum likelihood estimation will yield a biased prediction of the variance of
a distribution, which could further increase the chances of confidence in an
incorrect position estimate. To check for this effect, we tried using Mackay’s
(1991) unbiased variance prediction method and found that the results did
not differ significantly.

The prior probability distribution is obtained by taking the previous pos-
terior distribution and updating it using the noisy movement information.?
To eliminate the increase in entropy of the distribution caused by quantiza-
tion effects when the movement in each direction is not an integral multiple
of the grid spacing, we separate the expected movement in each dimension
into an integral and a fractional part. The fractional part, f'~, is accumu-
lated by moving the location of every grid cell:

xb = x4 gt (2.2)

I

! By choosing a fine enough grid, we can assume that the density of the position
distribution is locally linear within a cell, and therefore the probability mass contained in
the cell is well approximated by using the probability density of a reading being obtained
at the center of a cell.

2 This approach resembles Kalman filtering, but the probability distribution over the
underlying state is nongaussian, and the model that relates the underlying state to the
observations is nonlinear.
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We can imagine this procedure as manipulating a single vector offset
associated with the entire grid. For example, suppose each grid cell is 10 cm
wide, and a motion of 23 cm to the east is perceived. Then the probabilities
in each cell are moved over by two cells, and furthermore the offset of the
entire grid is increased by 3 cm (i.e., the centers of the individual cells are
themselves displaced). If the offset was already 9 cm, then we would instead
move the probabilities over by three cells and subtract 7 cm from the offset,
to keep the offset between zero and one cell width.

After moving the probabilities over and adjusting the grid offset, we blur
the distribution by the assumed noise, a1 in the movement estimate,

t N — _pt-1 .
pPriOY(g') - Zw/’Pposter'ior'(g])’ (2.3
i

where the wj; are the terms in a discrete approximation to a gaussian convo-
lution kernel. In our simulation, the actual motion of the robot is a random
sample from a gaussian with mean g/~ and standard deviation o'~/ We
have not added orientation noise to the motion model.

When the boundaries of the environment are known, any probability of
being outside the grid can be accumulated in the nearest edge cell. In this
way, continual motion in the same direction will eventually lead to near
certainty of being somewhere along the corresponding edge.

2.3 Representing the Robot in the Environment. The most convenient
and natural way of representing the environment given the nature of our
localization method is in the form of a grid, where a value P(g;) is associated
with each cell representing the probability of the robot being in that cell. This
is reminiscent of Moravec’s (1988) certainty grid but with a key difference:
The typical certainty grid lends itself well to constructing a map of the en-
vironment, and has been used effectively for that purpose (e.g., see Thrun
et al., in press). In our approach the sensor readings are used immediately
to update the estimate of the robot’s position; using other representations,
there needs to be a way of making combined use of the map and the sen-
sor readings to compute the location of the robot within that map (e.g., by
modeling the inverse sonar process or optimizing a template match).

In our approach the structure of the environment remains implicit in the
models that assign probability distributions to sonar readings at each grid
location. The integration over time of our knowledge of the environment is
handled implicitly in the learning, whereas the integration of motion over
time is handled explicitly by moving the probability distribution.

2.4 Learning to Predict Sonar Readings from Location. We considered
several different types of networks for estimating the likelihoods of the
sonar readings. All of these nets had two input units to represent location
coordinates, and the output units were divided into 12 groups, with each
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group specifying the parameters of a probability distribution for the read-
ings from one sonar sensor. When the true location of the robot was known,
the net was trained to maximize the log probability density of the actual
sonar readings under the distribution represented by the output values of
the net when the inputs were the true location.

Initially we used a single hidden layer of logistic units and modeled the
probability distribution for each sonar sensor as a mixture of a gaussian
and a uniform distribution between 0 and the maximum value of 4 m. This
required three output units per sonar sensor: a logistic unit for the mixing
proportion of the uniform distribution, a linear unit for the mean of the
gaussian, and an exponential unit for its variance. The use of an exponential
is appropriate for a scale parameter like the variance, and it prevents the
variance from ever becoming negative or zero.

In our initial model, the predicted mean of the gaussian could be a non-
linear function of the two input coordinates because we used logistic hidden
units. Later we found that it was better to use a different type of nonlinearity
to predict the mean of the gaussian from the input coordinates. The mean is
typically a linear function of the input coordinates over a small region but
then switches to a different linear function when the sonar return comes
from a different planar surface (see Fig. 1), so it is natural to use a mixture
of linear models for predicting the mean. We used 12 separate networks,
one for each sonar sensor; each such network, #n, implemented a mixture
of local models. Each local model was itself a mixture of a gaussian and
a uniform. The mixing proportions of the local models were a function of
the current input coordinates and were specified by the activity levels of a
group of normalized radial basis units. The activity level of each basis unit,
j, was determined by the relative proximity of its center, ¢,;, to the two input

coordinates, x:
—[lx—eul®
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(2.4)

I//nj(x) =

Both the centers of the units and their shared variance o3, F, Were learned.’

Each basis unit has three associated output units that represent the pa-
rameters of a predicted probability distribution for one sonar reading. This
distribution is a mixture of a gaussian and a uniform. The basis unit has one
adaptive outgoing weight that determines the mixing proportion, z;, of the
gaussian, one adaptive weight for the log of the variance, and three more

3 The planar walls of the room cause the piecewise linear regions in Figure 1 to have
linear boundaries. This makes it appropriate for the radial basis functions to have the
same variances because this ensures that, after normalization, the region dominated by
an RBF has linear boundaries.
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Readings from Sensor 2 (60-degrees)
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Figure 1: Readings from sensor 2. East-west and north-south positions are plot-
ted along the x- and y-axes, respectively. Signatures were taken at every 2.5 cm
inside a 2 m x 1 m rectangular region in the middle of a cluttered room. The
measurements obtained by sensor 2 are plotted on the vertical axis. The mea-
surements that drop below the 0 plane indicate locations where the sonar pulse
did not return a detectable echo. Many of the vertical surfaces in the room are
(nearly) orthogonal to the x- or y-axes, but sensor 2 is not parallel to either
axis of the room. So sensor 2 tends to produce signals that have more multiple
reflections and therefore a greater number of smaller discontinuous pieces.

outgoing weights, a. b, that define a linear model, which predicts the mean
of the gaussian from the input coordinates. A picture of the network for a
single sensor is shown in Figure 2. The likelihood distribution produced by
basis unit j is:

1 =llry — ApjX — bnj”2 1- Znj
Pyj(ry |%) = 2y 7 3/ exp|: 20,% + — (2.5)

We have allowed each region an adaptive uniform noise mixing compo-
nent because it is possible that the noisy, or unpredictable, readings are a
function not only of the sensor but of the location of the robot as well.

The normalized activity levels of the basis units are treated as mixing pro-
portions for combining their likelihood distributions into a single likelihood
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Figure 2: Final network model for one sonar sensor. The upper network shows
the normalized radial basis function units. A single variance a,%BF is inferred for
all regions of each sensor model. For each of the M regions, a linear unit is used
to predict the mean of the gaussian L;(x), exponential units are used to learn
variance, and sigmoid units are used to learn mixing proportions for uniform
noise.

distribution for each sensor u:

Py(rulx) = ZPH/(rn | X) Y (X). (2.6)
i

The number of normalized radial basis functions (RBFs) needed to reach
a certain positional accuracy is related to the size and complexity of the en-
vironment. When a local model is responsible for only a single data point,
there is a danger that it will assign an extremely high-probability density to
the observed reading by collapsing the width of the gaussian component of
its output distribution toward zero. This form of overfitting is avoided by
tying together the widths of the output gaussians for all the local models for
one sonar sensor. Generally the more RBFs used, the better the performance
tended to be, at the expense of learning time. We investigated some meth-
ods for pruning and adding RBF units during learning, with encouraging
results, though beyond the scope of the current discussion (e.g., this could
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be very useful in an environment that changes drastically over time).

When x is known, all parameters—a, b, and ¢, as well as those associated
with the RBF—can be learned by maximizing log P, (7, |x) (i.e., by gradient
descent), but when the robot’s true location is unknown and all that is avail-
able is the robot’s current probability distribution over cells, it is less obvious
what should be optimized. Our unsupervised algorithm, which is closely
related to expectation maximization, maximizes the expected log likelihood
of the sonar signatures, where the expectation is taken with respect to the
posterior probabilities of being at each grid cell:

(log P(r|x)) px) = /logP(r|x)P(x)dx (2.7)
~ Z log P(rlgi)pposterior(gi) (2.8)

where Pposterior(i) was calculated in equation 2.1. We used the conjugate
gradient method to tune the parameters.

3 Experimental Results

3.1 The Simulated Environmentand Noise. Theenvironmentand sonar
data used in this work were generated synthetically by a sophisticated sim-
ulator provided by Wilkes et al. (1990). This simulator used a ray-tracing
algorithm to capture many of the reproducible forms of nongaussian noise
that can occur with sonar sensors, such as phantom holes, phantom walls,
and occasional failures to detect nearby objects. Furthermore, to account for
the noise that is irreproducible, we have made the worst-case assumption by
replacing a certain fraction of the readings by random values chosen from
a uniform distribution in the interval (0, rmax). This replacement was done
by assigning each sensor i an “unreliability” quotient g;, so that any reading
taken by sensor i would have a probability g; of being replaced by a random
number. The unreliability quotients were {0.1, 0.5, 0.001, 0.01, 0.1, 0.001, 0.1,
0.2, 0.001,0.001, 0.1, 0.05}. In addition, to make the task more difficult, all
sensor readings that attained the maximum value ri,ax were also replaced by
a random number. Even for sensor readings considered “reliable,” gaussian
noise was added (with standard deviations of {4, 4. 3, 3,5,5,5,5.2, 1, 2,10}
cm).

Note that the net does not attempt to model the relationship between
the value of a sonar reading and the distance to the nearest object, only the
relationship between the value of the sonar reading and the position of the
robot. This means that any reproducible effects can potentially be utilized
for better localization, including the “nearby objects appearing far away”
effect, as long as there is some degree of consistency some of the time. The
fraction of the time when there is no consistency can simply be modeled by
the uniform noise-mixing proportion.
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Figure 3: Top-down view of complete sonar signatures at two points 10cmapart.
The position of the robot is marked by the circle near the middle of the room
(the one on the left is just slightly further north than the one on the right). The
thicker lines are meant to be reflective surfaces: walls, dividers, chair legs, feet,
a soda can under a desk, and a door. Each of the thin lines centered at the robot
represents the distance that was measured by the sensor facing in that direction.
For example, using a clock numbering of the sensors, the distance to the east
wall was accurately measured in both cases by sensor 3, while some confusion
occurred with sensor 9 as to the location of the western wall due to the interfer-
ence of a chair base on the right. The lines that touch the outer boundaries—the
measurements of sensor 2 and sensor 4—represent the directions from which
no strong echo was returned.

The environment used in all of the following tests was a cluttered office,
about 5 m by 5 m. Figure 3 illustrates the environment and signatures taken
from two nearby positions. Note the difference in the two signatures. These
signatures have not yet had any random noise added to them. We believe the
clutter in the environment to be a realistic model of working environments,
where numerous objects are left all over the place.

3.2 Tracking Algorithm. The unsupervised algorithm relies on the pre-
mise that combining the knowledge of the motion with the sonar-based
network predictions will produce better position estimates than those that
would be obtained by using either source of information alone. To demon-
strate that this is typically true, we used supervised training of the net-
work and then compared the errors of the dead-reckoned estimates (mo-
tion alone), the network estimates (sonar alone), and the filtered estimates
{(sonar and motion combined) as the robot travels along a path. The position
is actually represented by a probability distribution over a grid, but for these
comparisons, we used the mean of the distribution as the estimate.
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Estimated Position Errors: Gaussian Motion Noise
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Figure 4: Absolute errors in the predicted position for a single path. The noise in
the motion sensors is multiplicative gaussian with a mean of zero and standard
deviation of omeion = 5 cm for every 20 cm of motion.

In Figure 4, a network was first trained on a set of 80 labeled examples
taken from a boxed region of the position space, and then a random path 30
steps long was traversed without giving position information. The tracking
algorithm is successful; the errors of the filtered predictions in Figure 4
are roughly equal to the smaller of the sonar- and motion-based prediction
errors. Also shown is the expected value of the absolute error that would
be obtained over many runs of a single path using the same noise model for
the motion sensors. This smooth curve would continue to increase as the
square root of the number of time steps. The variance in the errors of the
dead-reckoned predictions would increase as well.

At the early stages of the unsupervised learning, the network will typi-
cally make larger errors, but these will be more easily overwhelmed by the
motion constraints, since the distributions predicted by the net will have a
higher entropy. In Figure 5, a network was used that had been trained on
only 20 examples. Although the variance in the sonar sensor predictions
was considerably higher, the filtered predictions were still quite good. We
also did runs in which we kept the robot’s motion model as described above
(i.e., zero-mean gaussian), but affected the motion sensings with a system-
atic 10% overestimation error in addition to the gaussian noise (i.e., biased
noise). Still, the filtered errors generally remained below 10 cm (Oore, 1995).

A minimally trained network can be quite useful provided the net does
not give too much confidence to its incorrect predictions. Occasional, accu-
rate, high-certainty predictions made by the net cause a confident posterior
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Estimated Position Errors: Minimally Trained Network
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Figure 5: Errors in the predicted position for a single path. The motion sensings
were affected by a systematic error (in which all traveled distances were over-
estimated by a factor of 10%) as well as a gaussian noise process with a larger
variance, opoion = 10 cm for every 20 cm traveled. The net was trained on 20
examples.

estimate. The motion model will then maintain this accuracy for a number
of time steps, even if the subsequent predictions by the network are poor.

3.3 Unsupervised Learning. The motivation for an unsupervised meth-
od for robot learning begins with the dilemma that dead reckoning alone
is insufficient but manual recalibration is too expensive to be practical. The
aim of the unsupervised learning procedure is to discover a good generative
model of the relationship between location and sonar readings. If the true
location is known, this can be done by maximizing the likelihood of each
observed sonar reading under the probability distribution produced by the
model. Since the true location of the robot is unknown, the best we can do
is to estimate the probability that it is at each grid location and then weight
the learning by these estimated probabilities.

3.3.1 Training Procedure. The general training procedure used for the
unsupervised learning consisted of a few steps:

0. Initialization. The 12 networks for predicting the likelihood distri-
bution of a sonar reading from the coordinates of a grid point were
initialized with small random weights, except that the normalized
RBF centers were distributed uniformly over the environment; the
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robot was placed in the room without any position information (i.e.,
a uniform distribution over the grid).

1. Data collection. The robot traversed a short path, consisting of a se-
quence of steps. An obstacle-avoidance mechanism was assumed in
generating the path. A sonar signature was taken at each step, and the
filtering algorithm given by equation 2.1 was used to update the prob-
ability distribution over grid cells by integrating the motion and sonar
sensings. The updated distribution over cells was combined with the
current sonar signature to yield weighted training examples of grid
cell-sonar signature pairs. The examples were accumulated over all
the steps in the path.

2. Training. Using the data just collected, the network was trained for a
fixed number of iterations, after which the training set was discarded.
The last filtered position distribution from the previous path was re-
tained as the initial distribution when returning to step 1 to acquire
more data. The weight vector of the trained net was retained as the
starting point for the next minimization.

Although the paths were random, they were generated to drift slowly
from left to right and back again (and again) while drifting up and down
more quickly.

3.3.2 Performance of the Unsupervised Learning Algorithm. The cluttered
office environment was used, with a motion noise of oumotion = 2.5 cm for
every 20 cm traveled. The network was trained for 30 conjugate gradient
iterations after every 30 steps. Figure 6 shows the actual paths traveled and
the paths as predicted from the sonar readings alone by the network, after
3 and then after 35 paths. The first peculiarity to observe is that although
the filtered estimates correctly capture the shape of the true path, they are
a translation of it. This can be explained by noting that the motion sensings
provide relative position information, while the only indications of absolute
position are an initial distribution, if given, and the edges of the grid if they
are reached by the exploration. Thus, since the paths we used systematically
continued to touch the east-west walls but did not extend fully in the north-
south direction, it is not surprising that the robot constructed a model that
was self-consistent (that is, consistent with the motion constraints) but was
a vertical translation of the actual environment. Examining the sonar-based
errors, we can see that in the earlier predictions, the network seemed to
get the right vicinity (modulo a translation) but made gross errors. After
continuing to train over another 32 paths, the network learned a model that
was a more accurate translation of the true environment. In both cases, the
majority of the larger errors in the sonar predictions were corrected by the
filtering algorithm.
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Predictions and Reality for an Early Path
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Figure 6: Real vs. predicted paths. The axes of the graphs can be seen as rep-
resenting a top-down view of a portion of the environment, in which the robot
took a zigzag path going from west to east. For visual clarity, the paths have not
been adjusted to match up. Inspection will reveal that the sonar sensings in the
lower left-hand region of the earlier path are very loosely related to the shape
of the true path. Nevertheless, it is immediately clear that they correspond to
the right general region. In contrast to this, looking at the right-hand side of the
later path shows that the sonar-based estimates exhibit a much closer match to
the filtered and true positions.
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Filtered Prediction Errors As Learning Progresses
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Figure 7: Learning while exploring. The means were calculated over sets of
paths, and the standard deviations were estimated from the sample, assuming
gaussian noise (which is incorrect for values that cannot be negative).

Figure 7 shows the filtered and sonar errors with error bars for paths as
the learning progresses, after performing the appropriate translation.* We
see that the filtered predictions were almost always better and had signifi-
cantly smaller error bars than the sonar predictions. At around the fiftieth
path, the variance in the sonar errors suddenly increased, for at this point,
the environment was rearranged (chairs were added, moved, etc.). The av-
erage error did not increase by much because it was only in certain parts
of the room that the network’s predictions were affected. This allowed the
motion constraints to maintain accurate localization for a few time steps
and then, before the filtered predictions started to deviate by much, a few
confident and accurate sonar predictions in a familiar part of the room were
all that were needed to recalibrate the tracking effectively. Since the nor-
malized RBFs respond locally, they can quickly and easily adapt to local
changes in the room. Although the network acted desirably in this case,
problems can arise if too many consecutive, overconfident, but inaccurate
sonar predictions are made. The threshold that determines overconfidence
is, in part, a function of the noise model in the motion sensings.

A possible danger is that if a certain region is avoided during initial train-
ing because of an obstacle, then when that obstacle is later removed, there
may still be a hole in the posterior where the object used to be. However,

* Done by calculating the mean error over a path and subtracting this from each pre-
diction in the path.
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this will be prevented to a certain extent for two reasons. First, during the
initial period of training, if the distribution of the robot’s position is very en-
tropic, the parameters for the distributions will be learned so that the entire
position space is covered, and therefore those places that are not contained
in the posterior distributions at later stages will still have been reasonably
initialized early on. Second, for many of the sensor readings (in particu-
lar, those that are not pointing at the obstacle in question), the readings on
either side of the obstacle are quite likely to belong to the same linear re-
gion, and therefore the corresponding linear predictors are already tuned
to interpolate correctly through the occupied region.

Various modificationsin the training procedure can significantly improve
the tracking and learning. For example, the learning can be accelerated by
starting with a net trained on a small number of labeled examples rather
than using a purely random initial net. Alternatively, the initial net can be
untrained, but accurate position information can be given at the beginning
of each of the first few paths. If the robot is returned to the same part of the
room to start each path, it learns to make confident and accurate predictions
in that region, and with further exploration it gradually expands the region
in which its model is accurate. The exploration strategy and length of paths
between minimizations are also important. If too many of the training points
in one path come from the same part of the room, then the centers of the
RBF units need to be frozen to prevent an uneven allocation of the network’s
resources. Although some of these variations speeded up the learning, they
were not crucial and were not used in the runs we have described.

4 Relationships to Other Approaches

4.1 Hidden Markov Models. The cells in the grid correspond to the
states in a hidden Markov model, and the uncertainty in the movement
information corresponds to the matrix of transition probabilities between
states. The fact that this matrix changes at each time step is unusual but not
incompatible with the standard hidden Markov model framework. Instead
of having a separate output model at each state, all of the states share the
same 12 neural networks, but the likelihood distributions produced by these
nets are contingent on the real-valued location coordinates associated with
a state. These coordinates change in a deterministic way as the robot moves,
but this does not create any additional problems.

In estimating the parameters of the output models, we make one major
simplification relative to the Baum-Welch method that is normally used for
hidden Markov models (Baum & Eagon, 1967). The correct way to compute
the posterior probability distribution over cells given a sequence of vectors
of sonar readings is to use the forward-backward algorithm. Repeated ap-
plication of equations 2.1, 2.2, and 2.3 corresponds to the forward pass, but
we ignore the backward pass and so cannot make use of the information
that sonar readings at time ¢ provide about the true location of the robot at
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times earlier than . The advantage of our suboptimal method of estimating
posterior probabilities is that it can be used online. Also, Neal and Hinton
(1993) show that the convergence of expectation maximization does not re-
quire the correct posterior distribution to be used. All that is required is that
the E-step produce a distribution that has a smaller Kullback-Liebler dis-
tance from the true posterior than the previous estimate.” This is no longer
guaranteed when the backward pass is ignored, but it is unlikely that a
forward pass using the current parameters in the output models will give a
worse estimate of the true posterior given those parameters than a forward
pass using the previous parameters.

4.2 Kohonen-Style Self-Organizing Maps. Kroseand Eecen (1994) show
that it is possible to compute the location of a robot by first building a to-
pographic map from the vectors of sonar readings alone. The use of a self-
organizing map (SOM) partially overcomes the need for labeled training
data, but unfortunately, the function that is optimized is not appropriate
for the location task. If we view the SOM in generative terms, it attempts to
minimize the squared reconstruction error when the input vector is recon-
structed from the winning hidden unit or from one of its neighbors. This
would be the right thing to minimize if the constraint on sonar readings was
that neighboring locations produced similar readings. But this is not true
when the robot passes close to the edge of a surface. Provided we know that
the movement is small, a much more realistic constraint is that temporally
adjacent readings come from neighboring locations. This is precisely the
constraint captured by our approach if we treat the movement as random
gaussian noise. Obviously, if we know more about the precise movement,
we can make this constraint stronger.

The relationship between our method and the SOM can be understood
by viewing them as two quite different elaborations of a simple mixture
model in which each hidden unit has a vector of 12 parameters that repre-
sent expected values for the 12 sonar readings. The SOM learning algorithm
elaborates this model by forcing neighboring hidden units to have similar
parameter vectors. It also uses a hard decision rule for deciding on a winner
instead of using posterior probabilities to weight the learning. We elaborate
the simple mixture model by using nongaussian output models for each cell
in the grid and by tying all these models together to reduce greatly the num-
ber of free parameters. Different cells can still predict different probability
distributions for the sonar readings because the predictions are conditional
on the location coordinates of the cell. Finally, instead of just using the cur-
rent sonar readings to compute the posterior probability of a cell, we take
into account the earlier readings and the motion information, thus allow-

5 Surprisingly, the relevant Kullback-Liebler distance is Za Qu log(Qy /Pu) where Q
is the estimated probability distribution and P is the true posterior.
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ing the temporal constraints that are ignored by the SOM to influence the
learning.

Acknowledgments

This research was funded by the Institute for Robotics and Intelligent Sys-
tems and by the Natural Science and Engineering Research Council. Hinton
is the Nesbitt-Burns fellow of the Canadian Institute for Advanced Research.
We thank Radford Neal, Allan Jepson, and Brendan Frey for helpful com-
ments.

References

Baum, L. and Eagon, J. (1967). An inequality with applications to statistical
estimation for probabilistic functions of Markov processes and to a model
for ecology. Bulletin of the American Mathematicians Society, 73.

Dudek, G., & Hinton, G. (1992). Navigating without a map by directly transforming
sensory input to location. Unpublished manuscript.

Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1993). Reflections on modelling
a sonar range sensor (Tech. Rep. No. CIM-92-9). Montreal: McGill Research
Centre for Intelligent Machines, McGill University.

Krose, B., & Eecen, M. (1994). A self-organizing representation of sensor space
for mobile robot navigation. In Proceedings of the IEEE/RS]/GI International
Conference on Intelligent Robots and Systems (pp. 9-14). New York: IEEE.

Mackay, D. (1991). Bayesian modelling and neural networks. Unpublished doctoral
dissertation, California Institute of Technology, Pasadena, CA.

Moravec, H. (1988). Sensor fusion in certainty grids for mobile robots. Al Mag-
azine, pp. 61-74.

Neal, R, & Hinton, G. (1993). A new view of the EM algorithm that justifies incre-
mental and other variants. Unpublished manuscript.

Oore, S. (1995). A mobile robot that learns to estimate its position from a stream
of sonar measurements. Unpublished master s thesis, University of Toronto.

Thrun, S., Buecken, A., Burgard, W., Fox, D., Froehlinghaus, D., Henning, D.,
Hofmann, T., Krell, M., & Schmidt, T. (In press.) Map learning and high-speed
navigation in RHINO. In D. Kortenkamp, R. Bonasso, & R. Murphy (Eds.),
Case Studies of Successful Robot Systems. Cambridge, MA: MIT Press.

Wilkes, D., Dudek, G., Jenkin, M., & Milios, E. (1990). A ray following model of
sonar range sensing. In Proc. Mobile Robots V, pp. 536-542. Bellingham, WA:
International Society for Optical Engineering.

Received December 5, 1995; accepted August 2, 1996.



