A Graph Neural Net can choose mutations

in an evolutionary algorithm to design

better routes for self-driving buses.

A Neural-Evolutionary Algorithm for Autonomous Transit Network Design Andrew Holliday, Gregory Dudek

Transit Network Design

We are given a city graph \mathcal{C} composed of:

- Transit stop nodes \mathcal{N} ,
- A set of road edges \mathcal{E}_s ,
- An $|\mathcal{N}| \times |\mathcal{N}|$ demand matrix D

Neural Policy

We train a policy for this MDP via REINFORCE with baseline [3] on a dataset of synthetic cities, with reward $R = -C(\mathcal{R})$. The policy π_{θ} is a graph attention net with two "head" MLPs for alternating actions.

Evolutionary Algorithm

The evolutionary algorithm of [2] (EA) is a transit network **improvement** algorithm. It takes an initial network \mathcal{R} and iteratively applies random "mutations", then stochastically filters the

Experiments

We compare NEA to EA and to π_{θ} alone. For π_{θ} alone, we sample 100 transit networks and take the lowest-cost network. We call this procedure **LC-100**. We evaluate on the widely-used Mumford benchmark cities [1]. For benchmark cities with \geq 70 nodes, NEA consistently dominates EA and LC-100 across values of α .

A **route** as a **non-repeating path** in C. Our goal is to find a **set of routes**, \mathcal{R} , that connects all nodes while minimizing a cost function:

 $C(\mathcal{C}, \mathcal{R}) = \alpha C_{\rho}(\mathcal{C}, \mathcal{R}) + (1 - \alpha) C_{o}(\mathcal{C}, \mathcal{R})$ (1)

- C_p : mean trip time over all passengers
- C_o : total length of all routes
- $ullet lpha \in [0,1]$

We formulate transit network **construction** as a Markov Decision Process (MDP). The below flowchart gives the MDP structure. Blue nodes are agent choices.

mutated networks \mathcal{R}_b based on $C(\mathcal{C}, \mathcal{R}_b)$.

Schematic of an evolutionary algorithm

This algorithm has two "mutator" operators. One deletes a random route r from \mathcal{R} and replaces it with the shortest path between one terminal of r and a random other node. The other chooses a random route and either adds or deletes a random node at one end. This figure shows our results for α values from 0.0 to 1.0 on the largest Mumford city, Mumford3, which has 127 nodes.

References

- [1] Christine L Mumford. "New heuristic and evolutionary operators for the multi-objective urban transit routing problem". In: 2013 IEEE congress on evolutionary computation. IEEE. 2013, pp. 939–946.
- [2] Miloš Nikolić and Dušan Teodorović. "Transit network design by bee colony optimization". In: *Expert Systems with Applications* 40.15 (2013), pp. 5945–5955.
- [3] Ronald J Williams. "Simple statistical gradient-following

We change the first mutator: instead of a random shortest path, we replace r with a new route r' sampled from $\pi_{\theta}(\mathcal{R} \setminus \{r\})$. We call this modified algorithm the **neural evolutionary** algorithm (NEA).

algorithms for connectionist reinforcement learning". In: *Machine learning* 8.3 (1992), pp. 229–256.

