
Augmenting Transit Network Design Algorithms with Deep Learning

Andrew Holliday1 and Gregory Dudek

Abstract— This paper considers the use of deep learning
models to enhance optimization algorithms for transit network
design. Transit network design is the problem of determining
routes for transit vehicles that minimize travel time and
operating costs, while achieving full service coverage. State-
of-the-art meta-heuristic search algorithms give good results
on this problem, but can be very time-consuming. In contrast,
neural networks can learn sub-optimal but fast-to-compute
heuristics based on large amounts of data. Combining these
approaches, we develop a fast graph neural network model for
transit planning, and use it to initialize state-of-the-art search
algorithms. We show that this combination can improve the
results of these algorithms on a variety of metrics by up to
17%, without increasing their run time; or they can match the
quality of the original algorithms while reducing the computing
time by up to a factor of 50.

I. INTRODUCTION

The design of urban transit networks is an important
problem in urban planning. The layout of a transit network
can have a major impact on its quality, and consequently
on its level of use. Consequently, this problem - the Transit
Network Design Problem (NDP) - has received much atten-
tion in the literature. Most of this work brings approaches
from classical and stochastic optimization to bear on the
problem, and the most successful approaches to-date have
been meta-heuristic algorithms such as Genetic Algorithms
and Simulated Annealing. By comparison, little cross-over
exists between the literature on this problem and that on
neural networks [1], [2], [3].

As noted by one prominent researcher in transit opti-
mization [4], meta-heuristic algorithms that search a solution
space depend on three aspects for their success:

1) The representation of solutions,
2) The algorithm for constructing the initial solution,
3) The “moves” in solution space chosen at each step of

search.
Regardless of the algorithm, good performance will depend
on these three aspects. In this work, we address the second
aspect.

We propose a novel approach that uses machine learning
with deep neural networks, known as deep learning, to
initialize solution improvement methods. Specifically, we
train a graph neural network (GNN) model on a synthetic
dataset to produce transit networks that minimize a cost
function, and then we apply the GNN model to new cities,
unseen during training, to generate transit networks for those
cities. We then use these transit networks as the initial

1Mobile Robotics Laboratory, Center for Intelligent Machines,
School of Computer Science, McGill University, Montreal, Canada
ahollid@cim.mcgill.ca

solutions in two recently-proposed meta-heuristic algorithms.
We find that this improves the algorithms’ results, especially
on the largest and most challenging problem instances. To
aid in replication and extension of this work, we have made
our code and data publicly available 2.

The rest of the paper proceeds as follows. Section II
surveys related work on transit optimization and on Deep
Reinforcement Learning (DRL) for optimization. Section III
provides a formal specification of the NDP. Section IV
provides the details of our algorithm. Section V describes
our experiments and their results, comparing our approach
with existing approaches, and Section VI summarizes our
conclusions and presents possible directions for further re-
search.

II. RELATED WORK

A. Transit Optimization

The design of a mass transit system is comprised of three
sub-problems:

• The Transit Network Design Problem (NDP): laying out
transit routes and stops,

• The Frequency-Setting Problem (FSP): determining the
frequency of vehicle departures on each route,

• The Timetabling Problem (TP): assigning vehicles, and
possibly drivers, to routes and departure times.

In this work, we consider only the NDP. The NDP is
a combinatorial optimization (CO) problem that has been
the subject of much study in the transportation optimization
literature. It is NP-complete [5], so finding a globally optimal
solution is infeasible in most instances of the problem.

Analytical optimization and mathematical programming
methods have been applied to small NDP instances with
some success [6], [7]. But as noted both by [1] and [2] in
their reviews of the subject, these methods are inflexible and
struggle to realistically represent the problem. Consequently,
heuristic and meta-heuristic approaches, as defined by [8],
have been more widely used. Of these, Genetic Algorithms
(GAs), Simulated Annealing (SA), and Ant Colony Opti-
mization have most frequently been applied to the NDP,
along with hybrids of these methods [1], [2]. More re-
cently, [9] have proposed an algorithm based on the Bee
Colony Optimization (BCO) meta-heuristic, and [10] used a
sequence-based selection hyper-heuristic. Both methods were
shown to outperform previous approaches based on GAs and
SA. Meta-heuristic approaches tend to be computationally
costly, as they must search extensively through a vast space

2Available at https://www.cim.mcgill.ca/˜mrl/hgrepo/
transit_learning/

https://www.cim.mcgill.ca/~mrl/hgrepo/transit_learning/
https://www.cim.mcgill.ca/~mrl/hgrepo/transit_learning/

of possible transit networks. But they can provide solutions
of good quality on large problem instances, making them
applicable in some real-world cities.

B. Deep Learning for Optimization Problems

In [3], an overview is provided of the use of deep learning
for CO problems such as the Travelling Salesman Problem
(TSP) and Vehicle Routing Problem (VRP). The authors
note two ways in which machine learning can be of use:
in improving speed by providing fast learned approximations
of operations performed repeatedly by an existing algorithm;
and in directly learning novel policies for exploring the space
of solutions by doing Reinforcement Learning (RL) on a cost
function. Our work has elements of both. We train a model
along the lines of the second category, but then employ it to
replace a hand-engineered step of an existing algorithm in a
way that is closer to the first category.

GNNs [11] are deep learning models designed to operate
on graph-structured data. Inspired by the success of con-
volutional neural networks on computer vision tasks, [12]
and [13] separately proposed neural graph operators, which
have since been built upon by [14], [15], [16] and many
others. GNNs have been applied in many domains, such
as predicting chemical properties of molecules [13], [17],
analyzing large web graphs [18], and in combination with
RL, designing printed circuit boards [19].

Many CO problems can be readily represented as problems
on graphs, making GNNs a good fit when using deep
learning to solve them. [20] proposed a neural attention
system they called a Pointer Network, which they trained via
supervised learning to solve TSP instances. Several following
works [21], [22], [23], [24], [25] built on this approach by us-
ing RL to train GNNs, and attained impressive performance
on the TSP, VRP, and related problems. The quality of
solutions from these deep learning methods approach those
from specialized TSP algorithms such as Concorde [26],
while requiring much less run-time to compute.

While neural networks have been applied to predictive
tasks in urban mobility [27], [28], [29], [30], [31], [32], there
have been relatively few attempts to apply deep learning or
RL to transit planning. In [33], a GNN is trained to predict
the equilibrium traffic assignment over road networks, and
is then used as a proxy for the cost function in a genetic
algorithm that designs road networks. In [34], RL is used
to train a tabular dispatcher agent for a subway line to
produce a dynamic schedule, and in [35] a similar approach
using DRL is applied to decide when to dispatch buses on
a single bus route in response to varying demand. In [36],
a similar approach is taken to the more complex multi-route
dispatch problem. In [37], a tabular RL method is used to
learn to control passenger inflow rates on stations along a
single subway line. None of these works deal with the NDP,
however.

In [38], several tabular RL approaches are compared for
learning how transit demand responds to iterative changes
to a transit network, and an algorithm is proposed to use
the resulting learned model to generate a transit network.

In [39], a tabular RL approach is used to solve the NDP
and FSP in tandem. While these results are intriguing, they
demonstrate their approach only on the well-known Mandl
benchmark [40], a very small example with only 15 nodes.
Tabular RL is an approach that scales poorly with the size of
problems, and is unlikely to be applicable to more realistic
problem sizes.

The closest work to ours of which we are aware is [41],
in which the approach of [22] is extended to plan bus
routes and frequencies. But their approach requires training
a separate GNN for every problem instance, and like [39],
they demonstrate it only on the small Mandl benchmark. We
note that we privately experimented with a similar approach,
but abandoned it because it failed to learn effectively beyond
this size of problem. By contrast, we show that our approach
is effective in cases with as many as 127 nodes.

III. THE TRANSIT NETWORK DESIGN PROBLEM

A. Problem definition

Let a city be represented as an augmented graph:

C = {N , Es, D} (1)

Where N is a set of n = |N | nodes where a transit route
may make a stop, Es is a set of weighted, un-directed edges
of the form (i, j, tij) representing streets that connect these
stops, and D is the n × n Origin-Destination (OD) matrix,
where Dij represents the demand for travel between stops
i and j. The edge weight tij is the time it takes to drive
along the street from node i to j or from j to i. Demand is
assumed to be symmetric, with every desired trip having a
corresponding return trip in the opposite direction, so D is
diagonally symmetric.

A transit route r is a sequence of nodes making a path
through C: r = [i, ..., j]. A vehicle on route r visits each
stop in the sequence in order, picking up and dropping off
passengers at each one, and then travels back along the stops
in reverse order of r (hence, all routes are assumed to be bi-
directional).

In the NDP, we are given a city C and we seek to produce
a set of transit routes R that minimizes some cost function
C(C,R), which reflects the users’s desires and priorities.
Typically, this cost function depends on the total travel time
over all trips and the operating cost of R, and possibly other
factors as well. An example city with proposed transit routes
is shown in Fig. 1.

B. Cost functions and constraints

In this work, we impose the following constraints on the
transit network R:

1) Routes may not contain cycles: the sequence r can
contain each node in N at most once, not counting
the return trip made backwards along r.

2) Every pair of consecutive stops (i, j) on all r ∈ R
must have a corresponding edge (i, j, tij) ∈ Es; stops
along the route’s path cannot be skipped.

0

1

4

2

65

7
3

8

9
[5, 6, 7, 8, 9]
[0, 5, 6, 7, 2]
[1, 2, 3, 4, 8, 7]

Fig. 1: An example city graph with ten numbered nodes and
three routes. Street edges are black, routes are in colour,
and two example demands are shown by dashed red lines.
The edges of the three routes form a subgraph of the street
graph (N , Es). All nodes are connected by this subgraph, so
the three routes form a valid transit network. The demand
between nodes 2 and 5 can be satisfied directly by riding
on the blue line, while the demand from 2 to 9 requires one
transfer: passengers must ride the blue or orange line from
node 2 to 7, and then the green line from node 7 to 9.

3) |r| ≥ MIN and |r| ≤ MAX for all r ∈ R, where
MIN and MAX are minimum and maximum per-
route stop counts specified by the user.

4) |R| = S, where S is a number of routes specified by
the user.

5) R must provide some path between every pair of nodes
(i, j) ∈ N ×N .

We denote the total time for a vehicle to traverse route r
in one direction as tr. Let Ar denote the set of street edges
(i, j, tij) traversed by route r; then tr =

∑
Ar

tij .
We denote the total time of the shortest path through the

transit network R from i to j, including time spent making
transfers, as tRij . All transfers are assumed to take a constant
amount of time pT .

We then define the cost function as a weighted sum of two
components, the operator cost Co and the passenger cost Cp.
Co is the average traversal time of all routes, and Cp is the
average time of all passenger trips, assuming every passenger
takes the shortest path through R:

Co(C,R) =
∑

r∈R tr

S
(2)

Cp(C,R) =
∑

i,j DijtRij∑
i,j Dij

(3)

We also define a third term Cc which counts the number of
constraint violations in R given city C. The full cost function
has the form given in (4).

C(C,R) = αCp(C,R) + βCo(C,R) + γCc(C,R) (4)

IV. METHODOLOGY

A. Algorithm

Our proposed route-planning approach is outlined in Al-
gorithm 1. It starts with a set of node sequences called path
segments, as well as information about the city C and any
pre-existing routes R′. The path segments used are the set
of shortest paths between all node pairs SP, as this enforces
a degree of directness on the proposed routes. SP can be
computed efficiently via the Floyd-Warshall algorithm [42],
which has time complexity O(n3). In practice we find that
SP can be calculated even for n ≈ 600 in less than one
minute, and so this does not present a major computational
obstacle.

The route being planned is initially empty: r = []. The
algorithm alternates between selecting a path p ∈ SP to add
to r on odd-numbered steps 1, 3, ..., and choosing whether
or not to extend r further on even-numbered steps 2, 4, ...
(unless |r| < MIN , in which case the even-numbered
steps are skipped to enforce constraint 3). If at some even-
numbered step the algorithm chooses to stop extending r, or
no valid paths remain to extend r, r is added to R and the
algorithm ends; otherwise, another path is chosen from SP
to extend r. To plan a network of S routes, this process is
simply repeated S times.

When r = [], any path p with |p| ≤MAX may be chosen,
but otherwise, considered paths are subject to the following
limits. To enforce constraint 1, only paths that do not share
any nodes with r are considered. To enforce constraint 2,
considered paths must end at a neighbour of r’s first node,
or begin at a neighbor of r’s last node. Finally, to enforce
constraint 3, if |p|+ |r| > MAX , p is not considered.

The choices of which path segment to add to the in-
progress route at each step, and whether to halt after each
addition, are made stochastically according to probabilities
output by a GNN model we refer to as the policy (π),
based on input formed from a numerical representation of
C,R, r, α, β, and the candidates p. The policy π is trained
over a dataset of many cities to give high probabilities to
actions that minimize C(C,R). πhalt refers to the component
of the policy that outputs a stopping probability at even-
numbered steps, and πext refers to the component that
outputs probabilities for path extensions at odd-numbered
steps.

Because the algorithm is stochastic, it can be run many
times on a single city C to generate a diverse set of transit
networks, and the lowest-cost of these can be selected.
Alternatively, a deterministic variant of the algorithm can be
used, in which the probabilities output by π are interpreted
as “scores”, and the option with the highest score is always
chosen.

B. Graph Neural Network Training

The neural network policy π is trained on a dataset of
randomly-generated cities. This is intended to cause π to
learn route-generation heuristics that will be effective even
in previously-unseen cities. The city and transit network

Algorithm 1 Assemble Route

1: Input: city graph C = (N , Es, D), set of current routes
R, set of shortest paths SP, MIN , MAX , neural
network policy π

2: r ← []
3: A ← {p|p ∈ SP, |p| ≤MAX}
4: Halt ← False
5: while Halt = False and |A| > 0 do
6: Ω← {πext(C,R, r, p)|p ∈ A}
7: p← sample A according to probabilities in Ω
8: r ← [p|r] or [r|p], as appropriate
9: if |r| = MAX then

10: halt ← True
11: else if |r| ≥MIN then
12: P (halt)← πhalt(C,R, r)
13: halt ← sample {True,False} given P (halt)
14: A ← all paths in SP that are valid extensions to r

15: return r

parameters are held constant throughout training at n = 20,
S = 10,MIN = 2,MAX = 12. The algorithm described
in section IV-A is used to generate a transit network R
for this city. The cost of this transit network C(C,R) is
computed. In conjunction with the probabilities output by π
while generating R, the cost is used to update the internal
parameters of π via the back-propagation algorithm [43],
causing choices that led to lower costs to be more likely
in future. Transfer time pT was set to 300 seconds, a value
commonly used in the literature ([9], [10]).

To generate the random cities used in training, we first
generate N and Es according to the same procedure used
in [44] to generate the synthetic cities of the Mumford
benchmark dataset. Specifically, we first uniformly sample
n = 20 2D points in a unit square to form N ; we then
initialize Es to be the minimum spanning tree of N , and then
add edges to Es in order of ascending tij until |Es| = ne,
where ne is a predefined number of edges. While [44] chose
ne in each instance to match that observed in some real world
city, we note a very nearly linear relation between ne and
n in their examples, and so in our synthetic instances we
choose ne = 38, following this relation. We generate an
OD matrix D with uniform random demand between every
pair of nodes. Inter-node demands are sampled in the range
[60, 800], again following the range used in the Mumford
benchmark.

The models used in our experiments are trained over a
total of 147,455 cities, on a commercial desktop PC with an
Intel i9-12900F processor and an NVIDIA GeForce RTX
3090 graphics processing unit. Training the model took
approximately 40 minutes on this hardware.

The GNN we developed for this application is a fairly
conventional deep learning model. The details are not central
to the significance of this work, so we omit them here. We
refer interested readers to the pre-print of our concurrent
work [45], which provides a full description of the neural

network’s architecture, the format of its inputs, and the RL
algorithm used to train it.

V. EXPERIMENTS

A. Optimizers and Initialization

We perform experiments in which we compare our learned
planner (which we denote LP) to two recent optimization
algorithms: the BCO algorithm of [9], and the state-of-the-
art hyper-heuristic algorithm of [10]. Both algorithms start
their optimization from an initial solution, and have their
own procedure for how to construct that initial solution.
We compare each algorithm to a variant in which the
initial solution is constructed by running our GNN policy in
deterministic mode. For the full details of these algorithms,
we refer the reader to the original publications.

1) Hyper-Heuristic: We use the variant of the hyper-
heuristic algorithm that uses a sequence-based selection
method (SS) and the Great Deluge acceptance method (GD).
The authors of [10] refer to this configuration as SS-GD, and
report that it has the best performance among their variants.
Starting from an initial solution R0, the algorithm modifies
the solution with a variety of heuristics for a finite number
of iterations, tracking which sequences of heuristics have
previously improved the solution and repeatedly applying
those sequences. The initial solution R0 is formed in two
stages: the “construction” stage, in which S routes are added
one-by-one to R0 from SP to minimize the number of
constraint violations in the transit network, and the “repair”
stage, which randomly modifies R0, keeping each result
if it does not have more violations, until no constraints
are violated. We refer to this as the “plain hyper-heuristic”
(PHH) approach.

In our modified version, the “construction” stage is re-
placed by a single run of our LP algorithm in deterministic
mode: R0 = LP(C, S,MIN,MAX, π). This produces a
complete transit network to which the “repair” stage is then
applied, and the rest of the algorithm proceeds unmodified.
We denote this the “neural initialization hyper-heuristic”
(NIHH) approach.

2) Bee Colony Optimization: The Bee Colony Optimiza-
tion algorithm for the NDP proposed by [9] uses B inde-
pendent worker “bee” processes. Each bee starts with the
same initial solution R0. The algorithm proceeds in two
alternating phases: exploration, and recruitment. In the explo-
ration phase, each bee randomly modifies its current solution,
keeping any improvements. Then in the recruitment phase,
the bees whose solutions are best are designated as recruiters.
The other bees select a recruiter at random and replace their
own solution with a copy of that recruiter’s. These phases
repeat for a user-configured number of iterations.

The initialization process for plain Bee Colony Optimiza-
tion (PBCO) is similar to that for PHH, but does not involve
a “repair” step, and the initial routes are chosen to maximize
demand served rather than to minimize constraints violated.
In the neural initialization BCO (NIBCO) variant, we replace
this initialization process entirely with a single run of our LP
algorithm.

5000 10000 15000 20000

5000

10000

15000

20000

(a) Mumford0

0 10000 20000 30000
0

10000

20000

30000

(b) Mumford1

0 10000 20000 30000 40000
0

10000

20000

30000

40000

(c) Mumford2

0 10000 20000 30000 40000
0

10000

20000

30000

40000

(d) Mumford3

Fig. 2: The road networks of the four synthetic Mumford
cities. Units of all axes are in meters, and are inferred from
the drive-times of edges and an assumed fixed driving speed
of 15 meters per second.

B. Procedure

As is common practice in the NDP literature, we con-
ducted two sets of experiments: one where transit networks
are optimized from the passenger perspective (with α =
1, β = 10−10), and one where they are optimized from
the operator’s perspective (with α = 10−10, β = 1).
Separate GNN policies were trained for each of these two
perspectives: πp for the passenger perspective and πo for the
operator perspective. πo was trained with the cost weights
held constant at α = 10−10, β = 1. By contrast, the πp policy
used in our passenger perspective experiments was trained
over a range of cost weights, with α uniformly sampled from
[0, 1] and β = 1−α. We found that the resulting πp achieved
lower average cost on a held-out validation dataset than when
it was trained only with α = 1, β = 10−10.

Each set of experiments is carried out on the four synthetic
scenarios (cities) of the Mumford benchmark [44]. These
range in size from |N | = 30 to |N | = 127 nodes and from
S = 12 to S = 60 required routes. The same neural network
policies πp and πo, trained on the same dataset, are applied
four Mumford cities, in order to assess whether a policy
trained on one dataset can be successfully applied to various
unseen cities.

The numbers of nodes and routes and the values of MIN
and MAX in each city are based on one real-world city [46],
so these values reflect a realistic range of sizes, though
we note that some cities may be much larger - to cite
one example, the city of Montreal contains 8,500 bus stops
covered by 212 routes [47].

The authors of [9] and [10] have not released source
code for their methods, so we conduct these experiments
using our own implementation of their algorithms, written
in Python. Furthermore, the “SS-GD” configuration of the

hyper-heuristic algorithm has two important parameters, f0
and ∆F , but the authors do not report what values they use
for these. To control for possible differences in parameter
values and implementation that could affect the outcome, we
compare the neural-initialization results with the results from
our own implementations of PHH and PBCO, rather than
comparing with the results reported in the original papers.

In our hyper-heuristic experiments, we set f0 = 0,
and ∆F = C(C,R0). Following the original paper, we
set the constraint weight γ = ∞. We run these experi-
ments for the same number of iterations used on each city
in [10]’s passenger perspective experiments: 5,000,000 on
Mumford0, 3,000,000 on Mumford1, 524,000 on Mumford2,
and 365,000 on Mumford3. We use these iteration counts
in both our passenger-perspective and operator-perspective
experiments.

In our BCO experiments, we hold all parameters of the
BCO algorithm the same as in [9]’s experiments, for both
the PBCO and NIBCO approaches. Since there is no “repair”
step in the initialization, the initial solutions may have
Cc > 0, so we set γ = 5 so the algorithm can follow the
gradient of C towards fewer constraint violations (γ = ∞
prevents this, as any number of constraint violations then has
equal cost C =∞). As in [9], we run the algorithm for 400
iterations on all cities.

C. Results

We report a range of standard metrics for our experiments.
The passenger metric is the average passenger trip time in
minutes (ATT); The operator metric is route total time in
minutes, RTT =

∑
R tr; dk is the percentage of transit trips

that required k transfers; and dun is the percentage of transit
trips that required 3 or more transfers.

Table I contains the results for the passenger-perspective
and operator-perspective experiments. We see across both ta-
bles that LP on its own is always outperformed on the metric
being optimized. However, using the policy to initialize the
hyper-heuristic algorithm in NIHH improves performance on
the target metric over the default initialization of PHH on all
cities except the smallest, Mumford0. NIBCO improves over
PBCO as well on each city, except for Mumford1 from the
operator perspective.

In the passenger perspective runs, NIHH improves over
PHH in ATT by 0.8% on Mumford1, 3.6% on Mumford2,
and 4.2% on Mumford3. NIHH’s increase over PHH in RTT
in the operator perspective runs is much sharper, going from
0% on Mumford0, to 11% on Mumford1, to 17% on Mum-
ford2 and 3. Meanwhile, NIBCO improves over BCO by
9.2% on Mumford0, 12% on Mumford1, 0.6% on Mumford2
and 10.5% on Mumford3 for the passenger perspective -
the difference here is consistent across environments. For
the operator perspective, the improvement on Mumford0 is
minor (2.3%) and on Mumford1 NIBCO performs worse
than PBCO (-12%). But for Mumford2 and Mumford3, the
improvement is significant: 27% and 30% respectively.

Overall, neural initialization enhances the quality of the
final solutions found by each algorithm. We note that the

TABLE I: Metrics for each method under consideration, under passenger and operator optimization perspectives. Bold values
indicate which entry in a row is the best or tied for best on that metric and perspective. Entries in the d1 and d2 rows are
not bolded as higher or lower values are not strictly better or worse, but depend on d0 and dun.

Passenger Perspective Operator Perspective
City Metric LP PHH NIHH PBCO NIBCO LP PHH NIHH PBCO NIBCO

Mumford0 ATT 16.60 14.13 14.13 17.39 15.92 26.31 32.25 31.07 32.33 29.41
RTT 434 1576 1582 333 537 152 94 94 129 126
d0 46.70 81.10 80.65 41.65 53.82 19.60 14.34 15.96 17.37 16.68
d1 45.65 18.63 19.34 48.13 40.73 36.51 22.06 25.70 25.99 28.27
d2 7.03 0.27 0.01 10.13 5.14 28.15 26.33 23.50 14.63 28.29
dun 0.62 0.00 0.00 0.09 0.32 1.88 0.00 0.00 0.00 0.00

Mumford1 ATT 24.29 22.59 22.42 27.28 24.33 30.97 32.62 47.32 29.34 30.04
RTT 1238 4913 5065 886 1438 720 489 437 599 683
d0 34.43 39.14 41.21 23.23 35.66 20.34 16.30 16.47 20.07 19.12
d1 46.04 58.56 57.50 42.53 42.31 31.82 32.63 23.62 43.73 31.72
d2 17.65 2.30 1.30 25.20 18.24 28.81 27.96 18.61 27.43 28.98
dun 1.88 0.00 0.00 9.04 3.79 19.03 23.11 41.30 8.76 20.18

Mumford2 ATT 26.04 25.91 24.97 26.08 25.91 29.94 33.81 31.70 29.35 36.79
RTT 4534 18080 15375 2818 4215 2806 2374 1974 2472 1947
d0 39.52 32.58 45.41 25.62 38.60 20.59 13.21 15.11 23.79 11.42
d1 47.49 64.21 53.93 44.90 48.04 40.09 27.70 34.43 44.50 22.94
d2 11.90 3.21 0.66 23.49 12.77 26.87 27.91 30.14 24.95 27.45
dun 1.09 0.00 0.00 5.99 0.58 12.45 31.18 20.31 6.77 38.19

Mumford3 ATT 28.76 28.81 27.59 30.18 28.81 31.74 35.93 34.21 32.71 36.59
RTT 5349 24904 19660 4330 5221 3628 3207 2662 3203 2470
d0 36.98 29.01 44.37 26.94 36.62 20.98 11.66 13.90 21.54 12.59
d1 49.49 65.62 55.13 48.50 49.68 42.11 27.59 31.09 46.32 26.61
d2 12.78 5.32 0.50 22.28 12.76 27.84 31.07 30.57 25.09 27.18
dun 0.74 0.05 0.00 2.28 0.94 9.07 29.68 24.43 7.05 33.62

LP took less than 10 seconds to produce the initial transit
network in every instance, while the original construction
stage took up to 25 seconds, so this superior initialization
comes at no additional cost in run time.

Furthermore, neural initialization appears to enhance the
scalability of the optimization algorithms, as it is most
beneficial when n > 100. Many real-world cities have
hundreds of possible stops, so this improvement may be very
significant in terms of the applicability of these algorithms
to real cities.

We observe also that on the two largest cities, Mum-
ford2 and Mumford3, NIHH’s final solutions are Pareto
improvements on PHH: they achieve both lower passenger
and operator cost, in each of the passenger and operator
perspective cases. The values of d0, d1, d2, and dun show that
the plans proposed by NIHH also require passengers to make
fewer transfers: in both passenger and operator perspective
cases on Mumford1, 2, and 3, NIHH increases d0 and either
reduces dun, or reduces d2 if dun = 0 in PHH.

In Fig. 3, we compare the cost of the best solutions found
over the course of the hyper-heuristic algorithms given the
different initializations. The leftmost ends of these curves
show that the initializations from the LP used in NIHH are
much lower-cost than the default initializations used in PHH.
We mark with an ‘X’ the point on each NIHH curve where
it achieves the same cost as the plain algoirthm’s final cost.
We show this only for the hyper-heuristic variants, because
in most experiments PBCO never achieved the starting cost
of NIBCO at all.

As the cities get bigger, this point happens earlier in

the course of NIHH’s runs. In the passenger perspective
case, NIHH achieves PHH’s best score at 15% of the way
through on Mumford1, at 4% on Mumford2, and at 2%
on Mumford3; the corresponding values for the operator
perspective are 35%, 10%, and 4%. This implies another
use for neural initialization: improved run-time. The user
can achieve the same quality of result in far less time by
running optimization for fewer iterations, or can run for the
same amount of time to improve on the results by a given
amount, or can achieve any trade-off of improved run-time
and improved cost by stopping at an intermediate number of
iterations.

VI. CONCLUSIONS

While the Transit Network Design Problem is very chal-
lenging, there are regularities in its structure across different
instances, enough so that widely-applicable heuristics can
be learned from enough data. While these heuristics may
not on their own outperform state-of-the-art meta-heuristic
algorithms, they can be used to prime those algorithms,
improving their results over priming them with simpler,
manually-designed heuristics. Specifically, this can improve
passenger trip time by up to 4.2% and operator costs by
up to 17% on realistic benchmarks, without increasing the
time taken to generate the solution. Alternatively, it can
be used to generate solutions of the same quality as the
algorithm’s default initialization in as little as 2% of the
running time. The user can trade off between improved run-
time and solution quality simply by choosing when to halt
the optimization procedure.

0 20 40 60 80 100
% of total steps

2× 101

3× 101

4× 101

A
T

T
(m

in
u

te
s)

,
lo

g
sc

al
e

Mumford0, NIHH

Mumford0, PHH

Mumford1, NIHH

Mumford1, PHH

Mumford2, NIHH

Mumford2, PHH

Mumford3, NIHH

Mumford3, PHH

(a) Passenger Perspective, hyper-heuristic

0 20 40 60 80 100
% of total steps

102

103

104

R
T

T
(m

in
u

te
s)

,
lo

g
sc

al
e

(b) Operator Perspective, hyper-heuristic

Fig. 3: Optimized variable versus optimization progress for the hyper-heuristic experiments. Solid lines indicate neural
initialization and dashed lines indicate default initialization, while different colours indicate different cities. Each dotted
horizontal line indicates the final value achieved by default initialization, and an X marks the point, if any, where neural
initialization crosses this line.

The improved solution quality offered by initializing with
a neural-network generated policy is of clear practical rele-
vance to the planning of public transit systems in real cities.
Meanwhile, the major improvements in speed offered by this
technique could help enable new applications, such as live
and recurring refinement and re-planning of transit routes.
In addition, by allow the algorithm to run much faster,
additional representational enhancements may be possible
that would otherwise have been too costly with traditional
methods.

We have here explored one way in which deep learning
planners can be used to enhance the performance of meta-
heuristic methods. Other possibilities include the use of
these planners as a sub-heuristic employed during meta-
heuristic optimization algorithms (which we consider in our
concurrent work [45]), and attempting to directly learn a
policy for searching the solution space. It would also be
of value to try to establish theoretical bounds on the cost
achieved by this learned optimization process, compared to
what is optimal. And it would be of value to adapt this
technique to a multi-objective optimization context, with
passenger and operator costs considered separately. We leave
these possibilities to future work.

REFERENCES

[1] V. Guihaire and J.-K. Hao, “Transit network design and scheduling: A
global review,” Transportation Research Part A: Policy and Practice,
vol. 42, no. 10, pp. 1251–1273, 2008.

[2] K. Kepaptsoglou and M. Karlaftis, “Transit route network design
problem: Review,” Journal of Transportation Engineering, vol. 135,
no. 8, pp. 491–505, 2009.

[3] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for com-
binatorial optimization: a methodological tour d’horizon,” European
Journal of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.

[4] C. L. Mumford, “Research on the urban transit routing problem (bus
routing),” https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/
UTRP/Outline.html, 2013, accessed: 2023-03-24.

[5] C. Quak, “Bus line planning,” A passenger-oriented approach of
the construction of a global line network and an efficient timetable.
Master’s thesis, Delft University, Delft, Netherlands, 2003.

[6] R. van Nes, “Multiuser-class urban transit network design,”
Transportation Research Record, vol. 1835, no. 1, pp. 25–33, 2003.
[Online]. Available: https://doi.org/10.3141/1835-04

[7] J. Guan, H. Yang, and S. Wirasinghe, “Simultaneous optimization of
transit line configuration and passenger line assignment,” Transporta-
tion Research Part B: Methodological, vol. 40, pp. 885–902, 12 2006.

[8] K. Sörensen, M. Sevaux, and F. Glover, “A history of metaheuristics,”
in Handbook of heuristics. Springer, 2018, pp. 791–808.

[9] M. Nikolić and D. Teodorović, “Transit network design by bee colony
optimization,” Expert Systems with Applications, vol. 40, no. 15, pp.
5945–5955, 2013.

[10] L. Ahmed, C. Mumford, and A. Kheiri, “Solving urban transit route
design problem using selection hyper-heuristics,” European Journal of
Operational Research, vol. 274, no. 2, pp. 545–559, 2019.

[11] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[12] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” arXiv preprint
arXiv:1312.6203, 2013.

[13] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional net-
works on graphs for learning molecular fingerprints,” Advances in
neural information processing systems, vol. 28, 2015.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[15] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
CoRR, vol. abs/1606.09375, 2016. [Online]. Available: http://arxiv.
org/abs/1606.09375

[16] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” 2021. [Online]. Available: https://arxiv.org/abs/2105.14491

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings
of the 34th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, D. Precup and Y. W.

https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/Outline.html
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/Outline.html
https://doi.org/10.3141/1835-04
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
https://arxiv.org/abs/2105.14491

Teh, Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 1263–1272.
[Online]. Available: https://proceedings.mlr.press/v70/gilmer17a.html

[18] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” CoRR, vol. abs/1806.01973, 2018. [Online].
Available: http://arxiv.org/abs/1806.01973

[19] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori,
S. Wang, Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, et al., “A graph
placement methodology for fast chip design,” Nature, vol. 594, no.
7862, pp. 207–212, 2021.

[20] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” arXiv
preprint arXiv:1506.03134, 2015.

[21] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” arXiv preprint
arXiv:1704.01665, 2017.

[22] W. Kool, H. V. Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in ICLR, 2019.

[23] H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method
for solving vehicle routing problems,” in International Conference on
Learning Representations, 2019.

[24] Q. Sykora, M. Ren, and R. Urtasun, “Multi-agent routing value
iteration network,” in International Conference on Machine Learning.
PMLR, 2020, pp. 9300–9310.

[25] J. J. Damanik, H. Kasan, and H.-L. Choi, “Solving delivery assignment
in hybrid-transit network using multi-agent reinforcement learning,”
in Robot Intelligence Technology and Applications 6: Results from the
9th International Conference on Robot Intelligence Technology and
Applications. Springer, 2022, pp. 485–497.

[26] D. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, “Concorde
tsp solver,” https://www.math.uwaterloo.ca/tsp/concorde/index.html,
2001.

[27] J.-P. Rodrigue, “Parallel modelling and neural networks: An overview
for transportation/land use systems,” Transportation Research Part
C: Emerging Technologies, vol. 5, no. 5, pp. 259–271, 1997.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0968090X97000144

[28] Y. Xiong and J. B. Schneider, “Transportation network design using
a cumulative genetic algorithm and neural network,” Transportation
Research Record, vol. 1364, 1992.

[29] S. I.-J. Chien, Y. Ding, and C. Wei, “Dynamic bus arrival time
prediction with artificial neural networks,” Journal of transportation
engineering, vol. 128, no. 5, pp. 429–438, 2002.

[30] R. Jeong and R. Rilett, “Bus arrival time prediction using artifi-
cial neural network model,” in Proceedings. The 7th international
IEEE conference on intelligent transportation systems (IEEE Cat. No.
04TH8749). IEEE, 2004, pp. 988–993.

[31] M. Y. Çodur and A. Tortum, “An artificial intelligent approach to traffic
accident estimation: Model development and application,” Transport,
vol. 24, no. 2, pp. 135–142, 2009.

[32] C. Li, L. Bai, W. Liu, L. Yao, and S. T. Waller, “Graph neural network
for robust public transit demand prediction,” IEEE Transactions on
Intelligent Transportation Systems, 2020.

[33] B. Madadi and G. H. d. A. Correia, “A hybrid deep-learning-
metaheuristic framework for discrete road network design problems,”
Available at SSRN 4470984.

[34] L. Zou, J.-m. Xu, and L.-x. Zhu, “Light rail intelligent dispatching
system based on reinforcement learning,” in 2006 International Con-
ference on Machine Learning and Cybernetics, 2006, pp. 2493–2496.

[35] G. Ai, X. Zuo, G. Chen, and B. Wu, “Deep reinforcement learning
based dynamic optimization of bus timetable,” Applied Soft Comput-
ing, vol. 131, p. 109752, 2022.

[36] H. Yan, Z. Cui, X. Chen, and X. Ma, “Distributed multiagent deep rein-
forcement learning for multiline dynamic bus timetable optimization,”
IEEE Transactions on Industrial Informatics, vol. 19, pp. 469–479,
2023.

[37] Z. Jiang, W. Fan, W. Liu, B. Zhu, and J. Gu, “Reinforcement
learning approach for coordinated passenger inflow control of urban
rail transit in peak hours,” Transportation Research Part C: Emerging
Technologies, vol. 88, pp. 1–16, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X18300111

[38] G. Yoon and J. Y. Chow, “A sequential transit network design algo-
rithm with optimal learning under correlated beliefs,” arXiv preprint
arXiv:2305.09452, 2023.

[39] S. Yoo, J. B. Lee, and H. Han, “A reinforcement learning approach

for bus network design and frequency setting optimisation,” Public
Transport, pp. 1–32, 2023.

[40] C. E. Mandl, “Evaluation and optimization of urban public transporta-
tion networks,” European Journal of Operational Research, vol. 5,
no. 6, pp. 396–404, 1980.

[41] A. Darwish, M. Khalil, and K. Badawi, “Optimising public bus
transit networks using deep reinforcement learning,” in 2020 IEEE
23rd International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2020, pp. 1–7.

[42] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[43] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal,
vol. 30, no. 10, pp. 947–954, 1960.

[44] C. L. Mumford, “New heuristic and evolutionary operators for the
multi-objective urban transit routing problem,” in 2013 IEEE congress
on evolutionary computation. IEEE, 2013, pp. 939–946.

[45] A. Holliday and G. Dudek, “Neural bee colony optimization: A case
study in public transit network design,” https://www.cim.mcgill.ca/
∼mrl/pubs/ahollid/preprint.pdf, 5 2023.

[46] C. L. Mumford, “Download link to the mumford dataset,”
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/
CEC2013Supp.zip, 2013, accessed: 2023-03-24.

[47] Société de transport de Montréal, “Everything about
the stm,” 2013, accessed: 2023-05-17. [Online]. Avail-
able: https://web.archive.org/web/20130610123159/http://www.stm.
info/english/en-bref/a-toutsurlaSTM.htm

https://proceedings.mlr.press/v70/gilmer17a.html
http://arxiv.org/abs/1806.01973
https://www.sciencedirect.com/science/article/pii/S0968090X97000144
https://www.sciencedirect.com/science/article/pii/S0968090X97000144
https://www.sciencedirect.com/science/article/pii/S0968090X18300111
https://www.sciencedirect.com/science/article/pii/S0968090X18300111
https://www.cim.mcgill.ca/~mrl/pubs/ahollid/preprint.pdf
https://www.cim.mcgill.ca/~mrl/pubs/ahollid/preprint.pdf
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp.zip
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp.zip
https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm
https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm

	Introduction
	Related Work
	Transit Optimization
	Deep Learning for Optimization Problems

	The Transit Network Design Problem
	Problem definition
	Cost functions and constraints

	Methodology
	Algorithm
	Graph Neural Network Training

	Experiments
	Optimizers and Initialization
	Hyper-Heuristic
	Bee Colony Optimization

	Procedure
	Results

	Conclusions
	References

