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Implementation of a Multisegmented, Quasi-Static Cable Model

Marco Masciola, Jason Jonkman, and Amy Robertson
National Renewable Energy Laboratory

Golden, CO USA

ABSTRACT

The Mooring Analysis Program (MAP) is a library designed to be
used in parallel with other computer-aided engineering (CAE) tools
to model the static and dynamic forces of mooring systems. In this
paper, the implementation of a multisegmented, quasi-static (MSQS)
mooring model in MAP is investigated. The MSQS model was
developed based on an extension of conventional single-line static
solutions. Conceptually, the MSQS program simultaneously solves
the algebraic equations for all elements with the condition that the
total force at connection points sum to zero. Seabed contact, seabed
friction, and externally applied forces can be modeled with this tool,
and it allows multielement mooring systems with arbitrary connection
configurations to be analyzed. This paper provides an introduction to
MAP’s MSQS model, its underlying theory, and a demonstration of
its abilities.

KEY WORDS: Quasi-static mooring; catenary; cable simulation

NOMENCLATURE

B Buoyancy tank
EA Mooring line axial stiffness
CB Cable-seabed friction coefficient
FX,Y,Z X , Y , and Z global forces
H , HA Horizontal force at the fairlead and anchor
h, l Horizontal and vertical cable excursion
L Unstretched cable length
M Point mass
V , VA Vertical force at the fairlead and anchor
Te(s) Line tension at s
W Cable weight per unit length
xi, zi Local (element) coordinates
Xi, Yi, Zi Global coordinates

INTRODUCTION

The Mooring Analysis Program (MAP) is an open-source project be-
ing developed by the National Renewable Energy Laboratory (NREL)
to support the modeling of floating offshore wind turbines, wave
energy converters, ocean current turbines, and related research topics.
Since MAP is intended for use across a wide range of applications,
thoughtful consideration must be made regarding the user interface,
inputs, outputs, and access points for other programs to call the
MAP library. With support from the U.S. Department of Energy
(DOE), NREL developed a modularization framework for the wind
turbine simulation program FAST (Jonkman and Buhl, 2005). This
framework was created to enable developers to seamlessly integrate

customized modules into FAST while preserving the integrity of
the numerical simulation (Jonkman, 2013). MAP adheres to this
framework and function-call convention. Because MAP is designed as
a library, critical functions are exposed to outside programs, allowing
other simulation tools to dynamically link with MAP in the same way
that FAST would.

The multisegmented, quasi-static (MSQS) component of MAP was
developed to meet the need for a tool that could model the nonlinear
stiffness matrix and static forces of practical mooring systems with
arbitrary connection geometries and profiles. The quasi-static model
used in MAP was derived from a set of closed-form analytical
solutions of a continuous cable with homogeneous properties (Irvine,
1992). Such models account for the effects of distributed cable mass,
strain, and cable elasticity to provide the line profile and effective
forces for a cable suspended at steady-state (static equilibrium).
Forces arising from inertia, viscous drag, internal damping, bending,
and torsion are neglected. Still, the quasi-static representation is a
reasonable approximation to the mooring line restoring forces in lieu
of comprehensive finite-element analysis (FEA) models (API, 1997).

The theory behind single-line quasi-static mooring representations
is sufficiently described in existing literature (Irvine, 1992; Wilson,
2003). Although these models have widespread utility (Kozak, et al,
2006; Paul and Soler, 1995; Wang, et al, 2010), the representations
cited are limited to single-line mooring elements, Fig. 1(a). In marine
applications, a spread mooring with a bridle connection is adopted in
most mooring designs, Fig. 1(b). This configuration provides lateral
stiffness in the Y direction that otherwise would not be present with
a single-line. Peyrot and Goulois (1979) demonstrated a solution to
the multisegmented cable, which a bulk of this work is based on.
The current MSQS model, however, refines the program architecture
to solve a wide range of problems with unknowns and arbitrary
geometries defined at run-time. A unique feature of the quasi-static
model presented in this paper is the inclusion of seabed contact forces
in the formulation. In the present mooring line implementation in
FAST, only single-line elements, such as the one depicted in Fig.
1(a), are solvable. The multiline representation depicted in Fig. 1(b)
can be solved with MAP’s MSQS model. The MSQS model provides
a foundation for the development of a mooring line program with
dynamic capabilities, such as a lumped mass model, FEA, or finite
differencing models.
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Fig. 1: In (a), the mooring line is modeled as a single-line element; hence, the resulting restoring force supplied to the platform is
restricted to the plane of the mooring line. In contrast, a multisegmented line can model a fairlead force with components in the X , Y , and

Z directions, (b).

Manuscript Objective

The focus of this paper is to present features of the MSQS model
and to conduct validation checks on basic mooring geometries. The
theory is presented to help readers understand the type of problems
that the MSQS model can handle. This paper briefly describes the
program user interface and input options. For greater details on the
function-calling convention, Python interface, and recommendations
on how to couple MAP with other codes, refer to the MAP user
manual (Masciola and Jonkman, forthcoming)1.

Abilities of the MSQS Model

The MSQS model is developed without imposing boundary condition
rules. In some cases, the user may choose to partially specify
boundary conditions to inverse design a mooring system to meet
specific design requirements. For instance, consider the conceptual
problem of an underwater ocean current turbine where the thrust force
generated by the rotating blades is known. The mooring is anchored
at its bottom end at a known point and the fairlead is free to slide
at height h in the horizontal direction. Using Fig. 1(a) to illustrate
this problem, a known horizontal force FX is applied at the fairlead.
The variables solved in this case would be the FZ fairlead force and
the horizontal cable excursion l away from the anchor point. This
approach departs from traditional quasi-static implementations used
in dynamics simulations, where the forces applied at the fairleads
are solved based on the mooring line displacement values (h and
l). Note that MAP allows an external force F ext

X,Y,Z , node mass M ,
and volumetric displacement B to be specified at each node. These
features give the MSQS model the flexibility to function as a design
tool or a simulation model.

Although MAP’s native language is C++, the program is constructed
with wrappers, allowing users to dynamically interact with MAP in
Python (Langtangen, 2011). This gives users the flexibility to call
the MAP program functions, create and initialize data structures,
pass data to the MAP solvers, perform checks on the model inputs,
and plot mooring line profiles from Python. The core program

1http://wind.nrel.gov/designcodes/simulators/map/

solvers, solution strategy, procedures, and functions remain in C++.
MAP is compiled with the Portable, Extensible Toolkit for Scientific
Computation (PETSc) open-source numerical library to include a
Scalable Nonlinear Equations Solver (SNES) package suitable for
solving ill-conditioned problems that commonly arise in multiseg-
mented models (Balay, et al, 2012). The PETSc package provides a
variety of nonlinear solver strategies, including a trust region and a
Newton linear search method (Faires and Burden, 2003), that are all
enabled/disabled at run-time. The solver tolerance and other options
can be set at run-time through the MAP input text file.

MULTISEGMENTED, QUASI-STATIC THEORY

MAP’s MSQS model is developed as an extension of a single-
line element theory combining several individual catenary cables at
common connection points. Once combined, static equilibrium is
achieved when the connection point forces sum to zero. This scheme
requires two different sets of equations to be solved. The first is the
continuous catenary algebraic equations (Irvine, 1992). The second
equation resolves the sum forces at the connection points to check if
equilibrium is reached.

A detail that must be addressed is transforming the conventional two-
dimensional catenary equations into a three-dimensional domain to
resolve the Newton force-balance equation at each connection node.
Two equations are sufficient to describe the profile of a catenary cable
because each element lies in one plane, Fig. 1(a). For generality, the
assembled multisegmented line is modeled as a three-dimensional
system. In this section, the composition of the equations solved and
system kinematics of the multisegmented cable are explored.

Catenary Equation for a Single-Line

The solution to the common closed-form analytical equation for
a single-line cable element hanging between two fixed points was
derived independently in numerous works (Irvine, 1981; Wilson,
2003):

x (s) =
H

W

[
sinh−1

(
VA +Ws

H

)
− sinh−1

(
VA

H

)]
+
Hs

EA
(1a)



z (s) =
H

W

√1 +

(
VA +Ws

H

)2

−

√
1 +

(
VA

H

)2
 (1b)

+
1

EA

(
VAs+

Ws2

2

)
where x and z are coordinates relative to the element frame, Fig. 2.
By recognizing that the vertical force changes proportionately with
the cable mass density, and that external horizontal forces are absent
on the cable between the anchor and fairlead, the following conditions
hold:

HA = H (2a)

VA = V −WL (2b)

The horizontal l and vertical h fairlead displacement can be found
by substituting s = L in Eqs. 1a∼1b to yield:
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The tension at any point in the mooring is:

Te (s) =

√
H2 + (VA +Ws)2 (4)

These equations are valid for a hanging cable that is not in contact
with the seabed, and the mooring is guaranteed to be suspended (and
not in contact with the seabed), provided that the vertical fairlead
force is greater than the weight of the mooring. Therefore, the
above equations apply if the following sufficient, but not necessary,
condition is met:

(V −WL) > 0 (5)

Likewise, a mooring line will remain suspended in the water column
if the net mooring weight in the fluid is less than zero.

Catenary in Contact with the Seabed

If the vertical force V is less than the total weight of the cable (i.e.,
V ≤WL), then a portion of the mooring line will rest on the seabed
and the conditions in Eq. 5 will be violated. The unstretched length
of cable lying on the seabed can be found from LB = L − V

W

(Jonkman, 2007), where LB is assumed positive. When LB > 0, the
formulation of Eqs. 3a∼3b change because the following must now
be accounted for: a) seabed friction in the horizontal direction, and
b) a decrease in the vertical force V proportional to the length of
cable lying on the seabed. This leads to the following modifications
of Eqs. 1a∼1b (Jonkman, 2007):
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with γ = LB − H
CBW

and

λ =

{
γ if γ > 0

0 otherwise
(7)

Substituting s = L into Eqs. 6a∼6b yields the vertical and horizontal
extension limits of the mooring line:
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where the parameter µ is sought from:

µ =

{
L− V

W
− H

CBW
if
(
L− V

W
− H

CBW

)
> 0

0 otherwise
(9)

The line tension as a function of unstretched payout s is given by:

Te (s) =


max [H + CBW (s− LB) , 0] for 0 ≤ s ≤ LB√

H2 + [W (s− LB)]
2 for LB < s ≤ L

(10)

Line Kinematics

A vector breakdown of Fig. 1(b) is given in Fig. 3 to illustrate the
kinematic entities in transforming a two-dimensional line into a three-
dimensional representation. Vector ri denotes the position of frame
Fi, with respect to the XY Z axis. In the local Fi frame, vector:

qi(s) = [xi(s) , 0 , zi(s)]
T (11)

represents the displacement vector from the origin of Fi to points
tangent to the line. When s = L, then qi(s = L) = [li , 0 , hi]

T ,
which describes the displacement vector from anchor to fairlead. The
components of li(s)/hi(s) are determined from Eqs. 3a∼3b or Eqs.
8a∼8b, depending on whether the line is suspended or in contact
with the ground. The orientation of the local frame Fi relative to the
global F0 frame is:



Fig. 2: Definition of the entities in a single-line mooring line
relative to the local xz axis.

Fig. 3: Notation of the various entities needed in defining the
relationship between multiple members in a multisegmented

mooring line.

ψi =cos−1

{
({rj}x,y − {ri}x,y) · î
‖{rj}x,y − {ri}x,y‖

}
(12)

=cos−1

 {rj}x − {ri}x√
({rj}x − {ri}x)2 + ({rj}y − {ri}y)2


where ψi is indicative of a rotation about the global Z axis, {rj}x,y
is the presumed mooring line anchor point (i.e., the origin of Fi), rj
is the upper node (fairlead) position, and î = [1 , 0 , 0]T is a unit
vector aligned with the X axis. Note that for all line elements, zi
is always parallel to Z; so a single rotation about Z is sufficient to
describe the orientation of all elements. Only the x and y components
of ri,j are needed to compute ψ in Eq. 12. The profile for a mooring
line can then be obtained in the XY Z frame with:

Xi(s) = ri +Riqi(s) (13)

where the transformation from frame Fi into F0 is done using the
following orthogonal matrix:

Ri =

[
cosψi − sinψi 0
sinψi cosψi 0
0 0 1

]
(14)

After substituting Eq. 11 and Eq. 14 into Eq. 13, the following is
obtained:

Xi(s) = ri + [xi(s) cosψi , xi(s) sinψi , zi(s)]
T (15)

Solving the MSQS Model

The solution process begins by evaluating the two continuous analy-
tical catenary equations for each element based on l and h values
obtained through node displacement relationships. An element is
defined as the component connecting two adjacent nodes together.
Once the element fairlead (H , V ) and anchor (HA, VA) forces
are solved at the element level, the forces are transformed from
the local xizi frame into the global XY Z coordinate system. The
force contribution at each element’s anchor and fairlead is added to

the corresponding node it attaches to. The force-balance equation is
evaluated for each node, as follows:

{F}jX =

Elements i at Node j∑
i=1

[Hi cos(ψi)]− F ext
X ≤ ε (16a)

{F}jY =

Elements i at Node j∑
i=1

[Hi sin(ψi)]− F ext
Y ≤ ε (16b)

{F}jZ =

Elements i at Node j∑
i=1

[Vi]− F ext
Z +Mg − ρgB ≤ ε (16c)

where ε is the convergence tolerance limit. Based on the error of
Eqs. 16a∼16c, the node position is updated. As an outcome, the
element forces must be recalculated, and the process begins again.
Clearly, this process requires two distinct sets of equations to be
simultaneously solved to achieve the static cable configuration. The
first set of equations are the force-balance relationships in three
directions for each node; the second set of equations are the two
catenary functions. The nested solver procedure is summarized by
the following sequence of events:

1) The problem is initialized to the extent that elements (and
their properties) are defined, associations between elements and
nodes are established, and user-supplied boundary conditions
are declared for the model. Each node in the array is given a
classification to determine if a Newton force-balance calcula-
tion is needed.

2) x0 is set. The guess x0 defines initial estimates for each node
variable being solved.

3) y0 is set. The guess y0 defines initial estimates for each
element variable being solved.

4) The outer-loop iteration begins. The outer-loop step uses the
initial state vector x0 to iterate the element properties.

a) The inner-loop iteration begins. The purpose of the inner-
loop iteration is to use the continuous cable equation to
solve for the unknown quantities, Eqs. 3a∼3b or Eqs.
8a∼8b.

b) Based on the current state vector x0 value and element
initial guess y0, the unknown components in the element
state vector are solved.

c) The node initial guess vector y0 is updated with y1.



d) Once the unknowns are solved, the anchor and fairlead
forces are passed to their respective attaching nodes and
summed to find the total force. This concludes the inner-
loop solver.

5) The force balance equation is evaluated for each nonfixed node.
6) The node initial guess vector x0 is updated with x1.
7) Steps 4–6 are repeated until the following objective

∑
F ≤ ε

is achieved for Eqs. 16a∼16c.

THE MAP INPUT FILE

The model input mechanism for MAP is an ASCII-based text file
as shown in Fig. 4 (as an example). Values prefixed by ‘#’ are
used to identify variables iterated by the numerical solver, with the
value supplied as the initial guess. The initial guess value can be
absent. Not all values in the MAP input file can be iterated, and
the particular solvable entries are limited to those contained in the
NODE PROPERTIES and LINE PROPERTIES portion of the MAP
input file. MAP will alert users if the number of iterated variables
exceeds the number of algebraic equations that can be solved. This
paper provides a topical discussion on the input file format; consult
Masciola and Jonkman (forthcoming) for a more detailed description
of the input file requirements. There are four sections to the MAP
input file, as shown in Fig. 4:

• LINE DICTIONARY: This section defines the line properties,
such as the line diameter, elastic properties, and material density.

• NODE PROPERTIES: Nodes are used to define the element
fairlead and anchor displacements. The application point of
fairlead and anchor forces occur at nodes. External forces, such
as buoyancy, weight, or thrust, can be applied to the node using
the M, B, FX, FY, and FZ options.

• LINE PROPERTIES: Each line has characteristics defined in
the LINE DICTIONARY section that allow users to select
unique lengths for each element. Integer values are used to link
the corresponding nodes that act as fairlead and anchor points.

• SOLVER OPTIONS: The PETSc numerical library has an
extensive list of options available to solve nonlinear systems.
Rather than setting these options at compile-time, the user can
set tolerances, solver strategies, and matrix preconditioners at
run-time (Balay, et al, 2012).

Element run-time options are set using the Flags tag. For the case
specified in Fig. 4, the option to plot the cable profile for all three
elements is selected. In this example, the input file illustrates a desire
to solve the mooring system depicted in Fig. 1(b) with a predefined
vertical force of V = 500000 N applied to node 3 and 4, but an
undetermined length of line for elements 2 and 3. The total force
applied to node 2 (the node binding the three elements together)
must sum to zero in the three directions, so its XY Z displacement
is solved. The numerical values following a ‘#’ symbol are indicative
of a user-supplied initial guess. At the element level, the unstretched
lengths for elements 2 and 3 are iterated, as identified by the flag
preceding UnstrLen. The cable weight per unit length is calculated
using:

W = gA (RhoInAir− ρwater) (17)

where A = π Diam2

4
. The unknowns listed in the MAP input file in

Fig. 4 are solved with the following solution achieved at convergence:

• Node 1: FX = 158079 N, FY = 0 N, FZ = 0 N
• Node 2: X = 64.012 m, Y = 0.000 m, Z = −115.425 m
• Node 3: FX = −202389 N, FY = 91970 N

• Node 4: FX = −202389 N, FY = −91970 N
• Element 2 & 3: L = 115.9 m

--------------- LINE DICTIONARY -------------------------
LineType Diam RhoInAir E CB
(-) (m) (kg/m^3) (N/m^2) (-)
steel 0.25 6500 200E9 1.0
nylon 0.30 1400 14E9 1.0
--------------- NODE PROPERTIES -------------------------
Node Type X Y Z M B FX FY FZ
(-) (-) (m) (m) (m) (kg) (m^3) (N) (N) (N)
1 Fix 400 0 -350 0 0 # # #
2 Connect #90 #0 #-80 0 0 0 0 0
3 Vessel 20 20 -10 0 0 # # 500000
4 Vessel 20 -20 -10 0 0 # # 500000
--------------- LINE PROPERTIES -------------------------
Element LineType UnstrLen NodeAnch NodeFair Flags
(-) (-) (m) (-) (-) (-)
1 steel 450 1 2 plot
2 nylon #90 2 3 plot
3 nylon #90 2 4 plot
--------------- SOLVER OPTIONS---------------------------
(-)
-snes_type tr
-snes_max_it 500
-pc_type svd
-ksp_type tfqmr
-snes_atol 1e-6
-snes_rtol 1e-6
-snes_stol 1e-6

Fig. 4: The parameters specified in this MAP input file are
consistent with the mooring profile illustrated in Fig. 1(b).

--------------- LINE DICTIONARY -----------------------
LineType Diam RhoInAir E CB
(-) (m) (kg/m^3) (N/m 2) (-)
steel 0.25 7000 200E9 1.0
--------------- NODE PROPERTIES -----------------------
Node Type X Y Z M B FX FY FZ
(-) (-) (m) (m) (m) (kg) (m^3) (N) (N) (N)
1 fix 325 0 -350 0 0 # # #
2 connect #288 #0 #-311 0 0 0 0 0
3 connect #252 #0 #-272 0 0 0 0 0
4 connect #216 #0 #-233 0 0 0 0 0
5 connect #180 #0 #-194 0 0 0 0 0
6 connect #144 #0 #-155 0 0 0 0 0
7 connect #108 #0 #-116 0 0 0 0 0
8 connect #72 #0 #-77 0 0 0 0 0
9 connect #36 #0 #-38 0 0 0 0 0
10 fix 0 0 0 0 0 # # #
--------------- LINE PROPERTIES -----------------------
Element LineType UnstrLen NodeAnch NodeFair Flags
(-) (-) (m) (-) (-) (-)
1 steel 55.55 1 2 x_force z_force
2 steel 55.55 2 3 x_force z_force
3 steel 55.55 3 4 x_force z_force
4 steel 55.55 4 5 x_force z_force
5 steel 55.55 5 6 x_force z_force
6 steel 55.55 6 7 x_force z_force
7 steel 55.55 7 8 x_force z_force
8 steel 55.55 8 9 x_force z_force
9 steel 55.60 9 10 x_force z_force
--------------- SOLVER OPTIONS-------------------------
Option
(-)
-snes_type ls
-snes_max_it 500
-pc_type svd
-ksp_type gmres
-snes_atol 1e-6
-snes_rtol 1e-6
-snes_stol 1e-6

Fig. 5: Input deck for a multisegmented, single-line system. The
line is suspended between l = 325 and h = −350 meters. The

element option flags x_force and z_force will output the X
and Z fairlead force relative to the global reference frame. The X
and Z displacements for the in-between nodes are estimated to be
evenly separated between 0− 325 m and 0− 350 m, respectively.
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Fig. 6: A multisegmented presentation of a single-line mooring.

EXAMPLES

Multisegment, Single-Line System

An example of a single, homogeneous cable suspended between two
points is considered. The line has the following properties:

• EA = 9.817× 1010 N

• L = 500 m

• l = 325 m

• h = −350 m

• W = 292.8 N/m

Because the cable is freely hanging between two points, Eqs. 3a∼3b
are simultaneously solved to find the fairlead forces H and V . The
exact solution for a single-line suspended between the two points
l and h amounts to H = 615, 677 N and V = 1, 505, 124 N by
solving the two equations simultaneously.

To check against MSQS model’s accuracy, an identical line is
assembled in MAP, except it is implemented as a multisegmented
system with nine elements connected in series. The first element in
the mooring line is suspended at [l , 0 , −h]T , and the last element at
[0 , 0 , 0]T , with sum lengths of all elements equal to 500 meters.
The profile generated by MAP is pictured in Fig. 6, where each
circular point along the line identifies a node. The fairlead force at the
upper element is recorded as H9 = 615, 456 N and V9 = 1, 504, 890
N, which agrees with the exact solution handled using Eqs. 3a∼3b.
The fairlead tension found with MSQS line are within 0.035% of the
exact analytical solution for a single-line.

MAP can output the fairlead tension along the line Te(s) as well as
the fairlead force in XY Z global coordinates. As a further check,
the researchers compared Te(s) for the single-line system with the
horizontal H and vertical V force on all elements for the discretized
system in Fig. 6. As shown in Fig. 5, the X and Z fairlead forces are
written to the MAP summary text file by raising the x_force and
z_force element flag. A summary of these findings is presented in
Table 1 and agrees with the single-line analytical solution.

An Elaborate Multiline System

A more elaborate example is considered in this next numerical
exercise. This case is devised to incorporate several elements strung

Table 1: Comparison of line tensions along a single-line element
compared to the multisegmented presented in Fig. 6. The solution for
Te(s) is the exact solution derived analytically for a single-line using
Eq. 4. The magnitude of the vertical and horizontal fairlead force
for the multisegmented system is calculated to find the equivalent
mooring line tension Te.

Element Te(s), [N] ‖Hi + Vi‖, [N] % Difference
(exact solution) (multisegmented solution)

1, s = 55.55 655, 966 655, 673 0.045
2, s = 111.10 726, 777 726, 449 0.045
3, s = 166.65 822, 934 822, 582 0.043
4, s = 222.20 936, 663 936, 294 0.039
5, s = 277.75 1, 062, 335 1, 061, 952 0.036
6, s = 333.30 1, 196, 193 1, 195, 797 0.033
7, s = 388.85 1, 335, 778 1, 335, 370 0.031
8, s = 444.40 1, 479, 469 1, 479, 048 0.028
9, s = 500.00 1, 626, 178 1, 625, 879 0.018

between other cables, including one node upheld in the water column
by a buoyancy tank with 100 m3 of displaced volume. The system
profile achieved at convergence is illustrated in Fig. 7. This example
is particularly challenging to solve from a numerical computation
perspective because the combination of equations needing to be
simultaneously solved all have different orders of magnitude. This
compels the Jacobian matrix to be 1) nonsymmetric and 2) to
approach singularity. In particular, the ensemble of lines extending
beyond their unstretched length L (elements 2, 3, 5, and 6), elements
in contact with the seabed (elements 1, 4, and 9), and elements
forming a classic catenary profile (elements 7 and 8), speak to this
difficulty. By selecting appropriate solver options – in this case, a
trust region nonlinear solver and the generalized minimal residual
method (GMRES) iterative technique (Saad and Schultz, 1986) – the
solution is found quickly. The input file used to generate the profile
is shown in Fig. 8.

To verify the mooring array profile generated by MAP, the forces on
each individual mooring line are solved using Eqs. 3a∼3b and Eqs.
8a∼8b. That is, H and V are solved for one line alone based on the
element l and h displacements as determined by MAP. A summary of
the results delivered by MAP are shown in Table 2, and it agrees with
the more precise single-line analytical solution. Because the mooring
line is symmetric about the XZ plane at Y = −50 m, some elements
share the same forces. As a further check, the sum forces on node
nine can be verified by equating it with the user-defined buoyancy:

V9 + V7 + V8 = ρgB (18)

The node buoyancy is:

ρgB = 1025× 9.81× 100 = 1, 005, 525 N (19)

The difference between the left-hand side and right-hand side of Eq.
18 amounts to 2 N. Similarly, the sum forces for nodes 2 and 6 can
be solved to check if the total force sums to zero. The vertical anchor
force in element 7 is VA7 = 171458 N. For elements 2 and 3:

• VA2 = 950707 N
• VA3 = 290128 N

V1 + VA2 − VA3 − VA7 = 0 N (20)

Symmetry rules that dictate results in Eq. 20 are identical for node
6.
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Fig. 7: An example of an elaborate system demonstrating MAP’s
ability to handle generic geometries.

--------------- LINE DICTIONARY -------------------
LineType Diam RhoInAir E CB
(-) (m) (kg/m^3) (N/m^2) (-)
steel 0.25 6500 200E9 1.0
nylon 0.35 1400 14E9 1.0
--------------- NODE PROPERTIES -------------------
Node Type X Y Z M B FX FY FZ
(-) (-) (m) (m) (m) (kg) (m^3) (N) (N) (N)
1 fix -400 0 -350 0 0 # # #
2 Connect #-90 #0 #-80 0 0 0 0 0
3 vessel -10 10 -10 0 0 # # #
4 vessel -10 -10 -10 0 0 # # #
5 fix -400 -100 -350 0 0 # # #
6 Connect #-90 #-100 #-80 0 0 0 0 0
7 vessel -10 -90 -10 0 0 # # #
8 vessel -10 -110 -10 0 0 # # #
9 connect #-90 #-55 #-80 0 100 0 0 0
10 fix 250 -50 -350 0 0 # # #
--------------- LINE PROPERTIES -------------------
Element LineType UnstrLen NodeAnch NodeFair Flags
(-) (-) (m) (-) (-) (-)
1 steel 480 1 2 plot
2 nylon 90 2 3 plot
3 nylon 90 2 4 plot
4 steel 480 5 6 plot
5 nylon 90 6 7 plot
6 nylon 90 6 8 plot
7 steel 100 2 9 plot
8 steel 100 9 6 plot
9 steel 350 10 9 plot
--------------- SOLVER OPTIONS---------------------
Option
(-)
-snes_type tr
-pc_type svd
-ksp_type gmres

Fig. 8: MAP input file for the profile pictured in Fig. 7.

Table 2: Comparison of line tensions along each single-line element
as pictured in Fig. 7. The solution for Te(s) is the exact solution
derived analytically from Eq. 4. The magnitude of the vertical and
horizontal fairlead force for the multisegmented system must be
calculated to find the equivalent mooring line tension Te.

Element l h H & V H & V
MAP Solution Eqs. 3a∼3b or

Eqs. 8a∼8a
1/4 363.27 254.60 H = 516, 315 H = 516, 309

V = 1, 069, 377 V = 1, 069, 374
2/6 28.61 85.40 H = 323, 831 H = 324, 002

V = 982, 562 V = 983, 063
3/5 28.46 85.40 H = 101, 892 H = 102, 376

V = 321, 982 V = 323, 425
7/8 88.02 −20.13 H = 143, 286 H = 143, 282

V = 92, 188 V = 92, 190
9 211.13 234.47 H = 236, 345 H = 219, 487

V = 821, 147 V = 808, 359

CONCLUSION

This paper defines the theory used in assembling the Mooring
Analysis Program’s (MAP’s) multisegmented, quasi-static (MSQS)
solver. The structure of the nonlinear equations being solved is based
on the earlier work presented by Peyrot and Goulois (1979). The new
framework created in this paper differs from other works in that: 1)
a closed-form analytical solution for a cable touching the seabed
has been implemented, 2) the MSQS package is integrated with
the Portable, Extensible Toolkit for Scientific Computation (PETSc)
numerical library to better handle ill-conditioned problems, and 3)
the model avoids a priori assumptions regarding the known boundary
conditions or model geometry, thereby allowing generic problems to
be solved. MAP was developed adhering to NREL’s FAST program
framework to allow a varying degree of modeling fidelity and code
coupling options. In addition, MAP is callable in Python; however,
this paper does not demonstrate this feature. Refer to Masciola and
Jonkman (forthcoming) for a more in-depth treatment of the MSQS
usage.

Through the creation of the MSQS solver, the groundwork was
formed to develop a finite-element component to MAP to model
cable dynamics. The premise taken in developing this tool was to
fully develop the MSQS using the essential building blocks (such
as nodes and elements) needed for a finite-element analysis (FEA)
cable program. Once the MAP program interface is defined, the FEA
component to MAP can be developed by modifying the program
data structure definitions in the MSQS module. Built from the
requirements of an FEA model, the MSQS model also requires nodes
and elements to form the cable geometry, boundary conditions, and
restoring forces. The primary difference between the MSQS model
and an FEA solution are: 1) the forces operating on the nodes, and 2)
the FEA models have differential equations that need to be integrated.
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