
A Neural-Evolutionary Algorithm for Autonomous Transit Network Design

Andrew Holliday and Gregory Dudek1

Abstract— Planning a public transit network is a challenging
optimization problem, but essential in order to realize the
benefits of autonomous buses. We propose a novel algorithm
for planning networks of routes for autonomous buses. We first
train a graph neural net model as a policy for constructing route
networks, and then use the policy as one of several mutation
operators in a evolutionary algorithm. We evaluate this algorithm
on a standard set of benchmarks for transit network design,
and find that it outperforms the learned policy alone by up to
20% and a plain evolutionary algorithm approach by up to
53% on realistic benchmark instances.

I. INTRODUCTION

Mass public transit is key to sustainable urban design. Mass
transit can reduce traffic congestion, thus shortening trips,
and consume less energy, thus reducing emissions, versus
even idealized point-to-point transit [1], [2], [3]. Self-driving
vehicle technology is bringing with it autonomous bus fleets,
which are already being deployed [4], [5], [6]. By dispensing
with drivers, autonomous buses can enable fleets of more and
smaller vehicles [7, chapter 9]. This can make service more
frequent and reliable, two major factors in attracting riders to
public transit [8]. But frequent service only helps those living
near stops; and the need to transfer between lines makes
transit less attractive [8], [9]. An efficient network also saves
operating costs, which can then be spent on automating and
expanding fleets. So in order to fully realize the benefits of
autonomous buses, we need well-designed transit networks.

But the Transit Network Design Problem (NDP) is very
challenging. It is similar to the travelling salesman problem
(TSP) and vehicle routing problem (VRP), but is much more
complex because of its many-to-many nature, and because
of transfers between transit lines. Furthermore, real-world
instances of this problem may have hundreds or thousands
of transit stops [10]. The most successful approaches to date
have been approximate solvers based on metaheuristics such
as evolutionary algorithms (EAs). These work by repeatedly
applying one or more low-level heuristics that randomly
modify a solution, and guiding this random search towards
more promising solutions over many iterations. We here wish
to consider whether a neural net could learn to use information
about the scenario to select promising changes - instead
of purely random changes, as existing low-level heuristics
do - and whether this could improve the performance of
metaheuristic algorithms.

To this end, we train a graph neural net (GNN) policy via
reinforcement learning (RL) to construct transit networks for

1Both authors are with the School of Computer Science, McGill
University. They can be reached at ahollid@cim.mcgill.ca and
dudek@cim.mcgill.ca, respectively.

cities. We then use this policy as a low-level heuristic in a
EA. We compare our approach to the GNN model on its own
and to the baseline evolutionary algorithm, and find that on
realistically-sized problem instances, the hybrid algorithm
performs best, and is competitive with other state-of-the-art
approaches.

II. RELATED WORK

A. Graph Nets and Reinforcement Learning for Optimization
Problems

Graph neural nets (GNNs) are neural net models that are
designed to operate on graph-structured data [11], [12], [13],
[14]. They were inspired by the success of convolutional
neural nets on computer vision tasks and have been applied
in many domains, including analyzing large web graphs [15],
designing printed circuit boards [16], and predicting chemical
properties of molecules [14], [17]. An overview of GNNs is
provided by [18].

There is growing interest in the application of machine
learning techniques to solve combinatorial optimization (CO)
problems such as the TSP [19]. In CO problems generally,
it is difficult to find a globally optimal solution but easy
to compute a scalar quality metric for a given solution. As
noted by [19], this makes RL, in which a system is trained to
maximize a scalar reward, a good fit. Many CO problems have
natural interpretations as graphs, making GNNs also a good
fit. [20] proposed a GNN model called a Pointer Network, and
trained it by supervised learning to solve TSP instances. Much
recent work has built on this by using various RL algorithms
to train GNN to construct CO solutions [21], [22], [23], [24].
These have attained impressive performance on the TSP, the
VRP, and related problems. [25] use a hybrid of Monte Carlo
Tree Search and Beam Search to guide the construction of
Capacitated VRP (CVRP) solutions by a neural net policy.
[26] trains an recurrent neural net (RNN) via RL to provide a
starting population of solutions to a EA, the outputs of which
are used to further train the RNN. [27] train a model on small
TSP instances and propose an algorithm to apply it to much
larger instances. These approaches belong to the family of
“construction” methods, which solve a CO problem by starting
with an “empty” solution and adding to it in steps, ending
once the solution is complete - for example, when all nodes
have been visited in the TSP. The solutions from these neural
construction methods come close to the quality of those from
specialized TSP algorithms such as Concorde [28], while
requiring much less run-time to compute [22].

“Improvement” methods, by contrast with construction
methods, start with a complete solution and repeatedly modify
it, searching through the solution space for improvements.



Metaheuristics like EA belong to this category. These are
more computationally costly than construction methods but
can yield better solutions to CO problems. Some work has
considered training neural nets to choose the search moves to
be made at each step of an improvement method [29], [30],
[31], [32], [33], and [34] train one GNN to construct a set
of initial solutions, and another to modify and improve them.
This work has shown impressive performance on classic CO
problems like the TSP. Our approach belongs to this family,
but is novel in that it uses an RL-trained GNN to perform
mutations in a EA.

B. Optimization of Public Transit

The Transit Network Design Problem is NP-complete [35],
making it impractical to solve optimally. While analytical
optimization and mathematical programming methods have
been successful on small instances [36], [37], they struggle
to realistically represent the problem [38], [39], and so
metaheuristic approaches (as defined by [40]) have been
more widely applied. Historically, genetic algorithms (GAs),
simulated annealing, and ant-colony optimization have been
most popular, along with hybrids of these methods [38], [39],
[41].

While neural nets have seen much use for predictive
problems in urban mobility [42], [43], [44], [45], [46], [47]
and for transit optimization problems such as scheduling and
passenger flow control [48], [49], [50], [51], little work has
applied RL or neural nets to the NDP. [52] and [53] both
use RL to design a network and schedule for the Mandl
benchmark [54], a single small graph with just 15 nodes.
[52] use a GNN approach inspired by [22]; in our own work
we experimented with a nearly identical approach to [52], but
found it did not scale beyond very small instances. Meanwhile,
[53] uses tabular RL, a type of approach which also scales
poorly. Both these approaches require a new model to be
trained on each problem instance. Our approach, by contrast,
is able to find good solutions for realistically-sized NDP
instances of more than 100 nodes, and can be applied to
problem instances unseen during training.

In prior work [55], we trained a GNN construction method
to plan a transit network, and used it to provide initial
solutions to the EA of [41], finding that this improved the
quality of the solutions found. The present work considers
the same GNN architecture and training procedure, but uses
the GNN to generate new routes throughout an improvement
method, instead of just once at the outset.

III. THE TRANSIT NETWORK DESIGN PROBLEM

In the NDP, one is given an augmented graph that
represents a city:

C = (N , Es, D) (1)

This is comprised of a set N of n nodes, representing
candidate stop locations; a set Es of street edges (i, j, τij)
connecting the nodes, weighted by driving time τij ; and an
n×n matrix D giving the travel demand (in number of trips)
between every pair of nodes in N . A route r is a sequence
of nodes in N . The goal is to find a set of routes R that

Start: R = {}, r = []

|R| = S?A = SP Return R

Choose a path
in A, add it to r

A = {all valid
extensions
of r in SP}

|r| < MIN?

|r| = MAX?
Choose: halt
or continue r?

Add r to R,
set r = []

no yes

no

yes

no

yes

continue

halt

Fig. 1: A flowchart of the transit network construction process
defined by our Markov Decision Process (MDP). Blue boxes
indicate points where the timestep t is incremented and the
neural net policy selects an action.

minimize a cost function C : C,R → R+. The route set R
is called a transit network, and is subject to the following
constraints:

1) R must allow every node in N to be reached from
every other node via transit.

2) R must contain exactly S routes (ie. |R| = S), where
S is a parameter set by the user.

3) MIN ≤ |r| ≤ MAX ∀ r ∈ R, where MIN and
MAX are parameters set by the user.

4) A route r ∈ R may not contain cycles; each node
i ∈ N can appear in r at most once.

5) A route cannot “skip” nodes: if nodes i, j are consecu-
tive in r ∈ R, then (i, j, τij) must be in Es.

We here deal with the symmetric NDP, that is: D = D⊤,
(i, j, τij) ∈ Es iff. (j, i, τij) ∈ Es, and all routes are traversed
both forwards and backwards by vehicles on them.

A. Markov Decision Process Formulation

A Markov Decision Process (MDP) is a formalism used to
define problems in RL. In an MDP, an agent interacts with
an environment over time steps t. At each t, the environment
is in state st ∈ S , and the agent takes some action at ∈ At,
where At is the set of possible actions at t. The environment
transitions to a new state st+1 ∈ S according to the state
transition distribution P (s′|s, a), and the agent receives a
scalar reward Rt ∈ R according to the reward distribution
P (R|s, a, s′). The agent chooses at according to its policy
π(a|s), a probability distribution over At given st. In RL,
the goal is to learn a policy π that maximizes cumulative
reward.

We here describe the MDP we use to represent a construc-
tion approach to the NDP, visualized in Fig. 1. The state st
is composed of the set of routes Rt planned so far, and an



incomplete route rt which is being planned.

st = (Rt, rt) (2)

The starting state is s0 = (R0 = {}, r0 = []). The MDP
alternates with t between two modes: on odd-numbered t,
the agent chooses an extension to rt; on even-numbered t,
the agent chooses whether to finish rt and start a new route.

On odd-numbered t, At is drawn from SP, the set of
shortest paths between all node pairs. If rt = [], then At =
{a | a ∈ SP, |a| ≤ MAX}. Otherwise, At is comprised of
paths a ∈ SP that meet the following conditions:

• (i, j, τij) ∈ Es, where i is the first node of a and j is
the last node of rt, or vice-versa

• a and rt have no nodes in common
• |a| ≤ MAX − |rt|

Once a path at ∈ At is chosen, rt+1 is formed by appending
at to the beginning or end of rt as appropriate.

On even-numbered t, the action space depends on the
number of stops in rt:

At =


{continue} if|rt| < MIN

{halt} if|rt| = MAX

{continue, halt} otherwise
(3)

If at = halt, rt is added to Rt to get Rt+1, and rt+1 is set
to a new empty route. If at = continue, then Rt+1 and rt+1

are unchanged from step t.
When |Rt| = S, the MDP terminates, giving the final

reward Rt = −C(C,Rt). At all prior steps, Rt = 0.
This MDP formulation imposes some helpful biases on

R. First, it biases routes towards directness by forcing them
to be composed of shortest paths. Second, the alternation
between deciding whether and how to extend a route means
that the probability of halting does not depend on how many
extensions are possible at t.

B. Cost Function

Following earlier work [56], the NDP cost function has
three components. The passenger cost is the average transit
trip time:

Cp(C,R) =

∑
i,j DijτRij∑

i,j Dij
(4)

Where τRij is the time of the shortest transit trip from i to
j over R, including a time penalty pT for each transfer.

The operator cost is the total driving time of the routes:

Co(C,R) =
∑
r∈R

τr (5)

Where τr is the time needed to completely traverse a route r
in both directions.

To enforce the constraints on R, we add a third term Cc,
which is the fraction of node pairs that are not connected by
R plus a measure of how much |r| > MAX or |r| < MIN
across all routes. The cost function is then:

C(C,R) = αwpCp + (1− α)woCo + βCc (6)

The weight α ∈ [0, 1] controls the trade-off between
passenger and operator costs. wp and wo are re-scaling
constants chosen so that wpCp and woCo both vary roughly
over the range [0, 1] for different C and R; this is done so
that α will properly balance the two, and to stabilize training
of the GNN policy. The values used are wp = (maxi,j Tij)

−1

and wo = (3Smaxi,j Tij)
−1, where T is an n×n matrix of

shortest-path driving times between every node pair.

IV. METHODOLOGY

A. Learned Constructor

We propose to learn a policy πθ(a|s) with the objective
of maximizing the cumulative return G on the construction
MDP described in section III-A. By then evaluating this
policy on the MDP for some city C, we can obtain a transit
network R for that city. We denote this algorithm the Learned
Constructor (LC).

The policy πθ is a neural net parameterized by θ. Its
“backbone” is a graph attention net [57] which treats the
city as a fully-connected graph on the nodes N , where each
edge has a feature vector eij containing information about
demand, existing transit connections, and the street edge (if
one exists) between i and j. We note that a graph attention
net operating on a fully-connected graph has close parallels
to a Transformer model [58], but unlike a Transformer it
can use make use of edge features that describe relationships
between nodes.

The backbone GNN outputs node embeddings Y , which
are operated on by one of two policy “heads”, depending on
the timestep: NNext for choosing among extensions when t
is odd, and NNhalt for deciding whether to halt when t is
even. For the full details of the neural architecture, we direct
the reader to our code release2.

1) Training: Following the work of [22], we train the
policy net using the policy gradient method REINFORCE
with baseline [59], setting γ = 1. Since the reward Rt for
the last step is the negative cost and at all other steps Rt = 0,
this implies the return Gt at each timestep is simply:

Gt =
∑
t′

γt′−tRt =
∑
t′

Rt = −C(C,R) (7)

The learning signal for each action at is Gt − b(C, α), where
the baseline b(C, α) is a separate Multi-Layer Perceptron
trained to predict the final reward obtained by the current
policy for a given cost weight α and city C.

We train the model on a dataset of synthetic cities. For
each batch, a full rollout of the MDP is performed on the
cities in the batch, C(C,R) is computed across the batch,
and back-propagation and weight updates are applied to both
the policy net and the baseline net.

To construct a synthetic city for the training dataset, we
first generate its nodes and street network using one of these
processes chosen at random:

• 4-nn: Sample n random points in a square to give N .
Add edges to each node i from its 4 nearest neighbours.

2Available at https://www.cim.mcgill.ca/~mrl/hgrepo/
transit_learning/

https://www.cim.mcgill.ca/~mrl/hgrepo/transit_learning/
https://www.cim.mcgill.ca/~mrl/hgrepo/transit_learning/


• 4-grid: Place n nodes in a rectangular grid as close to
square as possible. Add edges from each node to its
horizontal and vertical neighbours.

• 8-grid: Like 4-grid, but also add edges between diagonal
neighbours.

• Voronoi: Sample m random 2D points, and compute
their Voronoi diagram [60]. Take the shared vertices and
edges of the resulting Voronoi cells as N and Es. m is
chosen so |N | = n.

For each process except Voronoi, each edge in Es is then
deleted with user-defined probability ρ. If the resulting street
graph is not connected, it is discarded and the process is
repeated. Nodes are sampled in a 30km × 30km square, and
a fixed vehicle speed of v = 15m/s is assumed to compute
street edge weights τij = ||(xi, yi) − (xj , yj)||2/v. Finally,
we generate D by setting diagonal demands Dii = 0 and
uniformly sampling off-diagonal elements Dij in the range
[60, 800].

All neural net inputs are normalized so as to have unit
variance and zero mean across the entire dataset during
training. The normalization parameters are saved as part
of the model and applied to new data presented at test time.

B. Evolutionary Algorithm

An evolutionary algorithm is an improvement method
in which an initial population of B solutions go through
repeated stages of modification and selection based on their
“fitness”, thus increasing the fitness of the population over
many iterations. In [41], an EA is presented for the NDP,
which consists of alternating mutation and selection stages.
In the mutation stage, two different mutation operators - type
1 and 2 - are each applied Nm times to half of the population.
Each mutation is kept if it decreases the cost Cb of solution b.
In the selection stage, each solution b “dies” with probability
increasing with Cb. Dead solutions are replaced with copies
(“offspring”) of surviving solutions to maintain the population
size B, with probability inversely proportional to the survivors’
Cb. These alternating stages repeat for a fixed number of
iterations I .

Each mutator begins by selecting a random terminal i on
a random route r in the solution. The type-1 mutator then
selects a random node j ̸= i in N , and replaces r with the
shortest path between i and j. The type-2 mutator chooses
with probability 0.2 to delete i from r; otherwise, it adds a
random node j in i’s neighbourhood to r (before i if i is the
first node in r, and after i if i is the last node in r), making
j the new terminal.

We modify this algorithm by replacing the type-1 mutator
with a “neural mutator”. This mutator selects a random route
r from R, and then rolls out our learned policy πθ starting
from R\ r, generating one new route r′ that replaces r. The
algorithm is otherwise unchanged. We replace the type-1
mutator because its action space (replacing one route by a
shortest path) is a subset of the action space of the neural
mutator (replacing one route by a new route composed of
shortest paths), while the type-2 mutator’s action space is quite

TABLE I: Statistics of the five synthetic benchmark cities
used in our experiments.

City n |Es| S MIN MAX Area (km2)

Mandl 15 20 6 2 8 352.7
Mumford0 30 90 12 2 15 354.2
Mumford1 70 210 15 10 30 858.5
Mumford2 110 385 56 10 22 1394.3
Mumford3 127 425 60 12 25 1703.2

different. In this way, πθ, which was trained as a construction
policy, is used in an improvement method.

We note that in [41], the algorithm is described as a “bee
colony optimization” algorithm. But “bee colony optimiza-
tion” is merely a relabelling of the evolutionary-algorithm
metaheuristic - the two are functionally identical [61]. To
avoid the profusion of unnecessary terminology, we here
describe [41]’s method as an EA.

V. EXPERIMENTS

All evaluations are performed on the Mandl [54] and
Mumford [62] city datasets, two popular benchmarks for
evaluating NDP algorithms [56], [63], [64], [65]. The Mandl
dataset is one small synthetic city, while the Mumford dataset
consists of four synthetic cities, labelled Mumford0 through
Mumford3, and it gives values of S, MIN , and MAX to use
when benchmarking on each city. The values n, S, MIN , and
MAX for Mumford1, Mumford2, and Mumford3 are taken
from three different real-world cities and their existing transit
networks, giving the dataset a degree of realism. Details of
these benchmarks are given in Table I.

In all experiments, we use policies πθ that we trained
on a dataset of 215 synthetic cities with n = 20. A 90:10
training:validation split of this dataset is used; after each
epoch of training, the model is evaluated on the validation
set, and at the end of training, the parameters θ from the
epoch with the best validation-set performance are returned.
Data augmentation is applied each time a city is used for
training. This consists of multiplying the node positions
(xi, yi) and travel times τij by a random factor cs ∼ [0.4, 1.6],
rotating the node positions about their centroid by a random
angle ϕ ∼ [0◦, 360◦), and multiplying D by a random
factor cd ∼ [0.8, 1.2]. During training, we use constant values
S = 10,MIN = 2,MAX = 15; we used these as initial
values based on the values for the similarly-sized Mandl and
Mumford0 cities, and found they gave good results, so did
not vary them. We sample a different α ∼ [0, 1] for each city
in a batch, so that the policy will learn to condition its actions
on the user preferences implicit in the cost function. Training
proceeds for 5 epochs, with a batch size of 64 cities. When
performing multiple training runs with different random seeds,
we hold the dataset constant, but not the data augmentation.

We henceforth refer to [41]’s evolutionary algorithm as
EA, and to our own algorithm as NEA. For both, we set all
algorithmic parameters to the values used in the experiments
of [41]: population size B = 10, mutations per mutation stage
per individual Nm = 10, and total number of mutate-select



iterations I = 400. We tried running EA for up to I = 2, 000
on several cities, but found this did not yield any improvement
over I = 400. In each mutation stage, the neural mutator is
applied to half of the population, and the type-2 mutator to
the other half, just as the base EA splits type-1 and type-2
mutators equally among individuals. Hyperparameter settings
of the model architecture of πθ and training process were
arrived at by a limited manual search; for their values, we
direct the reader to the configuration files contained in our
code release. We set the constraint penalty weight β = 5 in
all experiments.

A. Results

We compare LC, EA, and NEA on Mandl and the four
Mumford cities. To evaluate LC, we perform 100 rollouts on
each city and choose the R from among them that minimizes
C(C,R) (denoted LC-100). Each algorithm is run across a
range of 10 random seeds, using separate policy parameters θ
trained with that seed. We report results averaged over all of
the seeds. Our main results are summarized in Table II, which
shows results at three different α values, optimizing for the
operators’ perspective (α = 0.0), the passengers’ perspective
(α = 1.0), and a balance of the two (α = 0.5).

The results show that while EA performs best on the two
smallest cities in most cases, its relative performance worsens
considerably when n ≥ 70. On Mumford1, 2, and 3, for each
α, NEA performs best overall on these three cities. It is better
than LC-100 in every instance, improving on its cost by about
6% α = 1.0 and 0.5, and by up to 20% at α = 0.0; and it
improves on EA by 33% to 53% on Mumford3 depending
on α.

With α = 0.0, NEA failed to obey route length limits
with 1 of the 10 seeds. This may be because at α = 0.0, the
reduction in Co given by under-length routes overwhelms the
cost penalty due to a few routes being too long. This might
be resolved by simply increasing β or adjusting the specific
form of Cc.

We also observed that while one NEA iteration is somewhat
slower than one EA iteration due to the need to execute πθ,
NEA’s cost falls much more rapidly with each iteration than
does EA’s, so much so that NEA can achieve lower-cost
solutions in considerably less time than EA. This fact may
be practically significant: autonomous buses may enable new
forms of transit involving online re-planning of bus routes,
and in this application, planning high-quality route systems
at speed will be key. NEA may make such an application
feasible where EA may not.

B. Trade-offs Between Passenger and Operator Costs

There is always a trade-off between minimizing the
passenger cost Cp and the operator cost Co: making transit
routes longer increases Co, but allows more and faster direct
connections between stops, and so may decrease Cp. The
weight α can be set by the user to indicate how much they
care about Cp versus Co, and each algorithm’s behaviour
will change accordingly. Fig. 2 illustrates the trade-offs made
by the different methods, as we vary α over the range [0, 1]

in steps of 0.1 on the three cities with real-world statistics,
Mumford1, 2, and 3. NEA’s solutions not only dominate those
of EA, but also achieve a much wider range of Cp and Co

than either of EA or LC-100, which will be more satisfactory
if the user cares only about one or the other component.

Both LC and EA have more narrow ranges of Cp and Co on
these three cities, but the ranges are mostly non-overlapping.
Some of NEA’s greater range seems to be due to combining
the non-overlapping ranges of the constituent parts, but NEA’s
range is greater than the union of LC’s and EA’s ranges. This
implies that the larger action space of the neural mutator
versus the type-1 mutator allows NEA to explore a much
wider range of solutions by taking wider “steps” in solution
space.

C. Comparison with Other Methods

The main purpose of our work was to see whether a neural
net could learn route-building heuristics that would improve
the results of an existing metaheuristic algorithm, and we
have shown that it does. A direct comparison with other
non-neural algorithms from the literature is secondary to this
purpose, but is still of some interest. So Table III compares
our NEA with more methods from elsewhere in the literature,
on the three real-world-based Mumford benchmark cities. We
bold the best result, and show NEA’s result in blue if it is
within one standard deviation of the best result. In [56], [63],
results are reported for α = 0.0 (optimizing only Co) and
α = 1.0 (optimizing only Cp), while [64] only reports results
for α = 1.0.

At α = 0.0, we find that NEA performs comparably with
[56], but not as well as [63]. At α = 1.0, NEA fares better,
outperforming [56], [63], and [64] on two of the three cities.
We note that this competitive performance is impressive given
the substantial difference in runtime. While [56] do not report
run-times with their results, [63] report that their NSGA-
II genetic algorithm takes more than two days to run on
Mumford3, while [64] report that their procedure takes eight
hours just to construct the initial solution for Mumford3. By
comparison, our NEA runs take less than 20 minutes on a
desktop computer with a 2.4 GHz Intel i9-12900F processor
and an NVIDIA RTX 3090 GPU. Running our method with
larger values of I or B would increase runtime but may
generate better solutions. Using other, more costly but more
powerful metaheuristics with our neural heuristic may also
give better results. We leave this to future work.

VI. DISCUSSION

We have shown that a neural net policy trained to construct
whole solutions to the transit network design problem learns
broadly useful heuristics for planning transit routes. This
allows it serve as a mutation operator in an evolutionary
algorithm, significantly improving the quality of the discov-
ered solutions on a standard benchmark. Meanwhile, the
evolutionary algorithm’s power as a search method enhances
results considerably over those achieved by directly sampling
solutions from the learned policy.



TABLE II: Average final cost C(C,R) achieved by each method over 10 random seeds, for three different settings of cost
weight α. Bold indicates the best in each column. Orange indicates that one seed’s solution violated a constraint, red indicates
two or three seeds’ solutions did so. Values after ± are standard deviations over the 10 seeds.

α Method City: Mandl Mumford0 Mumford1 Mumford2 Mumford3

EA 0.270 ± 0.048 0.272 ± 0.044 0.854 ± 0.277 0.692 ± 0.277 0.853 ± 0.297
0.0 LC-100 0.317 ± 0.076 0.487 ± 0.323 0.853 ± 0.371 0.688 ± 0.180 0.710 ± 0.172

NEA 0.276 ± 0.054 0.298 ± 0.122 0.623 ± 0.163 0.537 ± 0.236 0.572 ± 0.262

EA 0.327 ± 0.009 0.563 ± 0.009 1.015 ± 0.424 0.710 ± 0.258 0.944 ± 0.274
0.5 LC-100 0.346 ± 0.040 0.638 ± 0.138 0.742 ± 0.176 0.617 ± 0.085 0.612 ± 0.082

NEA 0.331 ± 0.021 0.571 ± 0.034 0.627 ± 0.049 0.532 ± 0.028 0.584 ± 0.215

EA 0.315 ± 0.002 0.645 ± 0.030 0.739 ± 0.271 0.656 ± 0.252 1.004 ± 0.401
1.0 LC-100 0.340 ± 0.015 0.738 ± 0.042 0.600 ± 0.017 0.534 ± 0.009 0.504 ± 0.007

NEA 0.317 ± 0.004 0.637 ± 0.036 0.564 ± 0.018 0.507 ± 0.007 0.481 ± 0.007

25.0 27.5 30.0 32.5
Cp (minutes)

500

750

1000

1250

1500

C
o

(m
in

u
te

s)

NEA

LC-100

EA

(a) Mumford1

27.5 30.0 32.5 35.0
Cp (minutes)

2000

3000

4000
C
o

(m
in

u
te

s)
NEA

LC-100

EA

(b) Mumford2

30 32 34 36 38
Cp (minutes)

3000

4000

5000

C
o

(m
in

u
te

s)

NEA

LC-100

EA

(c) Mumford3

Fig. 2: Trade-offs achieved by different methods between passenger cost Cp (on the x-axis) and operator cost Co (on the
y-axis), across values of α evenly spaced over the range [0, 1], averaged over 10 random seeds. Both axes have units of
minutes. Error bars show one standard deviation over the ten random seeds for each point. We wish to minimize both values,
so the lower-left direction in each plot represents improvement. A line links two points if they have adjacent α values, so
these curves show a smooth progression from low Co (at the right) to low Cp (at the left) as α increases.

TABLE III: Comparison between our method and others from
the literature on the three Mumford cities, for α = 0.0 and
α = 1.0, with values for the corresponding metric.

Method Mumford1 Mumford2 Mumford3

Co at α = 0.0

[56] 568 2244 2830
[63] 462 1875 2301
NEA 620 ± 160 2126 ± 197 2819 ± 404

Cp at α = 1.0

[56] 24.79 28.65 31.44
[63] 23.91 27.02 29.50
[64] 23.25 26.82 30.41
NEA 24.95 ± 0.87 26.87 ± 0.34 29.37 ± 0.45

Better results could likely be achieved by training a policy
directly in the context of an improvement process, rather than
training it in a construction process as was done here. It would
also be interesting to use an ensemble of separately-trained
policies as different heuristics within a GA, as opposed to the
single model used in our experiments. Training over variable
n, S,MIN, and MAX would be interesting as well.

We note that both the construction policy and the neural

evolutionary algorithm outperform the plain evolutionary
algorithm on the Mumford1, 2, and 3 problem instances
- all those that were modeled on specific real-world cities in
scale. Furthermore, the gap between these grows with the
size of the city. This suggests that our approach may scale
better to much larger problem sizes. This is significant, as
many real-world cities have hundreds or thousands of bus stop
locations [10]. In future, we intend to evaluate our technique
on data from real-world cities.

Another promising direction would be to extend this work
to the problem of planning a transit network that would
operate in conjunction with a mobility-on-demand system
composed of autonomous taxis. A fully-autonomous urban
transit system will need to make use of both point-to-point
autonomous ride-sharing and fixed autonomous mass transit
routes to be as useful and efficient as possible [66], [67].
The system proposed in this paper could serve as part of an
algorithm for planning such a combined autonomous transit
system. Future work could explore how our method could be
combined with techniques from the literature on autonomous
mobility-on-demand planning [68], [69], [70].



REFERENCES

[1] T. Roughgarden and É. Tardos, “How bad is selfish routing?” Journal
of the ACM (JACM), vol. 49, no. 2, pp. 236–259, 2002.

[2] S. Oh, R. Seshadri, D.-T. Le, P. C. Zegras, and M. E. Ben-Akiva,
“Evaluating automated demand responsive transit using microsimulation,”
IEEE Access, vol. 8, pp. 82 551–82 561, 2020.

[3] J. Rich, R. Seshadri, A. J. Jomeh, and S. R. Clausen, “Fixed routing
or demand-responsive? agent-based modelling of autonomous first and
last mile services in light-rail systems,” Transportation Research Part
A: Policy and Practice, vol. 173, p. 103676, 2023.

[4] A. France-Presse, “Driverless electric bus hits the road in Span-
ish city of Málaga,” https://www.theguardian.com/world/2021/feb/25/
driverless-electric-bus-hits-the-road-in-spanish-city-of-malaga, 2 2021,
accessed: 2021-03-09.

[5] J. Plautz, “Autonomous shuttles launch in Detroit,” https://www.
smartcitiesdive.com/news/autonomous-shuttles-launch-in-detroit/
526999/, 7 2018, accessed: 2019-11-27.

[6] R. Beene, “A Florida monorail makes way for the robot bus of
tomorrow,” Bloomberg, 2 2018.

[7] A. Ceder, Public Transit Planning and Operation: Modeling, Practice
and Behaviour. CRC Press, 2016.

[8] S. Chakrabarti, “How can public transit get people out of their cars?
An analysis of transit mode choice for commute trips in los angeles,”
Transport Policy, vol. 54, no. October 2016, pp. 80–89, 2017. [Online].
Available: http://dx.doi.org/10.1016/j.tranpol.2016.11.005

[9] A. El-Geneidy, M. Grimsrud, R. Wasfi, P. Tétreault, and J. Surprenant-
Legault, “New evidence on walking distances to transit stops: Identify-
ing redundancies and gaps using variable service areas,” Transportation,
vol. 41, no. 1, pp. 193–210, 2014.

[10] Société de transport de Montréal, “Everything about
the stm,” 2013, accessed: 2023-05-17. [Online]. Avail-
able: https://web.archive.org/web/20130610123159/http://www.stm.
info/english/en-bref/a-toutsurlaSTM.htm

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
CoRR, vol. abs/1606.09375, 2016. [Online]. Available: http:
//arxiv.org/abs/1606.09375

[14] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” Advances in neural information
processing systems, vol. 28, 2015.

[15] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” CoRR, vol. abs/1806.01973, 2018. [Online].
Available: http://arxiv.org/abs/1806.01973

[16] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, et al., “A graph placement
methodology for fast chip design,” Nature, vol. 594, no. 7862, pp.
207–212, 2021.

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings
of the 34th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, D. Precup and Y. W. Teh,
Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 1263–1272. [Online].
Available: https://proceedings.mlr.press/v70/gilmer17a.html

[18] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[19] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: a methodological tour d’horizon,” European Journal
of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.

[20] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” arXiv
preprint arXiv:1506.03134, 2015.

[21] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” arXiv preprint
arXiv:1704.01665, 2017.

[22] W. Kool, H. V. Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in ICLR, 2019.

[23] H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method
for solving vehicle routing problems,” in International Conference on
Learning Representations, 2019.

[24] Q. Sykora, M. Ren, and R. Urtasun, “Multi-agent routing value iteration
network,” in International Conference on Machine Learning. PMLR,
2020, pp. 9300–9310.

[25] J. Choo, Y.-D. Kwon, J. Kim, J. Jae, A. Hottung, K. Tierney, and
Y. Gwon, “Simulation-guided beam search for neural combinatorial
optimization,” Advances in Neural Information Processing Systems,
vol. 35, pp. 8760–8772, 2022.

[26] T. N. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. M. Faissol,
and B. K. Petersen, “Symbolic regression via neural-guided genetic
programming population seeding,” arXiv preprint arXiv:2111.00053,
2021.

[27] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model
to arbitrarily large tsp instances,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 35, no. 8, 2021, pp. 7474–7482.

[28] D. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, “Concorde
tsp solver,” 2001. [Online]. Available: https://www.math.uwaterloo.ca/
tsp/concorde/index.html

[29] A. Hottung and K. Tierney, “Neural large neighborhood search for the
capacitated vehicle routing problem,” arXiv preprint arXiv:1911.09539,
2019.

[30] X. Chen and Y. Tian, “Learning to perform local rewriting for com-
binatorial optimization,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[31] P. R. d O Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-
opt heuristics for the traveling salesman problem via deep reinforcement
learning,” in Asian conference on machine learning. PMLR, 2020,
pp. 465–480.

[32] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE transactions on neural
networks and learning systems, vol. 33, no. 9, pp. 5057–5069, 2021.

[33] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang,
“Learning to iteratively solve routing problems with dual-aspect
collaborative transformer,” Advances in Neural Information Processing
Systems, vol. 34, pp. 11 096–11 107, 2021.

[34] M. Kim, J. Park, et al., “Learning collaborative policies to solve np-
hard routing problems,” Advances in Neural Information Processing
Systems, vol. 34, pp. 10 418–10 430, 2021.

[35] C. Quak, “Bus line planning,” A passenger-oriented approach of
the construction of a global line network and an efficient timetable.
Master’s thesis, Delft University, Delft, Netherlands, 2003.

[36] R. van Nes, “Multiuser-class urban transit network design,”
Transportation Research Record, vol. 1835, no. 1, pp. 25–33, 2003.
[Online]. Available: https://doi.org/10.3141/1835-04

[37] J. Guan, H. Yang, and S. Wirasinghe, “Simultaneous optimization of
transit line configuration and passenger line assignment,” Transportation
Research Part B: Methodological, vol. 40, pp. 885–902, 12 2006.

[38] V. Guihaire and J.-K. Hao, “Transit network design and scheduling: A
global review,” Transportation Research Part A: Policy and Practice,
vol. 42, no. 10, pp. 1251–1273, 2008.

[39] K. Kepaptsoglou and M. Karlaftis, “Transit route network design
problem: Review,” Journal of Transportation Engineering, vol. 135,
no. 8, pp. 491–505, 2009.

[40] K. Sörensen, M. Sevaux, and F. Glover, “A history of metaheuristics,”
in Handbook of heuristics. Springer, 2018, pp. 791–808.

[41] M. Nikolić and D. Teodorović, “Transit network design by bee colony
optimization,” Expert Systems with Applications, vol. 40, no. 15, pp.
5945–5955, 2013.

[42] Y. Xiong and J. B. Schneider, “Transportation network design using
a cumulative genetic algorithm and neural network,” Transportation
Research Record, vol. 1364, 1992.

[43] J.-P. Rodrigue, “Parallel modelling and neural networks: An overview
for transportation/land use systems,” Transportation Research Part
C: Emerging Technologies, vol. 5, no. 5, pp. 259–271, 1997.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0968090X97000144

[44] S. I.-J. Chien, Y. Ding, and C. Wei, “Dynamic bus arrival time prediction
with artificial neural networks,” Journal of transportation engineering,
vol. 128, no. 5, pp. 429–438, 2002.

[45] R. Jeong and R. Rilett, “Bus arrival time prediction using artificial
neural network model,” in Proceedings. The 7th international IEEE
conference on intelligent transportation systems (IEEE Cat. No.
04TH8749). IEEE, 2004, pp. 988–993.

https://www.theguardian.com/world/2021/feb/25/driverless-electric-bus-hits-the-road-in-spanish-city-of-malaga
https://www.theguardian.com/world/2021/feb/25/driverless-electric-bus-hits-the-road-in-spanish-city-of-malaga
https://www.smartcitiesdive.com/news/autonomous-shuttles-launch-in-detroit/526999/
https://www.smartcitiesdive.com/news/autonomous-shuttles-launch-in-detroit/526999/
https://www.smartcitiesdive.com/news/autonomous-shuttles-launch-in-detroit/526999/
http://dx.doi.org/10.1016/j.tranpol.2016.11.005
https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm
https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1806.01973
https://proceedings.mlr.press/v70/gilmer17a.html
https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://doi.org/10.3141/1835-04
https://www.sciencedirect.com/science/article/pii/S0968090X97000144
https://www.sciencedirect.com/science/article/pii/S0968090X97000144


[46] M. Y. Çodur and A. Tortum, “An artificial intelligent approach to traffic
accident estimation: Model development and application,” Transport,
vol. 24, no. 2, pp. 135–142, 2009.

[47] C. Li, L. Bai, W. Liu, L. Yao, and S. T. Waller, “Graph neural network
for robust public transit demand prediction,” IEEE Transactions on
Intelligent Transportation Systems, 2020.

[48] L. Zou, J.-m. Xu, and L.-x. Zhu, “Light rail intelligent dispatching
system based on reinforcement learning,” in 2006 International
Conference on Machine Learning and Cybernetics, 2006, pp. 2493–
2496.

[49] G. Ai, X. Zuo, G. Chen, and B. Wu, “Deep reinforcement learning
based dynamic optimization of bus timetable,” Applied Soft Computing,
vol. 131, p. 109752, 2022.

[50] H. Yan, Z. Cui, X. Chen, and X. Ma, “Distributed multiagent
deep reinforcement learning for multiline dynamic bus timetable
optimization,” IEEE Transactions on Industrial Informatics, vol. 19,
pp. 469–479, 2023.

[51] Z. Jiang, W. Fan, W. Liu, B. Zhu, and J. Gu, “Reinforcement
learning approach for coordinated passenger inflow control of urban
rail transit in peak hours,” Transportation Research Part C: Emerging
Technologies, vol. 88, pp. 1–16, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X18300111

[52] A. Darwish, M. Khalil, and K. Badawi, “Optimising public bus transit
networks using deep reinforcement learning,” in 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2020, pp. 1–7.

[53] S. Yoo, J. B. Lee, and H. Han, “A reinforcement learning approach
for bus network design and frequency setting optimisation,” Public
Transport, pp. 1–32, 2023.

[54] C. E. Mandl, “Evaluation and optimization of urban public transporta-
tion networks,” European Journal of Operational Research, vol. 5,
no. 6, pp. 396–404, 1980.

[55] A. Holliday and G. Dudek, “Augmenting transit network design
algorithms with deep learning,” in 2023 26th IEEE International
Conference on Intelligent Transportation Systems (ITSC). IEEE,
2023.

[56] C. L. Mumford, “New heuristic and evolutionary operators for the
multi-objective urban transit routing problem,” in 2013 IEEE congress
on evolutionary computation. IEEE, 2013, pp. 939–946.

[57] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” 2021. [Online]. Available: https://arxiv.org/abs/2105.14491

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[59] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[60] S. Fortune, “Voronoi diagrams and delaunay triangulations,” Computing
in Euclidean geometry, pp. 225–265, 1995.

[61] K. Sörensen, “Metaheuristics—the metaphor exposed,” International
Transactions in Operational Research, vol. 22, no. 1, pp. 3–18, 2015.

[62] C. L. Mumford, “Supplementary material for: New heuristic and
evolutionary operators for the multi-objective urban transit routing
problem, cec 2013,” https://users.cs.cf.ac.uk/C.L.Mumford/Research%
20Topics/UTRP/CEC2013Supp.zip, 2013, accessed: 2023-03-24.

[63] M. P. John, C. L. Mumford, and R. Lewis, “An improved multi-objective
algorithm for the urban transit routing problem,” in Evolutionary
Computation in Combinatorial Optimisation, C. Blum and G. Ochoa,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 49–60.

[64] F. Kılıç and M. Gök, “A demand based route generation algorithm
for public transit network design,” Computers & Operations
Research, vol. 51, pp. 21–29, 2014. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0305054814001300

[65] H. Lin and C. Tang, “Analysis and optimization of urban public trans-
port lines based on multiobjective adaptive particle swarm optimization,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9,
pp. 16 786–16 798, 2022.

[66] M. J. Alonso-González, T. Liu, O. Cats, N. Van Oort, and S. Hoogen-
doorn, “The potential of demand-responsive transport as a complement
to public transport: An assessment framework and an empirical
evaluation,” Transportation Research Record, vol. 2672, no. 8, pp.
879–889, 2018.

[67] G. Leich and J. Bischoff, “Should autonomous shared taxis replace
buses? a simulation study,” Transportation Research Procedia, vol. 41,
pp. 450–460, 2019.

[68] A. Vakayil, W. Gruel, and S. Samaranayake, “Integrating shared-vehicle
mobility-on-demand systems with public transit,” Tech. Rep., 2017.

[69] C. Ruch, S. Hörl, and E. Frazzoli, “Amodeus, a simulation-based
testbed for autonomous mobility-on-demand systems,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 3639–3644.

[70] P. Martí, J. Jordán, F. De la Prieta, H. Billhardt, and V. Julian, “Demand-
responsive shared transportation: a self-interested proposal,” Electronics,
vol. 11, no. 1, p. 78, 2021.

https://www.sciencedirect.com/science/article/pii/S0968090X18300111
https://www.sciencedirect.com/science/article/pii/S0968090X18300111
https://arxiv.org/abs/2105.14491
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp.zip
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp.zip
https://www.sciencedirect.com/science/article/pii/S0305054814001300
https://www.sciencedirect.com/science/article/pii/S0305054814001300

	Introduction
	Related Work
	Graph Nets and Reinforcement Learning for Optimization Problems
	Optimization of Public Transit

	The Transit Network Design Problem
	Markov Decision Process Formulation
	Cost Function

	Methodology
	Learned Constructor
	Training

	Evolutionary Algorithm

	Experiments
	Results
	Trade-offs Between Passenger and Operator Costs
	Comparison with Other Methods

	Discussion
	References

