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Abstract

This work addresses the problem of stabilizing feedback design for strongly nonlinear systems, i.e.

systems whose linearization about their equilibria is uncontrollable and for which there does not exist

a smooth or even continuous stabilizer. The construction of stabilizing controls for these systems

is often further complicated by the presence of a drift term in the differential equation describing

their dynamics. This research also considers the development of stabilizing feedback laws for bilinear

systems. The relevance of bilinear systems is due to the fact that they result from the linearization

of certain nonlinear control systems with respect to the state only. The proposed methodologies

yield time-varying feedback controls whose construction is based on Lie algebraic techniques.

Two systematic approaches to the construction of time-varying feedback laws for nonlinear systems

with drift are proposed: (1) a continuous time-varying control strategy, partially drawing on the

ideas by Coron and Pomet for driftless systems, and (2) a computationally feasible discontinuous

time-varying feedback approach based on Lie algebraic techniques.

The continuous time-varying control law is a combination of a periodic time-varying control pro-

viding for critical stabilization with an asymptotically stabilizing feedback “correction” term. The

periodic control is obtained through the solution of an open-loop, finite horizon, control problem

on the associated Lie group which is posed as a trajectory interception problem in the logarithmic

coordinates of flows for the system and its Lie algebraic extension. The correction term is calculated

to be a control which decreases a Lyapunov function whose level sets contain the periodic orbits of

the system stabilized by the time-periodic feedback.

The control strategy proposed in the second stabilization approach comprises two modes. In one

mode the control is a smooth static state feedback that guarantees an instantaneous decrease of a
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chosen control Lyapunov function. This mode is applied whenever there exists a smooth control.

The other mode considers a time-varying piece-wise constant feedback control which decreases the

control Lyapunov function on average, after a finite period of time. The synthesis of the smooth state

feedback is based on the standard Lyapunov approach, thus the emphasis is put on the construction

of the time-varying discontinuous control. The Lie algebraic control is composed of a sequence of

constant controls whose values are calculated as the solution to a non-linear programming problem.

Two approaches to the formulation of the non-linear programming problem are proposed. In the first

approach, the formulation of the non-linear programming problem results from the direct application

of the Campbell-Baker-Hausdorff formula for composition of flows, while in the second approach,

the non-linear programming problem is formulated by posing the original control problem in terms

of a relaxed control problem in the associated logarithmic coordinates.

These approaches are general and applicable to a large class of nilpotent systems which do not lend

themselves to controllable linearization (be it through state-feedback transformations, or else simply

around some operating points).

Concerning the stabilization of homogeneous bilinear systems with unstable drift, two control strate-

gies are proposed. The first method relies on the above mentioned trajectory interception approach,

employed in the construction of critically stabilizing controls. However, the trajectory interception

problem is now used to generate controls that track an exponentially stable Lie algebraic extension

of the system. The second stabilization method can be considered to be a type of sliding mode

control, in which the reaching phase feedback law exploits the ideas proposed in the methodology

to discontinuous time-varying feedback design.

The computationally feasible approaches proposed in this research necessitated the development

of a set of software tools for symbolic manipulation of expressions with Lie brackets. The novel

software package constitutes a contribution towards the automated construction of Philip Hall bases,

the simplification of any Lie bracket expression, the composition of flows via the Campbell-Baker-

Hausdorff formula, the derivation of the Wei-Norman equations for the logarithmic coordinates, and

other Lie algebraic manipulations.
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Conditions under which the constructed feedback laws render the corresponding systems asymp-

totically stable are analyzed. The applicability and effectiveness of the proposed approaches is

demonstrated through computer simulations of several nonlinear systems, including well known

nonholonomic driftless systems, such as the kinematic models of a unicycle and a front-wheel drive

car, and systems with drift like the dynamic model of a satellite in the challenging actuator failure

condition.
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Résumé

Ce travail adresse le problème du design de rétroaction stabilisatrice pour les systèmes fortement

non linéaires, i.e. les systèmes pour lesquelles la linéarisation autour du point d’équilibre est non

contrôlable et pour lesquelles il n’existe pas de stabilisateur lisse ou même continu. La construction

d’un controlleur stable pour ces systèmes est souvent compliquée par la présence d’un terme de

dérive dans l’équation différentielle décrivant leurs dynamiques. Cette recherche considère aussi le

développement de loi de rétroaction stabilisatrice pour les systèmes bilinéaires. La pertinence des

systèmes bilinéaires provient du fait qu’ils sont le résultat de la linéarisation (par rapport à l’état

seulement) de certains systèmes de contrôle non linéaires. Les méthodologies proposées conduisent

à des commandes d’asservissement instationnaires dont la construction est basée sur des techniques

d’algèbre de Lie.

Deux approches systématiques sont proposées pour la construction de loi d’asservissement instation-

naire pour les systèmes non linéaires avec dérive: (1) une stratégie de contrôle continu instation-

naire, empruntant partiellement aux idées sur les systèmes sans dérive de Coron et Pomet, et (2)

une approche d’asservissement discontinu instationnaire réalisable numériquement et basée sur des

techniques d’algèbre de Lie.

La loi continue de contrôle instationnaire est la combinaison d’une commande instationnaire pe-

riodique établissant une stabilisation critique et d’un terme de rétroaction stabilisatrice asympto-

tique. La commande périodique est obtenue par la solution d’une boucle ouverte, à horizon fini, d’un

problème d’asservissement sur le groupe de Lie associé; ce dernier étant posé comme un problème

d’interception de trajectoire dans les coordonnées logarithmiques de flux du système et de son algèbre

de Lie étendu. Le terme de correction est calculé comme étant une commande décroissant une
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fonction de Lyapunov dont les ensembles de niveau contiennent les orbites périodiques du système

stabilisé par la rétroaction périodique dans le temps.

Les stratégies d’asservissement proposée dans la seconde approche de stabilisation comprennent

deux modes. Dans l’un des modes, la commande est une rétroaction statique lisse guarantissant une

décroissance instantanée de la fonction de Lyapunov sélectionnée. Ce mode est appliqué lorsqu’il

existe une commande lisse. L’autre mode considère une commande de rétroaction constante par

morceaux et instationnaire décroissant en moyenne la fonction de Lyapunov sur une période de

temps fini. La synthèse de retour d’état, lisse, est basée sur l’approche standard de Lyapunov. Ainsi,

l’emphase est mise sur la construction de la commande discontinue instationnaire. La commande,

par algèbre de Lie, est composée d’une séquence de commande constante dont la valeur est calculée

comme étant la solution d’un problème de programmation non linéaire. Deux approches pour la

formulation du problème de programmation non linéaire sont proposées. Dans la première approche,

la formulation du problème de programmation non linéaire provient de l’application directe de la

formule de Campbell-Baker-Hausdorff pour la composition de flux. Dans la seconde approche, le

problème de programmation non linéaire est formulé en posant le problème original d’asservissement

en terme d’un problème d’asservissement relaché dans les coordonnées logarithmiques associées.

Ces approches sont générales et applicables à une large classe de systèmes nilpotents qui ne se

prêtent pas à une linéarisation contrôlable (que ce soit par des transformations de retour d’état ou

simplement autour de points d’opération).

Concernant la stabilisation de systèmes bilinéaires homogènes avec dérive instable, deux stratégies

de contrôle sont proposées. La première méthode repose sur l’approche d’interception de trajectoire

mentionnée plus haut; celle employée dans la construction de commandes de stabilisation critique.

Toutefois, le problème d’interception de trajectoire est maintenant utilisé pour générer des comman-

des suivant un système exponentiellement stable correspondant à l’extension du système original par

son algèbre de Lie. La seconde méthode de stabilisation peut être considérer un type de commande

par mode glissant dans lequel la phase d’atteinte de la loi de rétroaction exploite les idées proposées

dans la méthodologie du design d’asservissement discontinu instationnaire.
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Les approches numériquements réalisables proposées dans cette recherche nécessitent le développement

d’un ensemble d’outils logiciels pour la manipulation symbolique d’expressions avec des crochets de

Lie. Ce nouveau progiciel constitut une contribution vers la construction automatique des bases de

Philip Hall, la simplification d’expressions avec des crochets de Lie (qu’elle quelles soit), la composi-

tion de flux via la formule de Campbell-Baker-Hausdorff, la dérivation des équations de Wei-Norman

pour les coordonnées logarithmique, et pour la manipulation de d’autres expresions en algèbre de

Lie.

Les conditions sous lesquelles la construction de loi de rétroaction rendent les systèmes correspon-

dant asymptotiquement stable sont analysées. L’applicabilité et l’efficacité des approches proposées

sont démontrées par modèle informatique de plusieurs systèmes non linéaires, incluant des systèmes

nonholonomiques sans dérive bien connus tels les modèles cinématiques d’un unicycle et d’une auto-

mobile avec traction avant, et des systèmes avec dérives comme le modèle dynamique d’un satellite

en présence d’un actuateur défaillant.
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Claims of Originality

The following novel contributions are made in this dissertation:

• The development of a method for the synthesis of continuous time-varying stabilizing

controls, [P2, P3]. The approach is general and applicable to a large class of nilpotent

systems with drift that do not lend themselves to successful linearization (be it through

state-feedback transformations, or else simply around some operating points).

• The development of two approaches based on Lie algebraic techniques and optimiza-

tion for the construction of discontinuous time-varying stabilizing feedback controls, [P5,

P6, P7, P8]. The proposed methodologies are systematic, computationally feasible, and

applicable to a general class of nonlinear systems with drift.

• The development of two Lie algebraic approaches for the synthesis of stabilizing feedback

controls for homogeneous bilinear systems, [P1, P4]. Unlike existing methods, the pro-

posed approaches consider systems with unstable drift that cannot be stabilized by any

constant control.

• The derivation of sufficient conditions for the existence of the proposed feedback laws.

• The implementation of a software package for symbolic Lie algebraic computations, [P9].

This novel software tool has proved to be very helpful in the construction of the feedback

control laws mentioned above. Existing software for the manipulation of Lie algebraic

expressions is very specialized and does not provide any of the functionality found in the

implemented package.

This research work has been partially reported in the following conference proceedings and journals:
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Jérôme Freguin, Melita Hadžagić, Minyi Huang, Hugo Levasseur, Kourosh Parsa, Iakov Romanovski,

Harkirat Sahambi, Alessio Salerno and Shahid Shaikh for their encouragement, support and helpful

advice, both technical and extra-curricular. I am especially thankful to Dany Dionne for translating

and typing the abstract of the thesis into French, and to Melita Hadžagić and Shahid Shaikh for
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Montréal, Québec, 27 February 2003

xvi



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
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CHAPTER 1

Introduction

This work addresses the problem of stabilizing feedback design for strongly nonlinear systems, i.e.

systems whose linearization about their equilibria is uncontrollable and for which there does not exist

a smooth or even continuous stabilizer. This class of systems includes most controllable driftless

systems, such as nonholonomic systems with kinematic constraints (e.g. wheeled robots and carts),

as well as some systems with drift, like most nonholonomic systems with acceleration constraints and

other underactuated dynamical systems (e.g. satellites, underwater vehicles). Hence, the practical

relevance of this research.

In this thesis the emphasis is put on systems with drift; see equation (1.1). From a more theoretical

perspective, this work is encouraged by the fact that relatively few general methods exist for the

stabilization of systems with a drift term in the differential equation describing their dynamics. So

far, most control strategies have been derived exploiting the specific algebraic structure of the model

representation, and have thus resulted in feedback laws of limited generality.

If the drift term is unstable, the construction of stabilizing controls becomes a difficult and challeng-

ing problem. Moreover, strong controllability assumptions are required in contrast to the case of

driftless systems in which the standard Lie algebra rank condition does provide a conclusive answer

concerning their controllability. These features, as well as other difficulties arising in the control of

strongly nonlinear systems with drift, are explained in more detail in Section 1.4.

The controllability and stabilizability of nonlinear systems has been considerably studied by many

authors [24, 26, 18, 27, 20, 19, 22, 37, 15, 39, 23, 10, 9, 28]; see also the survey works [35,

11, 29]. The fact that for many controllable systems no continuous stabilizing feedback law exists
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was first pointed out in [37]. It was shown in [32] that there might exist a dynamic stabilizer for

some systems for which there does not exist a continuous feedback, and that in general not even

the dynamic stabilizer can be defined continuously. Later, a condition that allows one to verify the

non-existence of smooth (locally) stabilizing feedback laws for a large class of controllable systems,

known as Brockett’s condition, was given in [15] (see also Theorem 1.1 on p. 10). A stronger

necessary condition was established in [16]. In [41], it was shown that Brockett’s condition persists

when stabilizability by time-invariant continuous feedback is considered, while in [30], the condition

is shown to persist even when the feedback laws are in the class of discontinuous controls. It is also

well known that optimal control problems often result in solutions that can only be implemented in

terms of discontinuous laws. These results have naturally led to the consideration in the existing

literature of mainly two types of control strategies:

• Time-varying feedback.

• Discontinuous feedback.

The application of these feedback laws is also considered here in the context of the general stabi-

lization problem stated in the next section. Following the problem definition, a summary of the

motivation to this research is presented in Section 1.2. To further illustrate the practical relevance

of systems with drift, some examples of real systems whose model equation has a drift term are

presented in Section 1.3. The difficulties arising in the control of this class of systems and the draw-

backs of the existing stabilization approaches are explained in sections 1.4 and 1.5. In the light of

the discussion in the previous sections, the research objective is stated in Section 1.6. This chapter

is concluded with a brief description of the research contributions, an outline of the thesis, and the

claims of originality of contributions, in sections 1.7, 1.8 and 1.9, respectively.

The notation and mathematical preliminaries are found in Appendix A on page 199, and follow the

standard and basic references indicated therein. The reader is assumed to have some familiarity

with the mathematical background presented in Appendix A and will be referred to the appendices

where deemed convenient.
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1.2. MOTIVATION

1.1. Problem Definition

This work addresses the problem of stabilizing feedback design for systems whose dynamics on R
n

is modeled by nonlinear ordinary differential equations of the form:

Σ : ẋ = f0(x) +

m∑

i=1

fi(x)ui
def
= fu(x) (1.1)

where fi : R
n → R

n, i = 0, . . . ,m, are real analytic vector fields, and ui ∈ R, i = 1, 2, . . . ,m,

are the control inputs, with m < n. The vector field f0 is the so-called drift vector field, while fi,

i = 1, . . . ,m, are the input vector fields.

This research is also relevant to the development of stabilizing control laws for bilinear systems for

which fi(x) = Aix, with Ai ∈ R
n×n, are linear vector fields. Bilinear systems are of interest since

they correspond to the linearization of (1.1) with respect to the state only.

1.2. Motivation

The motivation to this research is provided by observing the following:

• The existence of relatively few general methods for stabilization of nonlinear systems with

drift.

• The fact that strongly nonlinear systems often result in uncontrollable linearizations

about their equilibria and do not satisfy the necessary conditions for smooth [15] or even

continuous [41] stabilizability.

• The lack of computationally feasible methods for the construction of discontinuous feed-

back and the computational complexity of the feedback laws based on Lie algebraic ap-

proaches developed so far.

• The lack of constructive approaches to stabilization of general (higher order n > 2) multi-

input bilinear systems for which the matrix A0 +
∑m
i=1 uiAi is unstable for all choices of

constant inputs ui.

3
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1.3. Some Examples of Systems with Drift

Most real world dynamical systems have a drift term in the equations that characterize them. As

a matter of fact, most systems can be locally approximated by a linear system in terms of the well

known differential equation ẋ = Ax + Bu, which is an equation with drift. However, for strongly

nonlinear systems a linear approximation is not enough to describe their dynamics, or it simply limits

the derivation of global stabilization laws. Thus the richness of a nonlinear model is often desirable,

despite analysis difficulties it imposes, and in some cases it is essential to the derivation of adequate

control laws. Some examples of strongly nonlinear systems which motivate the development of the

proposed approaches are presented below.

1.3.1. Underactuated Mechanical Systems

Classical examples are the inverted pendulum and its relatives, such as a unicycle or the Ac-

robot [91, 90]. Other examples include underactuated robotic manipulators, vertical takeoff and

landing aircrafts, underactuated hovercrafts and underactuated submersible vessels; see [88] for

additional references. Most of these systems are described by the following set of Lagrange equa-

tions [88]:

M11(q)q̈a +M12(q)q̈b + F1(q, q̇) = B(q)u

(1.2)

M21(q)q̈a +M22(q)q̈b + F2(q, q̇) = 0

Here (q, q̇) = (q1, . . . , qn, q̇1, . . . , q̇n) denote the local coordinates on the tangent bundle of some

configuration manifold Q on which the dynamics of the system is defined. Without loss of generality

it is assumed that the generalized coordinates q = (q1, . . . , qm, qm+1, . . . , qn) = (qa, qb), where the

components of qa represent the actuated degrees of freedom, while those of qb represent the unactu-

ated coordinates. The matrices Mij(q), i, j = 1, 2, correspond to the components of an n×n inertia

matrix which is symmetric and positive definite for all q ∈ Q, B(q) ∈ R
m×m is invertible for all

q ∈ Q, and F1(q, q̇) ∈ R
m. The vectors F2(q, q̇) ∈ R

n−m represent Coriolis and dynamic damping

terms. The equations (1.2) can be rewritten in the general form of a system with drift (1.1), and

partially linearized by state-feedback, see [88] for details.

4
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Models of nonholonomic dynamic systems may also be expressed in terms of a similar set of equations,

see [59], using the classical approach for the formulation of constrained dynamics introduced in [178]:

M(q)q̈ + F (q, q̇) = JT (q)λ+B(q)u

(1.3)

J(q)q̇ = 0

where λ ∈ R
m is a vector of constraint multipliers and u ∈ R

r, with r ≥ n−m, is a vector of control

inputs, and J(q) ∈ R
m×n is assumed to be full rank.

Nonholonomic systems are examples of underactuated mechanical systems. However, the general

connection between nonholonomic control systems and underactuated systems is not yet fully un-

derstood [49].

Not all underactuated systems, (1.2), result in uncontrollable linearizations around their operating

points or exhibit a dynamics which cannot be linearized by state-feedback transformations. However,

when there does not exist any kind of linearization, the stabilization is well recognized to be a difficult

problem, such as is that of the rigid body in space described next.

1.3.2. Rigid Body Systems in Space

Although the problem of stabilization of fully actuated satellites and spacecrafts has been completely

solved under different conditions, the stabilization of rigid bodies in space: (a) that are subject to

certain disturbances, (b) that must be optimally controlled, or (c) that are underactuated, still

constitutes an active area of research. The attitude and angular velocities of an underactuated rigid

body in space can be modelled by the following set of equations:


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where a1 = (J2 − J3)/J1, a2 = (J3 − J1)/J2, a3 = (J1 − J2)/J3, and J1, J2, J3 are the principal

inertia moments about a set of orthonormal axes C
def
= {xc, yc, zc} fixed to the rigid body, with the

origin at its center of mass, (see Fig. 1.1 (a)). It is assumed that J1 6= J2 (c3 is not an axis of

symmetry). The state variables x1, x2 and x3 correspond to the orientation of the rigid body locally

expressed in terms of the standard Euler angles, ψ, θ, and φ of consecutive clockwise rotations about

the orthonormal axes zc, yc and xc, respectively (see Fig. 1.1 (b)). The state variables x4, x5 and x6

are the absolute angular velocities ω1, ω2 and ω3 measured with respect to C. The control inputs

to this system are the torques τ1 and τ2 applied about the axes c1 and c2, respectively. For details

on the model derivation see, for example, [198], and references therein.

xc

y0x0

yc

zc

z0

x’=xc

y0x’’
y’’=y’x0

yc

z’zc

z’’=z0

(a) The global coordinate system
{x0, y0, z0} and the body coordi-
nate system {xc, yc, zc}.

(b) Set of rotations in standard Euler an-
gles ψ, θ and φ about the axis z0, y

′′

c

and x′c, respectively.

Figure 1.1. Rigid body in space: the attitude of the rigid body is described by the state
variables x1, x2, x3 that correspond to the Euler angles ψ, θ, φ of rotation about the
principal axes of the rigid body zc, yc, xc, respectively. The angular velocities x4, x5, x6

are also measured with respect to the axes zc, yc, xc.
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1.3.3. Bilinear Systems

Bilinear systems homogeneous in the state evolving on R
n are described by the equation:

ẋ = A0x+

m∑

i=1

Aixui

ΣBS : (1.5)

= (A0 +

m∑

i=1

Aiui)

︸ ︷︷ ︸

A(u)

x

where Ai ∈ R
n×n, i = 0, . . . ,m, are real valued matrices, x ∈ R

n is the state vector, and ui ∈ R,

i = 1, 2, . . . ,m, are the control inputs, with m < n. The vector field A0x corresponds in this case to

the drift term, while Aix, i = 1, . . . ,m, are the input vector fields.

Bilinear systems have received significant attention in the literature as a natural generalization of

linear systems theory. However, it has already been suggested by Brockett in [14] that bilinear

systems should be studied in the context of the more general class of nonlinear systems. Their

strongly nonlinear nature has been concealed by their simple almost linear equation. In fact, for

a constant input, equation (1.5) represents a linear system. It can easily be seen from the second

equation in (1.5) that for constant inputs the system is a variable structure linear system, whose

dynamics strongly depends on the control parameter u as the Jacobian with respect to the state is

given by A(u0) for a nominal control value u0.

On the other hand, bilinear systems can easily be turned into highly nonlinear systems depending on

the class of input functions considered. For instance, while a linear system with linear state feedback

is still a linear system, a bilinear system with such a simple feedback law becomes a quadratic system,

which can even exhibit chaotic dynamics. An example of such situation is provided by the chaotic

third order Lorenz system, which may be regarded as a bilinear system with matrices [116]:
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with σ > 0, ρ > 0, β > 0 and state feedback:

u1(x) = x1

It is well known, see for example [146], that under particular values of σ, ρ, β, the Lorenz system has

a chaotic behavior. In view of this fact, high-dimensional (n ≥ 3) bilinear systems may also exhibit

complex dynamics, which is not present in linear systems.

Due to their characteristics, bilinear systems constitute suitable description of diverse processes in

which the input exerts a multiplicative action on the state, among them:

(i) Biological [133], chemical or physical birth-death processes, such as population dynamics,

molecular reactions and neutron population in fission processes [130].

(ii) Dynamics of cars with frictional braking systems [130].

(iii) Physiological and ecological processes [130].

(iv) Economic systems [138].

In most of these processes the state is regulated by the amount of nutrients, enzymes, reactants or

particles in biological, chemical or particle systems, respectively, or by the interest rates in the case

of economic systems. Additional references to different applications of bilinear systems are found

in [137, 134, 136] and in the recent survey [132].

Another reason to consider bilinear systems is that they often result from the linearization of certain

nonlinear systems with respect to the state only [120, 132].

1.4. Important Features of Strongly Nonlinear Systems with Drift and

Difficulties Arising in their Control

The main difficulty of steering systems with drift arises from the fact that, in the most general case

of non-recurrent or unstable drift, the system motion along the drift vector field f0 needs to be

counteracted by enforcing system motions along adequately chosen Lie bracket vector fields1 in the

system’s underlying controllability Lie algebra L(F). Such indirect system motions are complex to

design for and can be achieved only through either time-varying open-loop controls or discontinuous

1This type of motions are sometimes referred to as Lie bracket motions; see explanation in Appendix B, p. 239.

8
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state feedback. To understand why this is so, the main features that characterize the class of strongly

nonlinear systems considered here are explained next.

Although the first three properties could be regarded as assumptions about the system, it is impor-

tant here to stress them as features since they imply that feedback techniques conceived for linear

systems cannot be applied, and in this sense, the system is less linear than other nonlinear systems

which are linearizable by state feedback transformations or simply around some operating points.

Together with the first three features, the fourth feature is central in the qualitative characterization

of the degree of strong nonlinearity the system may exhibit, as it implies that some systems may

only have stable closed-loops that are not everywhere smooth, and hence, not locally linear in some

neighborhoods of the state space.

The main features of the class of systems considered here are:

(i) Deficiency in the Number of Controls with Respect to the Dimension of the

Space.

The number m of control variables ui, i = 1, . . . ,m, is smaller than the number n of state

variables xi, i = 1, . . . , n.

(ii) Unstable Drift Term.

The drift term f0 is unstable in the sense that the trajectories of the uncontrolled system

obtained by setting all ui = 0 are unstable. It is assumed that at least the origin is an

equilibrium point of (1.1) with zero control effort, i.e. f(0, 0) = 0.

(iii) Uncontrollable Linearization and Not Feedback Linearizable.

The linearization of (1.1) does not satisfy Kalman’s controllability condition and there

does not exist any linearizing state feedback.

(iv) Failure to Satisfy Brockett’s Necessary Condition for Smooth Static Stabiliz-

ability.

9



CHAPTER 1. INTRODUCTION

A strongly nonlinear system of the form (1.1) does not satisfy Brockett’s necessary con-

dition for the existence of continuously differentiable or even continuous time invariant

control laws.

Theorem 1.1. - Brockett’s Necessary Condition for Smooth Static Stabiliz-

ability, [15]. Consider the control system ẋ = f(x, u) with f(xe, 0) = 0 and f : x ∈

R
n × u ∈ R

m → f(x, u) ∈ R
n continuously differentiable (denoted by f ∈ C1) in the

neighborhood of (xe, 0), then the system is smoothly stabilizable (in the sense that there

exists a feedback u ∈ C1 : R
n → R

m that renders (xe, 0) asymptotically stable), if the

following conditions are satisfied:

(a) The linearized system does not have uncontrollable modes associated with eigenvalues

with positive real part.

(b) The system is locally controllable in the sense that there exists a neighborhood N of

(xe, 0) such that for each x0 ∈ N there exists a control ux0
: R

n → R
m defined on

[0,∞) such that this control steers the solution of ẋ = f(x, ux0
) from x(0) = x0 at

t = 0 to x(∞) = xe at t = ∞.

(c) The image of the mapping f is onto an open set containing 0.

The chances that system (1.1) does not satisfy Brockett’s condition are certainly increased

by the previous feature, (iii), as it implies that the system is invariant with respect to

diffeomorphic state transformations, otherwise there would exist a coordinate change that

would bring the system to a form that can be stabilized by a smooth (linear) feedback.

The failure to satisfy Brockett’s condition is in fact a common characteristic exhibited by

many systems, among them, driftless systems with m < n, some underactuated systems

and most nonholonomic systems. Note that condition (c) of Theorem 1.1 implies that

system (1.1) is not smoothly stabilizable if the vector space spanned by set of vector fields

{f0, f1, . . . , fm} (notice f0 is included) is of dimension smaller than n; see [15].

(v) Non-Reversibility of the Trajectories of Systems with Drift.

The trajectories of systems with drift run backwards in time do not correspond to tra-

jectories of the system (1.1). This fact becomes clear by observing that the backward
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trajectory can be formally obtained by reversing the time with the variable change t = −s

applied to (1.1), which implies that the state of the backward system is given by

x(T ) = x(0) +

∫ T

0

−f0(x) −
m∑

i=1

fi(x)uids (1.6)

While the latter may be considered as the forward trajectory of a system without drift

and sign reversed controls, changing the sign of the right-hand side of (1.1) is not actu-

ally possible since there is no control multiplying the drift term. Thus, unlike drift-free

systems, – for which every trajectory run backwards is also a trajectory of the system –,

system (1.1) cannot be made to behave as if running backward in time.

Furthermore, it is easy to see that if f0(x) 6= 0 then the simple control v(t) = −u(t− T )

applied on an interval of time of length T does not reverse the action of the control u(t)

applied for the same amount of time over a previous interval. By “not being able to

reverse the action” it is meant that the resulting trajectory is such that x(2T −s) 6= x(s),

s ∈ [0, T ], and not even such that x(2T ) = x(0), i.e. the control v(t) does not undo the

action u(t) taking the state x(T ) back to x(0) as would occur if f0(x) = 0. To see this,

consider the states of (1.1) at time T and 2T , given by:

x(T ) = x(0) +

∫ T

0

f0(x) +

m∑

i=1

fi(x)ui(t)dt

x(2T ) = x(T ) +

∫ 2T

T

f0(x) +

m∑

i=1

fi(x)vi(t)dt

Using the above equations,

x(2T ) − x(0) =

∫ T

0

f0(x) +
m∑

i=1

fi(x)ui(t)dt+

∫ 2T

T

f0(x) +
m∑

i=1

fi(x)vi(t)dt

=

∫ 2T

0

f0(x)dt

The last equation follows after applying the change of variables t = s+ T to the integral

over the interval [T, 2T ] and because v(s + T ) = −u(s). The integral of the drift term

f0(x) is in general nonzero, and hence, x(2T ) − x(0) 6= 0. The practical implication of

the presence of a drift term is that tracking any desired trajectory or achieving a specific
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target state will be more complicated, as compared to steering any controllable driftless

system, and might not even be possible.

(vi) Lack of Controllability Results for Systems with Drift.

As opposed to driftless systems, the controllability of systems of the form (1.1) is in

general hard to establish. This is mainly due to the limitations of Chow’s theorem, (see

Appendix B on p. 239 or [14]), as it does not distinguish between positive and negative

time, i.e. the submanifold on which the solutions to (1.1) are defined may include points

which can only be reached by passing backwards along the drift vector field f0. This

means that while the reachable set from a given x0 will always be contained in certain

manifold, in general, it will be a proper subset of the manifold. Due to the lack of a

general criteria to establish the controllability of system Σ, it will be assumed that Σ

is strongly controllable. A precise definition of the type of controllability assumed here

and further comments on the existing criteria to establish some of the controllability

properties of (1.1) are given in Appendix B.

1.5. Existing Approaches Relevant to the Control of Nonlinear Systems

with Drift

The general nonlinear stabilization problem has been considered by many authors, see for in-

stance [7], the survey work by Bacciotti [11], or the earlier survey by Sontag [35] and the references

therein.

Due to the aforementioned difficulties in the control of strongly nonlinear systems, classical nonlinear

control approaches, such as feedback linearization [2] and dynamic inversion [97] cannot be applied.

Traditional methods based on the construction of a feedback control which decreases certain time-

invariant smooth Lyapunov function also fail, as smoothness or analiticity of the feedback law is often

required; see for instance [73] and references therein. The conceptual appeal and the widespread use

of the Lyapunov approach has also encouraged the consideration of non-smooth Lyapunov functions,

see [33] for some related results, although no constructive stabilization approaches are presented.

Moreover, if discontinuous controls are considered, mathematical difficulties will arise since the
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right-hand side of (1.1) will not be differentiable everywhere, thus the complex techniques developed

in [142] for the analysis of differential equations with discontinuous right-hand side and other results

from differential inclusions [34] must be employed. However, these techniques are of limited use in

most practical cases.

As opposed to the stabilization of nonlinear driftless systems, fewer control strategies have been

proposed for systems with drift that cannot be smoothly stabilized. Driftless representations often

arise in the study of nonholonomic systems, which are rather common in practical applications as

these are characterized by non-integrable velocity constraints, such as in cars, wheeled robots and

rigid bodies in space. Approaches to the stabilization of nonholonomic systems concentrate on either

discontinuous or time-varying feedback laws [180, 49], as they fail to satisfy Brockett’s condition

for smooth stabilizability. Although there exist numerous open-loop control strategies for motion

planning of nonholonomic systems, and a similar number of feedback laws which make the closed-

loop system stable (see [50] and the comprehensive survey [49]), most methods exploit model or

representation specific properties, e.g. [54, 56], or consider simple kinematics models, which do not

present all the difficulties of a complete dynamic model with drift. Thus, the ideas and approaches

applied to the control of driftless systems cannot in general be modified to yield feedback laws

that stabilize systems with drift. Some exceptions are those approaches that employ Lie algebraic

techniques and that do not rely on the particular model representation. Lie algebraic approaches to

stabilization often result in feedback design methodologies which apply to a wider or more general

class of systems, see for instance the approach proposed in [44].

The few pertinent results which directly address the stabilization problem of systems with drift that

fail to satisfy Brockett’s condition are summarized in the next sections. As earlier mentioned, such

systems can only be stabilized by either time-varying, discontinuous feedback laws or a combina-

tion of both. However, most of the approaches consider very specific systems and their particular

properties, and therefore they do not provide general control synthesis procedures applicable to the

stabilization of (1.1). Rather than classifying the control strategies as being either of time-varying

or discontinuous type, it will be more convenient to distinguish the stabilization approaches as:

• Model specific methods.
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• General methods for the synthesis of time-varying state feedback laws.

• General methods for the synthesis of discontinuous state feedback laws.

1.5.1. Model Specific Methods

The controllability and stabilizability properties of nonholonomic underactuated mechanical sys-

tems with drift is considered in [59, 88]. Paper [59] studies dynamical systems of second order

in the configuration vector with nonintegrable velocity constraints, while [88] considers the same

class of systems, but with nonintegrable acceleration relations. These papers do not present any

constructive approach, though. The controllability of a particular third order nonlinear system with

time-dependent drift and an open-loop (time-varying) control that steers the system between to

arbitrary states is addressed in [71]. Path planning for nonholonomic systems with drift in the

class of Lagrangian systems with a cyclic coordinate is considered in [66] using open-loop bang-bang

controls, and an exponentially stabilizing feedback controller is derived in [65, 67]. A feedback

control law based on time-varying coordinate and input transformations is proposed for the same

class of Lagrangian systems in [70] and applied to a simple free-flying space robot. Stabilization

and tracking control laws for a model with drift of an underactuated surface vessel are proposed

in [85] and the references therein. The control strategy in [85] uses a backstepping approach and

exploits the similarities of the model equations to those of systems in chained form to develop a

continuous feedback law for trajectory tracking. A numerical procedure for feedback stabilization

of nonlinear affine systems with drift is considered in [90], and employs a dynamic feedback con-

trol that may be regarded as a special class of model predictive control. Relying on the properties

of homogeneous systems, combined with time-averaging techniques, a continuous, not everywhere

differentiable, time-varying feedback law that locally exponentially stabilizes the attitude of a rigid

spacecraft is derived in [84]. The control methodology developed in [84] is also applied in [86] to

the stabilization of an underactuated autonomous underwater vehicle. Another approach that takes

advantage of model specific properties is presented in [89]. The latter is intended for the stabiliza-

tion of multibody systems in space and uses a composition of open-loop time-varying controls and

discontinuous feedback inputs.
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An algorithm for the construction of motion primitives, i.e. basic maneuvers, for motion planning of

underactuated vehicles that can be modelled as Lagrangian systems on Lie groups, such as airships,

hovercrafts, satellites, surface vessels and underwater vehicles is presented in [61, 62]. The mo-

tion primitives are designed using small-amplitude periodic inputs and can be used for exponential

stabilization to a point.

1.5.2. General Methods for the Synthesis of Time-Varying State Feedback Laws

The starting point for the systematic study of time-varying stabilization was paper [55], which

presents an approach relying on ideas that might be traced back to the work in [32]. With the ex-

ception of [74], all the results concerning general methods for the synthesis of time-varying feedback

controls focus on driftless systems [42, 43, 17, 47, 46, 48]. In [43] it was shown that driftless affine

systems can be globally asymptotically stabilized by periodic time-varying state feedback laws which

are continuous and even smooth. Later, results in [17] confirmed that most non-smoothly stabiliz-

able systems that are small-time locally controllable (STLC) can in fact be stabilized by continuous

time-varying controls. Explicit design procedures for the design of stabilizing laws for driftless affine

systems were first proposed by Coron and Pomet in [42] and [48]. Their approach is based on

Pomet’s idea of constructing a control which is composed of a periodic time-varying control that

critically stabilizes the system, combined with an asymptotically stabilizing “correction” feedback

term. In [46] these ideas are extended to the stabilization of a class of nonaffine driftless systems

using similar techniques relying on bounded feedback design and Lyapunov stability theory. More

recently, Morin et al., presented in [47] another design method that yields explicit homogeneous

time-varying control laws. However, even if the method in [47] does not require the solution of

a linear partial differential equation (PDE) or the expression for the flow of any vector field that

must be calculated before hand, either analytically or numerically, the derivation of control laws

by this approach is also very complicated as in the methods of [42, 48]. Although the approaches

in [42, 48, 46, 47] are applicable to rather large classes of controllable driftless systems, they all

share as drawback the complexity of the control synthesis procedure or of the control law itself.

Techniques similar to those employed in [84] (see Section 1.5.1), relying on the properties of homo-

geneous systems and on time-averaging methods, are also employed by M’Closkey and Morin in [74]
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to derive exponentially stabilizing time-varying homogeneous feedback laws for a relatively general

class of systems of the form (1.1).

Methods that exploit the representation of the system as a system on a Lie group have also been

successfully developed. General averaging techniques on Lie groups have been applied to attitude

control in [72], and a relatively general Lie algebraic approach for the synthesis of smooth time-

varying feedback laws, that requires the solution of a trajectory interception problem (see Section 2.5,

p. 35) for the flows of the original system and its Lie algebraic extension in terms of the logarithmic

coordinates on the associated Lie group, is presented in [75]. The latter approach employs sinu-

soidal controls, however it is not limited to smooth time-varying continuous laws, as the trajectory

interception problem can also be solved using discontinuous control laws (this class of controls is not

considered in [75], though).

1.5.3. General Methods for the Synthesis of Discontinuous State Feedback Laws

The approaches providing the most general feedback design methodologies mainly rely on Lie al-

gebraic considerations and the generation of Lie bracket motions; see [68, 75]. The paper by

Hermes, [68], was the first to present systematic procedure for the construction of discontinuous

stabilizing controls based on a Lie algebraic approach and the differential geometric formalism.

The method in [68] requires some modifications for its use in practical applications and has as

main drawback the exceedingly complicated feedback synthesis procedure. Nonetheless, it has been

successfully applied to the stabilization of the attitude and angular velocity of an underactuated

spacecraft in [64].

A general approach to motion planning of general driftless affine systems was proposed by Lafferriere

in [44]. The method in [44] is relevant to some of the approaches proposed in this thesis as they

draw on similar ideas to develop a systematic procedure for the synthesis of piece-wise constant

controls that stabilize (1.1).

Sliding mode control techniques also result in discontinuous controls; see the reviews in [94, 95, 96].

The method in [93] proposes an explicit feedback law for single-input systems in R
n, however it

assumes the existence of a control law such that the system has a stable manifold of dimension

16



1.5. EXISTING APPROACHES RELEVANT TO THE CONTROL OF NONLINEAR SYSTEMS WITH DRIFT

n− 1. In general this assumption is hard to satisfy, and therefore the method can rarely be applied

for the stabilization of (1.1).

1.5.4. Drawbacks of the Previously Existing Methods

(i) Although the methods that rely on specific properties of the model yield relatively sim-

ple control laws, an evident disadvantage of these methods is that they do not provide

sufficiently general procedures for the stabilization of (1.1).

(ii) Most of the approaches, either for time-varying or discontinuous feedback synthesis, con-

sider driftless systems.

(iii) Only two approaches that generate time-varying laws are directly concerned with the sta-

bilization of systems with drift: [74, 75]. The disadvantage of [74] is mainly due to the

fact that the vector fields must be homogeneous and therefore the method is restricted

to a subclass of systems (1.1). On the other hand, the Lie algebraic approach described

in [75] requires an analytic solution of a special trajectory interception problem stated

for the original system and its Lie algebraic extension. The condition guaranteeing the

interception of trajectories is difficult to satisfy exactly as it is posed in terms of an equal-

ity end-point constraint. The computations involved might be exceedingly complicated,

especially for large dimensional systems.

(iv) The method proposed in [68] is the first method to systematically employ Lie algebraic

techniques for the development of control laws. Since then, many approaches conceived

specifically for the control of systems which are not smoothly stabilizable have been

derived from the basic ideas introduced in [68]. However, most of these methods share the

drawback of [68], in that the motions along the Lie brackets of the system are very difficult

to generate. Most approaches become unappealing for practical purposes, especially due

to the fact that the complexity of the computations grows rapidly for systems evolving

in higher dimensional spaces.

(v) The development of controllers using sliding mode techniques presents two difficulties.

From a theoretical point of view, the existence of solutions is harder to guarantee due to

the fact that techniques such as those developed in [142] for the analysis of differential
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equations with discontinuous right-hand sides cannot always be applied. From a practical

standpoint, these controllers may cause chattering, as the state trajectory switches about

the sliding manifold. In some cases the undesirable chattering may be smoothed, and

even if in certain applications, (e.g. electronic applications such as DC–DC conversion),

the laws may be natural to the behaviour the devices can generate, other alternatives,

such as the use of piece-wise continuous controls, may in general be preferable since they

will result in relatively smoother trajectories.

1.6. Research Objective

In the light of the aforementioned difficulties arising in the control of strongly nonlinear systems of

the form (1.1), and the disadvantages of the existing methods discussed in the previous section, the

main objective of this research is to explore novel and implementable feedback synthesis approaches

for the stabilization of such systems to an equilibrium point. Attention is placed on the development

of:

(i) Algorithms for the construction of time-varying stabilizing controls for a wide class of

systems with drift based on Coron’s approach [42, 43, 48] of critical orbits for driftless

systems.

(ii) Computationally feasible algorithms for the construction of time-varying discontinuous

feedback controls for systems with drift.

(iii) Algorithms for the stabilization of bilinear systems with unstable drift.

1.7. Contributions of this Thesis

In relation to the research objectives stated above, the contributions of this dissertation are sum-

marized as follows:

(i) The development and analysis of different and novel Lie algebraic based approaches to

the synthesis of stabilizing feedback laws for general systems with drift of the type (1.1):

(a) A continuous time-varying stabilization feedback approach [77].
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(b) Two computationally feasible discontinuous time-varying feedback approaches [79,

80, 82, 83].

(ii) The development and study of two approaches for the stabilization of bilinear systems:

(a) A continuous time-varying stabilization feedback approach [76].

(b) An approach relying on the discontinuous time-varying approach for general sys-

tems of the form (1.1) and based on the idea of steering the system to a stable

manifold [78].

(iii) The development of a software package for symbolic computations involving Lie algebraic

expressions [175].

A brief description of the main approaches is presented next.

1.7.1. Continuous Time-Varying Stabilization Feedback Approach

In this approach the proposed control law is a composition of a periodic time-varying control, and

an asymptotically stabilizing feedback “correction” term. The time-periodic control is first obtained

through a solution of an open-loop, finite horizon control problem on the associated Lie group which

is posed as a trajectory interception problem in the logarithmic coordinates of flows, and its purpose

is to generate critically stable trajectories for the open-loop system. The correction term is calculated

to be a control which decreases a Lyapunov function whose level sets contain the periodic orbits of

the system stabilized by the time-periodic feedback.

1.7.2. Computationally Feasible Discontinuous Time-Varying Feedback Approach

The proposed feedback law is computed on-line in terms of the repeated solution to an open-loop

control problem on the system’s associated Lie group, such that the trajectories decrease an arbitrary

Lyapunov function, thus achieving asymptotic stability. The open-loop control is constructed as a

sequence of constant inputs. Two approaches to the synthesis of the piece-wise constant controls are

presented. In both approaches the values of the sequence of piece-wise constant controls are calcu-

lated as the solution to a non-linear programming problem. In the first approach, the formulation

of the non-linear programming problem results from posing the original control problem in terms of

a relaxed control problem (satisficing problem) in the logarithmic coordinates that parametrize the
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flows on the Lie group associated with the system. In the second one, the formulation of the non-

linear programming problem results from the direct application of the Campbell-Baker-Hausdorff

formula for composition of flows.

1.8. Thesis Outline

The thesis is organized as follows:

• Chapter 2: Basic Assumptions, Facts and Preliminary Results.

This chapter introduces the main hypotheses and presents some preliminary results es-

sential in the development of the proposed stabilization approaches. Additional mathe-

matical background concerning basic notions of differential geometry, Lie theory, as well

as other terminology, are found in Appendix A and Appendix B. The latter motivates

the differential geometric approach to the analysis and control of nonlinear systems by

means of a geometric interpretation of the Lie product. It also presents some existing

results on the controllability of nonlinear systems and a brief overview of the relevant

literature.

• Chapter 3: Continuous Time-Varying Stabilization Feedback Approach.

In this chapter a novel approach to the synthesis of time-varying feedback laws that sta-

bilize nilpotent systems with drift is presented, [77]. The method partially draws on the

ideas of Coron and Pomet, see [42, 43, 48], who constructed time-periodic stabilizing

controls for systems without drift. The control strategy is based on the combined applica-

tion of a critically stabilizing control, whose construction relies on Lie algebraic techniques

and the solution of an open-loop control problem on a Lie group, and a control “correc-

tion” term that provides asymptotic stabilization, whose construction employs standard

Lyapunov techniques. The feedback control strategy is shown to be applicable to strongly

nonlinear systems that have a nilpotent Lie algebra, and to yield global asymptotic sta-

bilization to a set point under reasonable assumptions. The effectiveness of the approach

is demonstrated with an example, previously presented in [77].
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• Chapter 4: Discontinuous Time-Varying Feedback Approaches.

A novel and computationally tractable approach for the construction of stabilizing dis-

continuous feedback controls based on Lie algebraic and standard Lyapunov techniques

is presented, [79, 80, 82, 83]. Compared to the approach proposed in the previous chap-

ter, this approach is of reduced computational complexity, and furthermore it applies to

a larger class of systems which do not need to be nilpotent.

The proposed control law comprises two modes. In one mode the control is a smooth state

feedback u(x) that guarantees an instantaneous decrease of a chosen control Lyapunov

function V (x). This mode is applied whenever there exists a control u(x) such that

V̇ (x, u(x)) < 0. In the other mode, an open-loop piece-wise constant control ū(x, t) is

applied to achieve a decreases of the control Lyapunov function periodically every finite

period of time T > 0, i.e. such that V (x(t + T )) − V (x(t)) < 0 for any t ∈ R. The

synthesis of u(x) is based on the standard Lyapunov approach, thus the emphasis is put

on the construction of ū(x, t) by means of Lie algebraic techniques.

Two approaches to the synthesis of the Lie algebraic control ū are proposed. In both

of them the control is composed of a sequence of constant controls whose values are

calculated as the solution to a non-linear programming problem. In the first approach,

the non-linear programming problem is formulated by posing the original control problem

in terms of a relaxed control problem in the associated logarithmic coordinates. The

formulation of the non-linear programming problem results, in the second approach, from

the direct application of the Campbell-Baker-Hausdorff formula for composition of flows.

Conditions under which the feedback control strategy renders the equilibrium point of the

system globally asymptotically stable are given. The proposed methodology was tested

successfully in the stabilization of nonholonomic systems: the unicycle and the front-

wheel drive car. The effectiveness of the approach to the stabilization of high dimensional

systems is also demonstrated in the attitude and angular velocity stabilization of a satellite

in actuator failure mode, [79, 80, 82, 83].
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• Chapter 5: Stabilization of Bilinear Systems with Unstable Drift.

Two approaches to stabilization of bilinear systems with unstable drift are discussed in

this chapter. Both methods make use of the Lie algebraic extension of the system.

The first method, [76], considers the construction of a time-invariant feedback for the

extended system, which is a relatively simple task under reasonable assumptions. The

original system controls are then obtained as a solution to an open-loop, finite horizon,

control problem posed in terms of a finite horizon interception problem of the logarith-

mic coordinates for flows [44]. The open-loop controls so generated are such that the

trajectories of the open-loop system intersect those of the controlled extended system

after a finite time T , independently of their common initial condition. Thus, the “aver-

age motion” of the original system corresponds to the motion of the controlled extended

system. The speed of convergence of the system trajectory to the desired terminal point

is dictated by the static feedback for the extended system.

The second approach, [78], comprises two phases: the reaching phase and the sliding

phase. In the reaching phase the state of the system is steered to a selected stable

manifold by employing a suitably designed control Lyapunov function in conjunction

with a discontinuous Lie algebraic control. The latter is necessary when there do not

exist controls which generate instantaneous velocities decreasing the Lyapunov function.

The Lie algebraic control is constructed using the second method proposed in Chapter 4.

Conditions are given under which the constructed feedback control renders the stable

manifold globally attractive and attainable in finite time. Once the set of stable manifolds

is reached, the control is switched to its sliding phase whose task is to confine the motion

of the closed-loop system to the latter set, making it invariant under limited external

disturbances. Two examples corresponding to different dimension of the stable manifolds

are presented to demonstrate the effectiveness of the approach.

• Chapter 6: A Software Package for Symbolic Lie Algebraic Computations.

The computationally feasible approaches proposed in this thesis necessitated the develop-

ment of a set of software tools for symbolic manipulation of expressions with Lie brackets.
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To this end, a software package has been implemented in Maple. The module is called

Lie Tools Package (LTP) [174], [P7], and among other functions it enables the following

automated Lie algebraic manipulations:

– Construction of Philip Hall bases.

– Simplification of any Lie bracket expression.

– Composition of flows via the Campbell-Baker-Hausdorff formula.

– Set up of the logarithmic-coordinates equation.

This chapter discusses the capabilities and features of LTP, and presents some application

examples that illustrate the usefulness of the package.

• Chapter 7: Conclusions and Future Research.

The last chapter concludes the thesis with a brief review of main contributions of the

research presented in the preceding chapters. Some general remarks concerning the ad-

vantages and potential of the proposed approaches are presented. Suggestions on issues

for future research are given.

Reference material, which will be cited when needed, is included in several appendices for the reader’s

convenience:

• Appendix A: Notation and Mathematical Background.

• Appendix B: Controllability of Systems with Drift.

• Appendix C: Useful Theorems and Other Results.

An index of concepts has been included on p. 253 to facilitate finding definitions and symbols, the

latter under the keyword symbols.

1.9. Originality of the Research Contributions

The proposed approaches constitute an original contribution to the stabilization of (1.1) in that:

• The synthesis method for continuous time-varying stabilizing controls, [77, 81], is general

and applicable to a large class of nilpotent systems with drift which do not lend themselves
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to controllable linearization (be it through state-feedback transformations, or else simply

around some operating points).

• The discontinuous time-varying stabilizing feedback approaches, [79, 80, 82, 83], are

computationally feasible, and exploit a combination of Lie algebraic and optimization

techniques in a novel way.

• The Lie algebraic approaches to the synthesis of stabilizing feedback controls for homoge-

neous bilinear systems are completely new in the sense that, unlike existing methods, they

are applicable to systems with unstable drift which cannot be stabilized by any constant

controls, [76, 78].

• The software package for symbolic Lie algebraic computations constitutes a novel tool, [175].

The existing software for Lie algebraic manipulations are very specialized, e.g. LiE [171]

and Maple’s liesymm package [191], and do not provide any of the functionality mentioned

above.

Sufficient conditions for the existence of the proposed control laws are also given.
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CHAPTER 2

Basic Assumptions, Facts and Preliminary Results

In this chapter, the main hypotheses concerning system Σ of equation (1.1) are stated together with

basic definitions and preliminary results essential to the development of the stabilization approaches

proposed in the next chapters. Specific assumptions pertinent only to each particular approach will

be made in the corresponding chapter.

The familiarity of the reader with the fundamental notions of differential geometry and Lie theory

is assumed. For convenience of the reader, the notation and additional mathematical background

is included in Appendix A on p. 199. Although, the notation and terminology is as standard as

possible the reader is advised to see Appendix A before reading the next sections. An index of

concepts is included on p. 253 to facilitate finding definitions and symbols; the latter collected under

the keyword symbols.

2.1. Basic Assumptions

Let F def
= {f0, . . . , fm} be the family of vector fields of system Σ defined on R

n. Denote by L(F)

the Lie algebra of vector fields generated by F and by Lx(F)
def
= {f(x) | f ∈ L(F)} ⊂ R

n the set

of vectors resulting from the evaluation of L(F) at x. All vector fields f ∈ F are assumed to be

real, analytic, and complete , i.e. any vector field f is assumed to generate a globally defined one-

parameter group of transformations denoted by exp(tf) acting on R
n; (with the manifold being R

n

this means no finite escape times in forward or backward time). This implies that for all t1, t2 ∈ R,

exp(t1f) ◦ exp(t2f) = exp((t1 + t2)f), and for all x ∈ R
n, x(t) = exp(tf)x satisfies the differential
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equation ẋ = f with initial condition x(0) = x. It is a well known fact, see [158, p. 95], that if all

generators in F are analytic and complete then all vector fields in L(F) are analytic and complete.

Solutions to system Σ, starting from x(0) = x and resulting from the application of a control u, are

denoted by x(t, x, u), t ≥ 0. The family of piece-wise constant functions, continuous from the right

and defined on R
m, is denoted by Pm.

For a smooth function V : R
n → R and a vector field f : R

n → R
n, LfV (x)

def
= ∇V f(x) denotes the

Lie derivative of V along f(x).

The following hypotheses are assumed to hold with respect to system Σ.

H1. The vector fields f0, . . . , fm : R
n → R

n are real, analytic, complete, and linearly inde-

pendent, with f0(0) = 0, and generate a nilpotent Lie algebra of vector fields L(F), such

that its dimension is dimL(F) = r ≥ n+ 1.

H2. The system Σ is strongly controllable, i.e. for any T > 0 and any two points x0, xf ∈ R
n,

xf is reachable from x0 by some control u ∈ Pm of Σ in time not exceeding T ; i.e. there

exists a control u ∈ Pm and a time t ≤ T such that x(t, x0, u) = xf .

Remark 2.1.

The analyticity assumption of f ∈ F guarantees that all the information about the system is actually

contained in f and its derivatives (of all orders) at a given point x ∈ R
n, see [36]. It is a standard

assumption as it implies that all the Lie brackets exist and it cannot be relaxed since the basic facts

required to prove the results in this thesis also necessitate this assumption.

The controllability with piece-wise constant controls is not excessively restrictive as it may seem. In

fact it is equivalent to the basic controllability requirement using controls in a rather general class

of continuous controls. This is a consequence of Theorem 1 in [37] which implies that system Σ

is completely controllable with continuous controls if and only if Σ is completely controllable with

piece-wise constant controls.

A well known consequence of strong controllability is that the condition for accessibility is satisfied,

namely: spanLx(F) = R
n for all x ∈ R

n. In fact, the accessibility condition is also referred to as

weak controllability condition, see [19], and clearly, if the system is strongly controllable it must
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also be weakly controllable. Therefore, for the feedback synthesis methods presented in this thesis

to be applicable, system Σ must obviously satisfy the accessibility condition. However, in contrast

to driftless systems, the accessibility of system Σ in (1.1) does not in general imply its strong

controllability.

2.2. Lie Algebraic Extension of the Original System

For steering purposes, it is useful to consider the Lie algebraic extension of system Σ, denoted by

Σe, defined as

Σe : ẋ = g0(x) +

r−1∑

i=1

gi(x)vi
def
= gv(x) (2.1)

where v
def
= [v1, . . . , vr−1] are referred to as extended controls. Solutions to Σe, starting from a point

x(0) = x and under the action of a control v, are denoted by xe(t, x, v), t ≥ 0.

Concerning the system Σe, it is assumed that:

H3.a. The vector fields in G def
= {g0, . . . , gr−1} define a basis for L(F).

H3.b. For any x in a sufficiently large neighbourhood of the origin B(0, R), the set of vectors

gi(x), i = 1, . . . , r − 1, of the extended system Σe contains a basis for Lx(F).

Remark 2.2.

• Due to assumption H1, all the vector fields f ∈ L(F) generate globally defined one-

parameter groups of transformations exp(tf). This holds because it is well known that,

see [158, p. 95], if all generators in F are analytic and complete then all vector fields in

L(F) are also analytic and complete.

• The assumption about dimL(F) = r ≥ n + 1 is convenient in view of the definition of

the extended system Σe. It is worthwhile pointing out that this assumption, as well as

hypothesis H3.b, have been introduced primarily to make the control construction and its

analysis more transparent to the reader. Hypotheses H1–H3 jointly imply that the vectors

gi(x), i = 1, . . . , r − 1, span R
n for any x ∈ B(0, R).

• By construction, both systems Σ and Σe have the same underlying algebra of vector fields

L(F). Additionally, system Σe not only inherits the strong controllability property of Σ,
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but is in fact instantaneously controllable in any direction of the state space. It is hence

much easier to steer than Σ whose motion along some directions has to be generated by

time-varying controls, or else piece-wise constant switching controls.

2.3. Basic Facts and Preliminary Results

Let RF (T, x) denote the reachable set of Σ at time T from x by piece-wise constant controls; (for a

definition of reachable set, see Definition A.56, p. 233 of Appendix A).

It is helpful to introduce the following subsets of diff(Rn), the group (under composition) of diffeo-

morphisms on R
n.

G
def
= {exp(t1f

u(1)) ◦ · · · ◦ exp(tkf
u(k)) | u(i) ∈ R

m; ti ∈ R; k ∈ N} (2.2)

GT
def
= {exp(t1f

u(1)) ◦ · · · ◦ exp(tkf
u(k)) | u(i) ∈ R

m; ti ≥ 0;
∑k
i=1 ti = T ; k ∈ N} (2.3)

where fu(i)
def
= f0 +

∑m
j=1 fj uj(i), and uj(i) are components of u(i). By the strong controllability

hypothesis H2, if Gx and GT x denote the orbits through x of G and GT , respectively, i.e. Gx =

{g x | g ∈ G} and GT x = {g x | g ∈ GT }, then RF (T, x) = GT x = Gx = R
n, for any T > 0.

The group G ⊂ diff(Rn) is a subgroup of diff(Rn), [20]. Moreover, by virtue of the results by R.

Palais, [158], G can be given a structure of a Lie group with Lie algebra isomorphic to L(F). The

result of Palais [158], interpreted so as to apply to system Σ, is worth citing:

Theorem 2.1 (Palais, [158], p. 95). Let L(F) be a finite dimensional Lie algebra of vector fields

defined on R
n. Assume that all the generators in F are analytic and complete. Then there exists a

unique analytic, simply connected Lie group H, whose underlying group is a subgroup of diff(Rn),

and a unique global action of this group on R
n defined as an analytic mapping φ : H×R

n 3 (h, p) →

h(p) ∈ R
n which induces an isomorphism between the Lie algebra, L(H), of right invariant vector

fields on H, and L(F). Precisely, the isomorphism φ+
L : L(H) → L(F) is constructed by setting:

φ+
L(λ)(p) = (dφp)e(λ(e)) for all λ ∈ L(H), p ∈ R

n (2.4)

where e ∈ H is the identity element, and (dφp)e is the differential of a mapping φp : H → R
n at

identity. For any p ∈ R
n, the mapping φp is defined by: φp(h) = h(p).
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This result has strong implications. It can be shown, see [20, Thm. 3.2.], that the isomorphism φ+
L

induces an isomorphism, denoted by φ+
G, between the groups H and G. If for a constant control

u ∈ R
m, λ ∈ L(H) and fu are related by φ+

L(λ) = fu, where fu is the right-hand side of (1.1), then

the one-parameter group exp(tλ) maps into the one-parameter group exp(tfu) as follows, see [162,

Thm. 2.10.3, p. 91]:

φ+
G (exp(tλ)) = exp(tφ+

L(λ)) = exp(tfu) for all t ≥ 0 (2.5)

Each element exp(t1f
u(1)) ◦ · · · ◦ exp(tkf

u(k)) ∈ G can thus be expressed as φ+
G{exp(t1λ1) ◦ · · · ◦

exp(tkλk)} where: φ+
L(λi) = fu(i) for all i = 1, . . . , k. It follows that H is given by:

H = (φ+
G)−1(G) =

(2.6)

{exp(t1λ1) ◦ · · · ◦ exp(tkλk) |λi ∈ L(H), φ+
L(λi) ∈ L(F); ti ∈ R; k ∈ N}

The above facts, illustrated in Fig. 2.1, allow to reformulate the system Σ as a right invariant system

ΣH evolving on the Lie group H as follows. If the right invariant vector fields ηi ∈ L(H) are such

that φ+
L(ηi) = fi for all i = 0, . . . ,m, then

ΣH : Ṡ(t) = {η0 +

m∑

i=1

uiηi}S(t) with S(0) = e; t ≥ 0 (2.7)

The simplified notation used in the above expression for ΣH deserves explanation. If ThH denotes

the tangent space to H at h ∈ H, then for any η ∈ TeH, the expression ηS(t) denotes the image

of η under the map dRS(t) : TeH → TS(t)H induced by the map of right translation by S(t) ∈ H:

h → hS(t), for all h ∈ H. In this notation, if η is represented by the curve h(τ) ∈ H, τ ≥ 0, then

ηS(t) is represented by the curve h(τ)S(t) ∈ H, τ ≥ 0. Under the assumptions made:

Proposition 2.1. The system ΣH is strongly controllable on H from the identity e, i.e. given any

T > 0, any h ∈ H is reachable from e ∈ H by a trajectory of ΣH using a control u ∈ Pm, in time

not exceeding T . There exists a diffeomorphism between trajectories of systems Σ and ΣH in the

sense that: if S(t), t ∈ [0, T ], is a trajectory of ΣH through e, corresponding to a concatenation

u ∈ Pm of constant controls u(i) ∈ R
m defined on intervals of lengths ti, i = 1, . . . , j, respectively,
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expexp

e
exp(tf)

φ+

G

e

S(t) = exp(tλ)

H

φ+

L

L(H)

λf

L(F)

M

G

Figure 2.1. The exponential mapping and Palais’ Theorem: This figure shows an element
f ∈ L(F) and its associated element exp(tf) ∈ G, which parametrizes the solutions of
the system ẋ = f . By the assumptions on F and L(F), Palais’ Theorem guarantees
the existence of a Lie group H and a unique global action that induces an isomorphism
φ+

L : L(H) → L(F), which in turn induces an isomorphism φ+

G : H → G between the
groups and endows G with a Lie group structure.

then x(t, x, u) = φ+
G(S(t))x, t ∈ [0, T ], is a trajectory of Σ through the point x corresponding to the

same piece-wise constant control u.

Proof. The image of HT
def
= {exp(t1λ1) ◦ · · · ◦ exp(tkλk) |λi ∈ L(H), φ+

L(λi) ∈ L(F); ti ∈

R;
∑k
i=1 ti = T, k ∈ N} under the group isomorphism φ+

G is GT . Hence H = (φ+
G)−1(G) =

(φ+
G)−1(GT ) = HT , by strong controllability of Σ. It follows that system ΣH is strongly controllable

from the identity because, for any T > 0, RH(T, e) = HT e = H e = H where RH(T, e) is the

reachable set from identity for system ΣH at time T , and H def
= {η0, . . . , ηm}. To show that x(t, x, u),

t ∈ [0, T ], is a trajectory of Σ it suffices to notice that, since φ+
G is a group isomorphism corresponding
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to a Lie algebra isomorphism φ+
L ,

φ+
G (exp(t1λ1) ◦ · · · ◦ exp(tjλj)) x = exp(t1φ

+
L(λ1)) ◦ · · · ◦ exp(tjφ

+
L(λj))x

(2.8)

= exp(t1f
u(1)) ◦ · · · ◦ exp(tjf

u(j))x

�

Similarly to Σ, the system Σe can be reformulated on the Lie group H as

ΣeH : Ṡe(t) = {µ0 +

r−1∑

i=1

viµi}Se(t) with Se(0) = e; t ≥ 0 (2.9)

with φ+
L(µi) = gi for all i = 0, . . . , r − 1. Clearly, Proposition 2.1 also holds for Σe

H ; i.e. system ΣeH

is strongly controllable from identity, and trajectories of Σe
H map into trajectories of Σe according

to: xe(t, x, v) = φ+
G(Se(t))x, t ∈ [0, T ].

2.4. Solution of Differential Equations on Lie Groups as Products of Ex-

ponentials

Since H is analytic, simply connected, and nilpotent (L(H) is nilpotent), it follows that the ex-

ponential map on L(H) is a global diffeomorphism onto H, see [162, Thm. 3.6.2., p. 196]. Let

{ψ0, . . . , ψr−1} be a basis of L(H) which, without the loss of generality, is ordered in such a way

that ψi = ηi = µi, i = 0, . . . ,m, and is such that the mapping

M : R
r 3 (t0, . . . , tr−1) → exp(t0 ψ0) ◦ · · · ◦ exp(tr−1 ψr−1) =

r−1∏

i=0

exp(ti ψi) ∈ H (2.10)

is a global coordinate chart on H. The existence of such a basis is guaranteed by the following

proposition.

Proposition 2.2. Under assumption H1, there exists an ordered basis B = {ψ0, . . . , ψr−1} such

that the mapping M in (2.10) is a global coordinate chart on H.

Proof. Since the exponential map exp : L(H) → H is a global analytic diffeomorphism onto

H, it will only be necessary to show that M is onto and one-to-one. This is because any element
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h ∈ H has a unique representation as a single exponential:

h = exp

(
r−1∑

i=0

θiψi

)

where θi, i = 0, 1, . . . , r − 1, are known as Lie-Cartan coordinates of the first kind. Thus it suffices

to show that for each set of coordinates (θ0, . . . , θr−1), there exists a unique set of coordinates

(t0, . . . , tr−1) which allow to represent h as product of exponentials (2.10), hence making M a global

chart on H.

To this end, observe that since L(H) is the Lie algebra of the analytic, simply connected, nilpotent

Lie group H, then L(H) is solvable and thus there exists a chain of ideals 0 ⊂ Ir−1 ⊂ Ir−2 ⊂

· · · ⊂ I0 = L(H) where each Ii is exactly of dimension r − i. Without the loss of generality, the

basis {ψ0, . . . , ψr−1} for L(H) can be arranged so that each Ii is generated by {ψi, . . . , ψr−1}. Note

that with this ordering, if the number of generators of the L(H) is m, ideals Ir−1, . . . , Ir−m+1 are

generated by {ψr−1}, {ψr−1, ψr−2}, . . . , {ψr−1, ψr−2, . . . , ψr−m+1}, respectively, which only contain

generators of L(H).

With this arrangement in hand it is possible to show that the mapping M : R
r → H is onto and

one-to-one.

(1) The mapping M is onto:

Since the exponential map on L(H) is a global diffeomorphism from L(H) onto H, see [162, Thm.

3.6.2., p. 196], for any h ∈ H there exists a z ∈ L(H) such that h = exp(z), where z can be uniquely

written in terms of the basis elements as

z =
r−1∑

i=0

αiψi (2.11)

By the above ordering, application of the CBH formula to the product exp(z) ◦ exp(−αr−1ψr−1)

yields

exp(z) ◦ exp(−αr−1ψr−1) = exp(z − αr−1ψr−1 +R1)

= exp(
r−2∑

i=0

βiψi)

= exp(z1)
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where R1 only contains the basis elements ψi, i = 0, . . . , r − 2.

Similarly,

exp(z1) ◦ exp(−βr−2ψr−2) = exp(z1 − αr−2ψr−2 +R2)

= exp(

r−3∑

i=0

γiψi)

= exp(z2)

where now R2 only contains ψi, i = 0, . . . , r − 3.

Repeating this procedure r times one obtains an expression exp(zr−1) = I. Considering this iterative

procedure, exp(zr−1) satisfies:

exp(zr−1) = exp(z) ◦ exp(−αr−1ψr−1) ◦ exp(−βr−2ψr−2) ◦ · · · ◦ exp(−ζ0ψ0) = I (2.12)

Right-multiplying both sides of (2.12) by exp(ζ0ψ0), . . . , exp(βr−2ψr−2), exp(αr−1ψr−1), (in the ex-

pressed order), yields:

exp(z) = exp(ζ0ψ0) ◦ · · · ◦ exp(βr−2ψr−2) ◦ exp(αr−1ψr−1)

Hence any h = exp(z) ∈ H can be written as the product of exponentials in (2.10) and therefore M

is onto.

(2) The mapping M is one-to-one:

To show that M is one-to-one, i.e. that any element h ∈ H has a unique representation as a product

of exponentials (2.10), suppose that:

r−1∏

i=0

exp(αiψi) =

r−1∏

i=0

exp(βiψi) (2.13)

with αi 6= βi, for some i ∈ {0, 1, 2, . . . , r − 1}. Let i∗ be the index of the first element ψi∗ ∈ B such

that αi∗ 6= βi∗ . Then, pre-multiplying (2.13) by exp(−αψi), i = 0, 1, 2, . . . , i∗ − 1, yields

r−1∏

i=i∗

exp(αiψi) =

r−1∏

i=i∗

exp(βiψi) (2.14)
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Left-multiplication of (2.14) by exp(−αi∗ψi∗) results in

r−1∏

i=i∗+1

exp(αiψi) = exp((βi∗ − αi∗)ψi∗)

r−1∏

i=i∗+1

exp(βiψi) (2.15)

Applying the CBH formula to both sides of (2.15) one obtains that exp(z ′) = exp(z′′), where

z′ =
∑r−1
i=i∗+1 α

′
iψi and z′′ = (βi∗ − αi∗)ψi∗ +

∑r−1
i=i∗+1 α

′′
i ψi are the resulting exponents of the left-

hand and right-hand side of (2.15), respectively. In z′ the lowest index is i∗ + 1 and in z′′ it is

i∗, but we have that exp(z′) = exp(z′′), i.e. z′ = z′′, since the exponential mapping is a global

diffeomorphism on H, therefore z′ and z′′ must have expansions in terms of the same Lie brackets

and βi∗ − αi∗ = 0 so that αi∗ = βi∗ , which is a contradiction. Hence, αi = βi, i = 0, 1, 2, . . . , r − 1,

thus concluding the proof. �

Remark 2.3. An algorithmic way to obtain a basis for L(H) which satisfies the above mentioned

ordering condition, (requiring that each ideal Ii is generated by {ψi, . . . , ψr−1}), is to employ the

construction procedure developed by P. Hall [160].

The fact that (2.10) is a global chart implies that the solutions to ΣH and ΣeH , whose common

underlying Lie algebra is L(H), can be expressed as products of exponentials:

S(t) =
r−1∏

i=0

exp(γi(t)ψi) and Se(t) =
r−1∏

i=0

exp(γei (t)ψi) (2.16)

where the functions γi, γ
e
i : R → R, are referred to as the γ-coordinates (or logarithmic coordinates)

of the flows S(t), Se(t), respectively, and can be shown to satisfy a set of differential equations of

the form, see [149]:

Γ(γ)γ̇ = ud Γ(γe)γ̇e = vd γ(0) = γe(0) = 0 (2.17)

Here Γ(·) : R
r → R

r×r is a real analytic, matrix valued function of γ
def
= [γ0 γ1 . . . γr−1]

T , the

zero initial conditions correspond to S(0) = Se(0) = I, and ud
def
= [1 u1 . . . um 0 . . . 0]T ∈ R

r, and

vd
def
= [1 v1 . . . vr−1]

T ∈ R
r, (where the first component of ud and vd corresponds to the drift vector

field).

34



2.5. OPEN-LOOP CONTROL PROBLEM ON THE LIE GROUP

Details concerning the derivation of the γ-coordinates equation (2.17) in the general setting of free

Lie algebras (of indeterminates) are included in Appendix A, p. 227; see also Chapter 6, p. 150.

The solution to equation (2.17) is generally only local unless Γ(γ) is invertible for all γ. The

invertibility of Γ(γ) is ensured if a basis for L(H) is constructed as indicated in Proposition 2.2; see

also [149].

Remark 2.4. The representation (2.16) of the solution to equation (2.7) is not unique. The rep-

resentation in the form of the product of exponentials (2.16) results from the introduction of the

Lie-Cartan coordinates of the second kind (2.10) on the group H; see [149]. Alternatively, as pointed

out in Proposition 2.2, the solution to (2.7) can be represented using the Lie-Cartan coordinates of

the first kind, i.e. it is possible to write

S(t) = exp

(
r−1∑

i=0

θi(t)ψi

)

where θi : R → R, i = 0, 1, . . . , r − 1, are the “coordinates” of such a solution; see [145].

It is also known that the solution of (2.7) can be written in terms of a formal series of C∞ functions

on H. The last arises when (2.7) is solved by Picard iteration giving rise to the Peano-Baker formula

which exhibits the solution in terms of iterated integrals. Specifically, S(T ) defines the Chen-Fliess

series of the input u; see [143, Theorem III.2, p. 22] and [38, p. 695]. The equivalence of the

Chen-Fliess series representation and the representation through the product of exponentials of the

solutions to (2.7) has been shown in [148] (see Theorem on p. 328). The product expansion in [148]

uses P. Hall bases.

2.5. Open-Loop Control Problem on the Lie Group

Since the extended system Σe is instantaneously controllable in any direction of the state space,

and thus much easier to steer than Σ, one possible systematic way to stabilize Σ would involve the

following steps:

(i) Find a control v that stabilizes Σe.

(ii) Find a control u as a function of v such that the trajectories of Σ intersect those of Σe

every T > 0 units of time, i.e. such that x(nT, x, u) = xe(nT, x, v), n ∈ Z+.
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The first step can be easily solved, for example, using one of the following static state feedback

control laws:

• Linearizing feedback v, such that gv(x) = Ax:

v(x) = Q†(x) (Ax− f0(x)) (2.18)

where A ∈ R
n×n is a stable matrix, i.e. whose eigenvalues belong to the left-half of the

complex plane, and Q†(x) = Q(x)T
[
Q(x)Q(x)T

]−1
is the Moore-Penrose right pseudo-

inverse of the n×(r−1) matrix Q(x) = [g1(x) g2(x) . . . gr−1(x)], which is ensured to exist

for all x ∈ B(0, R) because1 rank
(
Q(x)

)
= n by the assumption that gi, i = 1, . . . , r− 1,

contains the basis for Lx(F).

• Steepest-gradient seeking v, such that gv(x) = −∇V :

v(x) = −Q†(x) (∇V + f0(x)) (2.19)

where ∇V def
= ∂V

∂x is the gradient of an arbitrary Lyapunov function V ∈ C∞ : R
n → R+

and Q†(x) is as above. This definition of v ensures that the Lyapunov function V has a

negative time derivative, namely V̇ = −‖∇V ‖2.

• Lyapunov rate of decrease shaping v, such that V̇ = −k(x) < 0:

v(x)
def
=

−a(x) − k(x)

‖b(x)‖2
b(x)T , v(0) = 0 (2.20)

where, for some arbitrary Lyapunov function V ∈ C∞ : R
n → R+, k : R

n → R+ is

some positive definite function such that k(0) = 0, a(x)
def
= Lg0V (x), bi(x)

def
= Lgi

V (x),

i = 1, . . . , r − 1, and b(x) is the row vector b(x)
def
= [b1(x) · · · br−1(x)]. Since V is a

Lyapunov function, it is monotonically increasing, and therefore ∇V only vanishes at

x = 0. The latter, together with fact that the vector fields gi span R
n for all x ∈ R

n,

implies that Lgi
V (x) = ∇V gi(x) 6= 0 for any x ∈ R

n \0 and some i ∈ {1, 2, . . . , r−1}, i.e.

1Since rank(Q) = n, ∀ x ∈ W
def
= B(0, R), then rank(QT ) = n. The latter implies that QT x 6= 0, ∀ x ∈ W , and

therefore ‖QT x‖ = xT QQT x > 0 ⇒ QQT > 0 and det(QQT ) > 0, thus implying the invertibility of QQT for all

x ∈ W .
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at least one gi(x) will have a component in the direction of ∇V (x). Hence, ‖b(x)‖ 6= 0

for all x ∈ R
n \ 0, thus ensuring that the above control is defined for all x ∈ R

n.

The second step is more complicated as it involves the construction of a discontinuous or a time-

varying control u(x, t) such that the trajectories of systems Σ and Σe repeatedly intersect with period

T , i.e. such that x(nT ) = xe(nT ), n ∈ Z+. This problem of achieving a point-wise equivalence

of trajectories of the extended and the original systems will be referred as trajectory interception

problem (TIP). An approach to the solution of the TIP was first proposed by Michalska in [75],

drawing on the ideas of Lafferriere [44], and consists in re-stating the TIP as a problem of matching,

at time T , the γ-coordinates (see (2.16)) that parametrize the flows of systems Σ and Σe, i.e. so

that S(T ) = Se(T ).

Before formally stating the TIP, it is worth mentioning that the extended system Σe can be stabilized

by the sequential application of constant controls v̂
def
= v(x(nT )) defined on intervals [nT, (n+ 1)T ),

n ∈ Z+, for some adequately chosen period T > 0, and such that the condition ∇V g v̂(x(nT )) <

η‖x(nT )‖2 is satisfied for a chosen, strictly increasing and positive definite, function V ∈ C∞ :

R
n → R+. The latter is a consequence of Proposition 4.1 on p. 70 and Theorem 4.1 on p. 84 of

Chapter 4. This result is useful not only because it implies the stabilizability of system Σe with

piece-wise constant controls, but also because it allows for the following simpler formulationof the

TIP in terms of the constant controls v̂:

TIP: For some Tmax > 0 and a fixed value of the time horizon T ≤ Tmax, find control

functions ûi(v̂, t), i = 1, . . . ,m, t ∈ [nT, (n + 1)T ), n ∈ Z+, in the class of

functions which are continuous in v̂ and piece-wise continuous in t, such that

for any initial condition x = x(0) at time t0 = 0 and any constant control vector

v̂ ∈ R
r−1 the trajectory xe(t, x, v̂) of the extended system Σe intersects the

trajectory x(t, x, û) of the original system with control û ∈ R
m precisely at time

T , so that

x(T, x, û) = xe(T, x, v̂) (2.21)
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Remark 2.5.

• If an explicit algebraic solution (i.e. a closed form solution) to the TIP can be found, it

only needs to be calculated once for one period T , since the constant controls v̂ can be

regarded as parameters of the TIP. This will be shown in Example 3.4 of Chapter 3, p. 58

and Example 5.4 of Chapter 5, p. 121.

• The open-loop control problem delivers a feedback control in the sense that the the algebraic

solution to the TIP is evaluated at each t = nT , n ∈ Z+, in terms of the control v̂, which

depends on x(nT ).

• It may often be convenient to consider piece-wise constant controls û(v̂, t) ∈ Pm,

t ∈ [nT, (n+ 1)T ) as this facilitates the algebraic solution of the TIP.

• Solutions to the TIP with controls in the class of piece-wise continuous functions are

clearly guaranteed to exist under hypothesis H2.

The formalism presented in the previous sections allows to re-state the TIP as a problem of match-

ing the flows of systems ΣH and ΣeH on the Lie group H at time T , i.e. as a flow interception

problem (FIP) in which given v̂, a control û must be found such that S(T, v̂) = Se(T, û), and hence

xe(T, x, v̂) = φ+
G(Se(T, v̂))x = φ+

G(S(T, û))x = x(T, x, û). The representation of the flows as prod-

ucts of exponentials in (2.16) and the equations (2.17) for the γ-coordinates that parametrize the

flows permit to reformulate the FIP as logarithmic-coordinate interception problem (LCIP) such

that γe(T ) = γ(T ). The LCIP can be stated as follows:

LCIP: Consider the two formal “control systems” of equation (2.17) with ud =

[1 û 0 . . . 0]T ∈ R
r and vd = [1 v̂]T ∈ R

r. For some Tmax > 0 and a fixed

value of the time horizon T ≤ Tmax, find control functions ûi(v̂, t), i = 1, . . . ,m,

t ∈ [nT, (n+1)T ), n ∈ Z+, in the class of functions which are continuous in v̂ and

piece-wise continuous in t, such that for any constant control vector v̂ ∈ R
r−1:

γ(T, û) = γe(T, v̂) (2.22)

where γ(T, û) and γe(T, v̂) denote the γ-coordinates at time T corresponding to

systems ΣH and ΣeH with controls û ∈ R
m and v̂ ∈ R

r−1, respectively.
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Remark 2.6. Reformulating the TIP as an LCIP is advantageous since the LCIP is clearly inde-

pendent of the initial condition x = x(0) (both the FIP or the LCIP are always solved with initial

condition S(0) = Se(0) = I or γ(0) = γe(0) = 0, respectively), although the control functions û(v̂, t)

must be found in terms of the parameter v̂ — the value of the extended control for the extended

system Σe. On the other hand, the LCIP allows to abstract the problem from the particular vector

fields as the LCIP only depends on the specific structure of the Lie algebra L(F).

Fig. 2.2 (a) illustrates the TIP in which trajectories of the extended and the original systems with

control v and u, respectively, are matched after a period of time T . The equivalent problem as a

LCIP independent of the initial condition x(0) = x0 is shown in Fig. 2.2 (b).

xo(T, x0, u) = xe(T, x0, v)

xo(t, x0, u)

x0

xe(t, x0, v)

γ(0) = 0

γ(T, û) = γe(T, v̂)

γ(t, û)

γe(t, v̂)

(a) Trajectory interception problem. (b) Logarithmic coordinate interception
problem.

Figure 2.2. Trajectory interception problem (TIP) for systems Σ and Σe starting from x0

at t = 0 with controls u and v, respectively, and the corresponding logarithmic coordinate
interception problem (LCIP) on the Lie group.

It is worth pointing out that the existence of solutions to the TIP (or LCIP) with controls in the class

of smooth functions is guaranteed under hypothesis H2 and the following result of Jurdjevic, [3],

which establishes that any controllable system with piece-wise controls is also controllable using

smooth controls (see part ii. of the theorem).

Theorem 2.2 (Jurdjevic, [3], p. 110). Let U ∈ Pm denote the set of admissible controls (in the set

of piece-wise constant controls) and denote by Σ(U) system Σ on a smooth manifold M and with

piece-wise constant controls. Then,
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i. Suppose that U is convex and that xf is normally accessible by Σ(U) from x0 in T units

of time. Then there exists a smooth control u(t) defined on an interval [0, T ] such that the

corresponding trajectory x(t) of Σ generated by u(t) satisfies x(0) = x0 and x(T ) = xf .

ii. If Σ(U) is a Lie-determined system, i.e. a system for which the tangent space TxM of

each x in an orbit of Σ(U) coincides with Lx(F), then any point in the interior of the

reachable set of Σ(U) that can be reached from a point x0 is also reachable by a trajectory

x(t) of Σ generated by a smooth control u(t). If, furthermore, Σ(U) is controllable, then

any two points of the manifold M can be connected to each other in a positive time by a

trajectory of Σ generated by a smooth control.

An approach to the construction of time-varying feedback controls for the stabilization of bilinear

systems which is entirely based on the solution of the TIP as an LCIP is presented in Chapter 5,

p. 112. The reader is advised to consult sections 3.3.1 and 5.3 of this thesis, and especially the

examples in section 3.4 and 5.4 for further insight into the TIP and LCIP. Even though chapters 3

and 4 present methods which partially draw on ideas related to the TIP and the open-loop control

problem on the Lie group, fair understanding of these topics is assumed and details are omitted with

purpose of focusing on the proposed approaches and avoiding unnecessary repetition.
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CHAPTER 3

Continuous Time-Varying Stabilization Feedback Approach

A novel method is presented for construction of stabilizing time-varying feedback controls for non-

linear systems with drift, [77]. The proposed approach draws on the ideas of [42, 43], which apply

to systems without drift. The method combines the construction of a periodic time-varying criti-

cally stabilizing control with the on-line calculation of an additional corrective term to provide for

asymptotic convergence to the origin. The periodic control is obtained through a solution of an

open-loop control problem on the associated Lie group which is posed as a trajectory interception

problem in the γ-coordinates of flows.

3.1. Introduction

Most methods for the construction of control laws that stabilize system Σ in equation (1.1) start

by finding a Lyapunov function for some type of linearization of Σ, see for example [58, 2], or else

assume the existence of a suitable control Lyapunov function which can be forced to decrease to

zero by an adequate choice of controls in (1.1), cf. [73] and references therein. However, as outlined

in Section 1.4, strongly nonlinear systems often result in uncontrollable linearizations. Moreover it

is well known that finding suitable control Lyapunov functions is extremely difficult. These facts

motivate the use of Lie algebraic methods for the stabilization of (1.1) which, in contrast to the

above mentioned approaches, have been less explored.

The novel state-feedback synthesis method presented in this chapter employs a time-periodic feed-

back which brings into play the Lie brackets of the vector fields fi, i = 0, 1, . . . ,m. The method

relies on the Lie bracket extension (2.1) of system Σ and partially draws on the well known ideas of
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Coron and Pomet, see [42, 43, 48], who constructed time-periodic stabilizing controls for systems

without drift. Under reasonable assumptions, a (critically) stabilizing time-periodic feedback control

is first constructed for Σ using the extended system Σe and a specific solution of an open-loop, finite

horizon control problem. This open-loop control problem is posed in terms of the γ-coordinates for

flows, [149, 44], and its purpose is to generate open-loop controls such that the trajectories of the

controlled extended system and the open-loop system intersect after a finite time T , independent of

their common initial condition.

An additional “correction term” is next determined for the time-periodic stabilizing control to make

the aggregated feedback law asymptotically stabilizing for system Σ. The corrective term is cal-

culated to be a control which decreases a Lyapunov function whose level sets contain the periodic

orbits of the system stabilized by the time-periodic feedback.

The synthesis method is general and applicable to a large class of nilpotent systems which do not

lend themselves to controllable linearization (be it through state-feedback transformations, or else

simply around some operating points).

3.2. Problem Definition and Assumptions

Problem Definition. Construct smooth time-varying feedback controls ui(x, t) ∈ C∞ : R
n ×R+ →

R, i = 1, . . . ,m, such that system Σ in (1.1), is Lyapunov asymptotically stable.

For convenience of notation let W
def
= B(0, R), and denote by Φu(t, x) the solution to Σ starting from

x ∈ R
n at time t = 0 and resulting from the application of a control u(x, t)

def
= [u1(x, t) · · · um(x, t)]T .

Similarly, Φev(t, x) denotes the solution to Σe starting from x ∈ R
n at time t = 0 and arising from

the application of an extended control v(x)
def
= [v1(x) · · · vr−1(x)]

T .

By the controllability hypothesis H2 and Theorem 2.2, implied is the existence of a smooth control

w : R
n × R → R

m that critically stabilizes system Σ, i.e. the control w ∈ C∞ is such that for any

x ∈W , Φw(t, x), t ∈ R, is a periodic (closed) orbit of system Σ, which satisfies Φw(t+T, x) = Φw(t, x)

for all x ∈W and t ∈ R.

The construction of the asymptotically stabilizing control u : R
n × R → R

m relies on the controlla-

bility properties of the linearization of system Σ about the critical trajectory Φw(t, x). To this end,
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consider equation (1.1) as satisfied by a trajectory Φw(t, x) of system Σ:

∂Φw(t, x)

∂t
= f0(Φw(t, x)) +

m∑

i=1

fi(Φw(t, x))wi(Φw(0, x), t) Φw(0, x) = x (3.1)

The linearization of Σ along the trajectory Φw(t, x) can then be expressed as

ϕ̇ = ∂
∂x [f0(Φw(t, x)) +

∑m
i=1 fi(Φw(t, x))wi(Φw(t, x), t)]ϕ+

∑m
i=1 fi(Φw(t, x))υi (3.2)

where υi = w̃i − wi, i = 1, . . . ,m, are the controls and ϕ(t) = Φw̃(t, x) − Φw(t, x).

The approach also relies on the mapping Φw being a C∞ diffeomorphism, at least on the set W ,

with the inverse mapping Φ−1
w of Φw defined as a mapping such that for any z = Φw(t, x) ∈ R

n,

Φ−1
w (t, z) = Φ−1

w (t,Φw(t, x)) = x, i.e. given a state z = Φw(t, x) of the critically stabilized system,

the inverse mapping Φ−1
w applied to z retrieves the starting point x of the periodic orbit which passes

through z at time t. Note that if Φ−1
w is applied to a state ẑ = Φu(t, x) of the system with a given

control u, then Φ−1
w (t, ẑ) = Φ−1

w (t,Φu(t, x)) = x̂, where x̂ is the starting point of a critically stable

trajectory Φw(t, x̂) = ẑ passing through ẑ at time t. In general, x̂ 6= x, unless e.g. w = u.

To show that Φw is a C∞ diffeomorphism it will be convenient to consider the variational equation

for the evolution of Φw(t, x) obtained by differentiating (3.1) with respect to x and given by:

∂

∂t

∂x̄

∂x
=

∂f0(x̄)

∂x̄

∂x̄

∂x
+

m∑

i=1

∂fi(x̄)

∂x̄

∂x̄

∂x
wi(x, t) +

m∑

i=1

fi(x̄)
∂wi(x, t)

∂x
(3.3)

∂Φw(0, x)

∂x
= I

where for simplicity of notation x̄
def
= Φw(t, x).

Remark 3.1. In (3.3), the trajectory Φw(t, x) can be differentiated with respect to x because the

control w is constructed to be a smooth function and because, under assumption H1, the right-hand

side of equation (1.1) with control w, fw(x), is differentiable with respect to x; see [176, Thm.

11.1.2, p. 491]. Actually, a stronger result concerning the smoothness of Φw holds, namely Φw ∈ C∞

as by construction w ∈ C∞ and all the vector fields in the definition of the system are analytic.
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Letting J(t)
def
= ∂x̄

∂x (t), equation (3.3) can be expressed as:

J̇(t) = A(x̄)J(t) +B(x̄) J(0) = I (3.4)

with

A(x̄)
def
=

∂f0(x̄)

∂x̄
+

m∑

i=1

∂fi(x̄)

∂x̄
wi(x, t)

(3.5)

B(x̄)
def
=

m∑

i=1

fi(x̄)
∂wi(x, t)

∂x

For the construction of the stabilizing control u to be valid, the following hypotheses are necessary

in addition to assumptions H1–H3 in Chapter 2:

H4. The origin is an isolated equilibrium state of the unforced system ẋ = f0(x).

H5. There exists a a period T > 0 and a critically stabilizing periodic control w ∈ C∞ :

R
n × R → R

m satisfying:

w(0, t) = 0 ∀ t ∈ R (3.6)

w(x, t+ T ) = w(x, t) ∀ t ∈ R, ∀ x ∈W (3.7)

such that for any x ∈ W the closed-loop trajectory Φw(t, x) is periodic with period

T , and the linearization (3.2) of system (1.1) along Φw(t, x) is a uniformly controllable

time-varying system (see definition in [31]).

H6. It is assumed that a
def
= supx∈W ‖A(x)‖ and c

def
= supx∈W ‖A(x) + B(x)‖ are finite, and

that T ∈ (0, Tmax] with Tmax satisfying:

0 < Tmax <
1

a
log(1 +

a

c
) (3.8)

Remark 3.2. It is worth pointing out that assumption H4 can be relaxed, but in this case a more

elaborated construction of the periodic stabilizing control and more complex computational issues are

involved.
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It follows from [31, Thm. 4 and Def. 3] that assumption H5 implies that the time-varying sys-

tem (3.2) can be instantaneously steered from any state to any other state using impulsive controls

and that the condition given in [31] is equivalent to the following condition (see [42]):

span {(L(w)pfi) (x, t), p ≥ 0, i = 1, . . . ,m} = R
n ∀ x ∈W \ 0 and a given t ∈ [0, T ] (3.9)

where, for u ∈ C∞ : R
n × R → R

m, the operator L(u) ∈ C∞(Rn; Rn) is defined by1:

L(u)X =
∂X

∂t
+

[

f0 +
m∑

i=1

fiui, X

]

∀ X ∈ C∞ : R
n × R → R

n (3.10)

where [·, ·] denotes the standard Lie bracket, L(u)0X
def
= X and L(u)pX

def
= (L(u)p−1)(L(u)X).

3.3. The Synthesis of the Feedback Control

The asymptotically stabilizing feedback for system Σ is constructed in two stages as the sum of two

control components:

u(x, t)
def
= w(x, t) + ∆u(x, t)

w(x, t)
def
= [w1(x, t), . . . , wm(x, t)]T (3.11)

∆u(x, t)
def
= [∆u1(x, t), . . . ,∆um(x, t)]T

where w ∈ C∞ : R
n × R → R

m is the control satisfying (3.6) and (3.7), that renders system

Σ critically stable, and where ∆u : R
n × R → R

m is a suitable control correction term which

additionally provides for asymptotic stabilization. The design of w and ∆u is discussed next.

3.3.1. Construction of the Critically Stabilizing Periodic Control

First, a critically stabilizing feedback for the extended system Σe is defined as

v(x)
def
= [v1(x) · · · vr−1(x)]

T = −Q(x)†g0(x) (3.12)

where Q(x)
def
= [g1(x) · · · gr−1(x)] and Q(x)† denotes the Moore-Penrose pseudo-inverse of the state

dependent matrix Q. Since, by assumptions H2 and H4, spanLx(F) = R
n for all x ∈ R

n, the rank

1Here, C∞(Rn; R
n) denotes the family of all C∞ vector fields f : R

n → R
n.
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of the matrix Q(x) = [g1(x) · · · gr−1(x)]
T is n for all x ∈ R

n, and therefore rank(Q(x)T ) = n. Thus

QTx 6= 0, for all x ∈ R
n, and hence ‖QTx‖ = xTQQTx > 0 ⇒ QQT > 0 and det(QQT ) > 0, which

implies Q(x)Q(x)T is invertible for all x ∈ R
n, so that Q(x)† = Q(x)T [Q(x)Q(x)T ]−1 is the right

inverse of Q(x), i.e. Q(x)Q(x)† = I for all x ∈ R
n. The existence of Q† thus ensures the existence

of the critically stabilizing extended control v for all x ∈ R
n. The properties of the control v are

stated in terms of the following proposition.

Proposition 3.1. The control v : R
n → R

m defined by (3.12) renders the extended system critically

stable and is such that for all x ∈W :

v(Φev(t, x0)) = v(x0) = const. ∀ t ≥ t0 (3.13)

for any initial condition x(t0) = x0 satisfying g0(x0) 6= 0.

Proof. With v defined as in (3.12), it follows that the trajectories of the extended system Σe

satisfy

ẋ = g0(x) +Q(x)v(x) = 0 (3.14)

which is a stable, trivially periodic system. Moreover, Φe
v(t, x0) = Φev(t0, x0) = x0 for all t ≥ t0, as

Φev is a solution of ẋ = 0. �

The next step involves solving the trajectory interception problem (TIP) described in Section 2.5,

p. 35, as an open-loop control problem on the Lie group. The task of the open-loop control problem

is to generate the time-varying part of the controls ui(x, t), i = 1, . . . ,m, for the original system

Σ such that its trajectories and the trajectories of the extended system Σe intersect periodically

with the given frequency 1/T . To this end, the TIP (2.21) is solved as an LCIP (2.22) only once

with respect to the constant controls v̂ = v(x), defined in (3.12), and with controls û(v̂, t) being

sought in the class of smooth functions. The critically stabilizing control w is then defined as a

periodic continuation of the control û(v̂, t). A periodic continuation of a mapping defined some some

subinterval of R is another mapping defined as follows.

46



3.3. THE SYNTHESIS OF THE FEEDBACK CONTROL

Definition 3.1. - Periodic Continuation.

Let f : [0, T ] → R, T > 0, be a mapping defined over an interval [0, T ]. The periodic continuation

of f is a mapping g : R+ → R defined as:

g(t)
def
= f(mod(t, T )) t ≥ 0 (3.15)

where mod(a, b) is the remainder of a/b. Note that since mod(a, b) = a for 0 ≤ a < b and mod(a, b) ∈

[0, b] for a ≥ b, the periodic continuation g in (3.15) satisfies:

g(t+ T ) = g(t) ∀ t ≥ 0, (3.16)

With the above definition, the critically stabilizing control w(x, t) in terms of the solution û(v̂, t) to

the trajectory interception problem (stated below) is formally defined as follows:

w(x, t) = û(v̂(x),mod(t− t0, T )) = û(v̂(x0),mod(t− t0, T )) for all t ≥ t0 (3.17)

where (x0, t0) is any point such that the trajectory of Σ with control w passes through x0 at time

t0.

For clarity of exposition, the TIP (2.21) and LCIP (2.22) are re-stated here as follows:

TIP: For a fixed value of the time horizon T ∈ (0, Tmax], find a control function

(v̂, t) → û(v̂, t), û : R
r−1 × [0, T ] → R

m, whose periodic continuation is in

the class of C∞ functions, such that for any initial condition x(0) = x0 ∈ W ,

x0 6= 0, at time t0 = 0 and any constant extended control vector v̂ ∈ R
r−1, the

trajectory Φev̂(t, x0) of the extended system Σe:

ẋ = g0(x) +

r−1∑

i=1

gi(x)v̂i, x(0) = x0
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intersects the trajectory Φû(t, x, û) of the original system Σ with control

û ∈ R
m:

ẋ = f0(x) +
r−1∑

i=1

fi(x)ûi(v̂, t), x(0) = x0

precisely at time T , so that

Φû(T, x) = Φev̂(T, x) for all v ∈ R
r−1 (3.18)

Remark 3.3. In the above TIP, the control û, together with its periodic continuation, are sought in

the class of C∞ functions and not in the class of piecewise continuous functions as in the TIP stated

on p. 37 of Chapter 2. This is to insure that w is in fact a smooth function.

The formalism presented in Chapter 2 allows to re-state the above TIP as a problem of matching

the flows of the right-invariant systems ΣH and ΣeH (see equations (2.7) and (2.9)) on the analytic,

simply connected Lie group H at time T , i.e. as a flow interception problem (FIP) in which given an

extended control v̂, a control û must be found such that S(T, û) = Se(T, v̂), and hence Φev̂(T, x) =

φ+
G(Se(T, v̂))x = φ+

G(S(T, û))x = Φû(T, x). Denoting by φ+
L the Lie algebra isomorphism introduced

in Theorem 2.1, p. 28, which is such that for any fi, gi ∈ L(F), (φ+
L)−1(fi) = ηi ∈ L(H), and

(φ+
L)−1(gi) = µi ∈ L(H), the FIP on the Lie group H is stated here as follows:

FIP: Consider the two formal initial value problems:

S1 :







Ṡe(t) = (φ+
L)−1

[

f0 +
∑r−1
i=1 fiv̂i

]

Se(t)

Se(0) = e ∈ H
(3.19)

S2 :







Ṡ(t) = (φ+
L)−1 [g0 +

∑m
i=1 giûi(v̂, t)]S(t)

S(0) = e ∈ H
(3.20)
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For a fixed value of the time horizon T ∈ (0, Tmax], find a control function

(v̂, t) → û(v̂, t), û : R
r−1 × [0, T ] → R

m, whose periodic continuation is in

the class of C∞ functions, such that for any constant extended control vector

v̂ ∈ R
r−1, the above flows (of the extended and original systems, respectively)

intersect at time T , i.e.:

S(T, û) = Se(T, v̂) (3.21)

The result of Wei and Norman, [149], establishes that the solution to both initial value problems

S1 and S2 has the same general representation as the products of exponentials in (2.16) and that

the γ-coordinates parametrizing the flows satisfy the corresponding differential equations in (2.17).

The latter allows to reformulate the following logarithmic-coordinate interception problem (LCIP)

such that γ(T ) = γe(T ), (thus implying S(T, û) = Se(T, v̂)):

LCIP: Consider the two formal “control systems” of equation (2.17):

CS1 : γ̇e(t) = Γ (γe(t))
−1
vd, γe(0) = 0 (3.22)

CS2 : γ̇(t) = Γ (γ(t))
−1
ud, γ(0) = 0 (3.23)

with ud = [1 û(v̂, t) 0 . . . 0]T ∈ R
r and vd = [1 v̂]T ∈ R

r. For a fixed value

of the time horizon T ∈ (0, Tmax], find a control function (v, t) → u(v, t),

u : R
r−1 × [0, T ] → R

m, whose periodic continuation is in the class of C∞

functions, such that for any constant extended control vector v ∈ R
r−1:

γ(T, u) = γe(T, v) (3.24)

where γ(T, û) and γe(T, v̂) denote the γ-coordinates at time T of systems ΣH

and ΣeH with controls u ∈ R
m and v ∈ R

r−1, respectively.

Remark 3.4.

• Note that the above TIP, FIP or LCIP must be solved only once, on an time interval

[0, T ], to obtain a control û(v̂, t) in terms of the the constant controls v̂.
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• Problem LCIP is just a conventional open-loop control problem for the differential system

in the logarithmic coordinates γ with terminal constraint which is parametrized by v̂. Its

solution is generally non-unique and can be obtained by using algorithms similar to those

found in [52, 47], which employ oscillatory functions such as the sine and cosine, with

adequately selected frequencies and phase shifts. The analysis of the algorithms in [52, 47]

shows that the open-loop control û accomplishing TIP can be sought as linear combinations

of such oscillatory functions with coefficients that smoothly depend on the parameter v̂.

• The existence of smooth open-loop controls ûopen : t → R
m, ûopen

def
= û(v̂, t), that solve

the TIP, or equivalently LCIP, is guaranteed by the complete controllability hypothesis H2

and Theorem 2.2.

As mentioned earlier, both FIP and LCIP are independent of the initial condition x(0) = x0.

However, the original system controls û(v̂, t) must be found in terms of the constant extended

controls v̂, which depend on the initial condition. In this sense, the periodic continuation w(x, t)

of the solution û(v̂, t) to LCIP delivers a feedback control which depends on the state x(nT ) at

discrete intervals of time t = nT , n ∈ Z+. The following proposition ensures the critically stabilizing

properties of the control w(x, t).

Proposition 3.2. Under hypotheses H1, H2 and H4, the original system Σ:

ẋ(t) = f0(x(t)) +

m∑

i=1

fi(x(t))wi(x, t), x(0) = x0 (3.25)

with controls wi(x, t), i = 1, . . . ,m, defined by (3.17), has a periodic solution (with period T ) for

any initial condition x0 ∈ B(0, R). Furthermore, the time periodic control w(x, t) satisfies (3.6)

and (3.7).

Proof. Under the controllability assumption H2 and by Theorem 2.2, there exists a C∞ control

w defined as in (3.17) in terms of a control û(v̂, t) that solves the TIP.

By construction, the control w is such that Φw(t0 + nT, x0) = Φev(t0 + nT, x0), for n ∈ Z+. Since

Φev(t0 + nT, x0) = x0 for n ∈ Z+, then also Φw(t0 + nT, x0) = x0 for n ∈ Z+ regardless of (x0, t0).
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The periodicity of w simply follows from the fact that the solution of the TIP is evaluated at discrete

moments of time nT , n ∈ Z+, at the same point Φw(nT, x0) = x0, n ∈ Z+. Condition (3.6) that

w(0, t) = 0 for all t ∈ R is trivially satisfied since, by assumption H4, x = 0 is an equilibrium point

of the system. �

3.3.2. Asymptotically Stabilizing Correction to the Periodic Control

Once the critically stabilizing control w is computed, a corrective control term ∆u, which makes the

resulting closed-loop system asymptotically stable, is further introduced while drawing on the idea

proposed by Coron and Pomet in [42, 43] for systems without drift. The control correction term is

found by requiring that the following Lyapunov function:

V (x, t) =
1

2

∥
∥Φ−1

w (t, x)
∥
∥

2
(3.26)

decreases along the trajectories of the closed-loop system using the combined control u(x, t) =

w(x, t) + ∆u(x, t). The existence of the above Lyapunov function relies on the invertibility of Φw,

which is ensured by the following proposition.

Proposition 3.3. Let R1 < R be such that for any x0 ∈ B(0, R1), the trajectory Φw(t, x0) belongs

to W for all t ≥ 0. Then the mapping x→ Φw(t, x) is a global C∞ diffeomorphism of B(0, R1) onto

its image {z ∈ R
n | z = Φw(t, x0), x0 ∈ B(0, R1)}.

Proof. First, to demonstrate that Φw is a C∞ (local) diffeomorphism, the Inverse Function

Theorem (see Section C.2 of Appendix C, p. 251) may be applied.

Accordingly, it is sufficient to demonstrate that the strong differential of the mapping Φw with respect

to x, Φ′
w|x(t, x) : R

n → R
n, evaluated at any x ∈ B(0, R1) and a fixed t ≥ 0 is an isomorphism,

i.e. that the Jacobian ∂Φw(t,x)
∂x is nonsingular for any x ∈ B(0, R1) and t ≥ 0. For this to hold it is

sufficient that

∥
∥
∥
∥

∂Φw(t, x)

∂x
− I

∥
∥
∥
∥
< 1 (3.27)

for any x ∈ B(0, R1) and t ≥ 0, where ‖ · ‖ is any induced (operator) matrix norm; see [176, Thm.

3.6.1., p. 76].
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To show (3.27), note that by (3.4),

J(t) − J(0) =

∫ t

0

A(x̄)J(s)ds+

∫ t

0

B(x̄)ds

=

∫ t

0

A(x̄)J(0)ds+

∫ t

0

A(x̄)(J(s) − J(0))ds+

∫ t

0

B(x̄)ds

and since J(0) = I, the application of the Gronwall-Bellman Lemma (see Appendix C.1, p. 249)

yields:

‖J(t) − I‖ ≤
∫ t

0

‖A(x̄) +B(x̄)‖ds+

∫ t

0

‖A(x̄)‖ ‖J(s) − I‖ds
(3.28)

≤ c

a
(exp(at) − 1) < 1

where the constants a and c are bounds defined for any x ∈W according to assumption H6. Hence,

for any x ∈ B(0, R1) and any fixed t ≥ 0 there exists a neighborhood U(x) ⊂ B(0, R1) such that Φw

is a C∞ diffeomorphism on U(x).

Next, it will be demonstrated that the mapping Φw is in fact proper, which will guarantee that

Φw is a global diffeomorphism as stated in the assertion of the proposition. To this end, note that,

by virtue of continuity of Φw, the inverse image Φ−1
w (t, C)

def
= {z ∈ R

n | z = Φ−1
w (t, x), x ∈ C} of

any closed subset C ⊂ W is closed. It remains to show that Φ−1
w (t, C) is bounded whenever C is

bounded. To see that the last is true, observe that by continuous differentiability of Φw there exists

a constant M > 0 such that ‖Φw(t, x)‖ ≤ M‖x‖ for any fixed t ≥ 0 and all x ∈ C ⊂ W , where

C is assumed to be compact. Let D ⊂ R
n be a set containing all trajectories passing through C:

D
def
= {Φw(t, x) | t ≥ 0, x ∈ C}. Then D is bounded by M‖R‖. By the definition of the inverse

image and the fact that all the trajectories are periodic, Φ−1
w (t, C) ⊂ D, which ends the proof as Φw

is shown to be proper2. �

2A map f is said to be proper if the inverse image of f on a compact set is compact, see definition on p. 48 of [188].
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The time derivative of V along the trajectories of a closed-loop system employing the combined

control (3.11) is given by

V̇ (x, t) =
∂V

∂t
+ ∇V (Φw(t, x0), t) · [f0(x) +Qo(x)(w + ∆u)]

=
∂V

∂t
+ ∇V (Φw(t, x0), t) · [f0(x) +Qo(x)w]

︸ ︷︷ ︸

=0

+∇V (Φw(t, x0), t) ·Qo(x)∆u (3.29)

where ∇V def
= ∂V

∂x and Qo(x)
def
= [f1(x) · · · fm(x)]. Note that the first two terms of (3.29) are zero

because w critically stabilizes the system. Hence, choosing

∆u = −K [∇V (Φw(t, x0), t) ·Qo(x)]T (3.30)

yields

V̇ (x, t) = −K
∥
∥
∥[∇V (Φw(t, x0), t) ·Qo(x)]T

∥
∥
∥

2

≤ 0 (3.31)

To evaluate the gradient of V (x, t) in (3.30) it is convenient to let h(x, t) = Φ−1
w (t, x), thus V = 1

2h
Th

and

∇V (x, t) =
∂V

∂x

∣
∣
∣
∣
(x,t)

= hT

[

∂h

∂x

∣
∣
∣
∣
(x,t)

]

=
[
Φ−1
w (t, x)

]T
[
∂Φ−1

w (t, x)

∂x

]

(3.32)

Employing the fact that Φw(Φ−1
w (t, x), t) = x, whose differential with respect to x is given by

[

∂Φw
∂x

∣
∣
∣
∣
(Φ−1

w (t,x),t)

][

∂Φ−1
w

∂x

∣
∣
∣
∣
(x,t)

]

= I (3.33)

allows to obtain the following expression relating the Jacobians of the forward and inverse mappings

Φ and Φ−1:

[

∂Φ−1
w

∂x

∣
∣
∣
∣
(x,t)

]

=

[

∂Φw
∂x

∣
∣
∣
∣
(Φ−1

w (t,x),t)

]−1

(3.34)

which substituted in (3.32) yields the final expression for the ∇V (x, t):

∇V (x, t) =
[
Φ−1
w (t, x)

]T

︸ ︷︷ ︸

xT
0

[

∂Φw
∂x

∣
∣
∣
∣
(x0,t)

]−1

(3.35)
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Note that since Φ−1
w (t, x) = x0, the first term in (3.35) is actually the initial state from which the

periodic trajectory generated by w would have to start in order for it to reach the state x at time t.

The second term is the Jacobian of Φw with respect to variations in the initial state x0 = Φ−1
w (t, x)

corresponding to the current state x = x(t) = Φw(t, x0) at time t. It is also worth pointing out that

the purpose of replacing the Jacobian of the inverse mapping Φ−1 in (3.32) by the inverse of the

forward mapping Φ is to make more computationally tractable the actual calculation of the gradient

of V (x, t).

The proposed approach is illustrated in Fig. 3.1, that shows the critically stabilized system for which

x0 = Φw(0, x0) = Φw(T, x0) in Fig. 3.1.a, and the trajectories of the system with the asymptotically

stabilizing correction term ∆u(x, t) in Fig. 3.1.b. The decrease in V (x, t) is represented in Fig. 3.1.b

by the state Φw+∆u(t, x0) which is “closer” to the origin as compared to the state Φw(t, x0) on

the closed orbit. The figure also shows that in order to compute the correction term ∆u(x, t) it is

necessary to find the starting point x0 of the critically stable trajectory passing through the current

state x = Φw(t, x0).

t > 0

x0 = x(0) = Φw(0, x0) = Φw(T, x0)

w(x, t) = w(x, t+ T )t = 0

x = x(t) = Φw(t, x0)

x0 = x(0) = Φw(0, x0)

Φw(t, x0)

x

O

‖Φ−1
w (t, x)‖

Φu(t, x) = Φw+∆u(t, x0)

(a) Trajectory of the closed-loop system Σ with
critically stabilizing control w(x, t).

(b) Trajectory of the closed-loop system Σ with
asymptotically stabilizing corrected control
u(x, t) = w(x, t) + ∆u(x, t).

Figure 3.1. The continuous time-varying feedback approach based on the critical stabi-
lization of Σ and the calculation of an asymptotically stabilizing corrective control term.

3.3.3. The Combined Time-Varying Feedback Control

Under reasonable assumptions, equation (3.31) permits to prove the final stabilization result for the

combined time-varying feedback control, as constructed above. The proof uses a similar argument
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to an analogous result of Coron and Pomet [42], valid for systems with no drift, and is included here

for completeness.

Theorem 3.1. Under the assumption that hypothesis H1, H2 and H4 are valid, the control (3.11),

with w(x, t) = û(v̂, t) the solution to the (LCIP) and ∆u(x, t) given by (3.30), is a locally asymp-

totically stabilizing feedback law for system (1.1) on W1
def
= B(0, R1) for some R1 > 0 satisfying

Proposition 3.3.

Proof. Convergence of trajectories to zero (local asymptotic stability) will be shown invoking

an extension of the LaSalle’s Invariance Principle, see [25, 40], which applies to systems with periodic

right-hand side, i.e. fu(x, t) = fu(x, t+ T ), under the additional assumptions that:

V ∈ C∞ : W1 × R → R+ (3.36)

V (x, t) > 0 ∀ x 6= 0, V (0, t) = 0 (3.37)

V (x, t+ T ) = V (x, t) ∀ (x, t) ∈W1 × R (3.38)

Clearly, (3.36)–(3.38) are satisfied by virtue of the definition of the Lyapunov function V in (3.26),

the construction of the control (3.17), (which is smooth and, by Proposition 3.2, satisfies (3.6)–(3.7)),

and the fact that the mapping x→ Φw(t, x) is a C∞ diffeomorphism (by Proposition 3.3). Also note

that due to these facts, the time-varying control u in (3.11), is smooth and satisfies (3.6)–(3.7), and

therefore, the right-hand side of the closed-loop system Σ is periodic.

Since the closure of W1 is compact, positive definiteness and decrescence of V follows from the fact

that, by construction, V (x, t) > 0 for all x 6= 0 and V is continuous and therefore bounded on W1.

Thus, by (3.31) and a standard Lyapunov stability result, there exists a ball of radius B(0, δ) such

that if x0 ∈ B(0, δ) then Φu(t, x0) ∈W1 for t ≥ 0.

To establish that V is decreasing along the solutions of system Σ with controls u = w + ∆u after a

period T , i.e. that V satisfies:

V (Φu(T, x), T ) < V (Φu(0, x), 0) ∀ (x, t) ∈W1 × R, x 6= 0 (3.39)
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note first that for a fixed x ∈ W1 ⊂ R
n (3.31) implies that V is non-increasing along the solutions

of systems Σ. Hence,

V (Φu(T, x), T ) ≤ V (Φu(0, x), 0) (3.40)

where the equality occurs if and only if (3.31) is zero for all t ∈ [0, T ]. From the definition of ∆u

in (3.30) and the right-hand side of (3.31), observe that the equality occurs if and only if:

∆ui = ∇V (Φu(t, x), t)fi(Φu(t, x)) = 0 ∀ i = 1, . . . ,m, ∀t ∈ [0, T ] (3.41)

It will now be shown that the origin is the largest invariant set M = {0} contained in the set

E = {x : V̇ (x, t) = 0, x ∈ W1}. Thus, proceeding as in [22], assume that(3.40) is an equality,

then (3.41) implies that u(t, x) = w(t, x) for all t ∈ [0, T ] and

Φu(t, x) = Φw(t, x) ∀ t ∈ [0, T ] (3.42)

Let X be in C∞ : R
n → R

n. For any such X one has

d

dt
(LXV (Φw(t, x), t)) =

∂LXV

∂t
(Φw(t, x), t) + (LfwLXV ) (Φw(t, x), t)

= (LL(u)XV )(Φw(t, x), t) + LX (LfwV ) (Φw(t, x), t) (3.43)

= (LL(u)XV )(Φw(t, x), t)

where L(u) is the operator defined in (3.10), and fw
def
= f0 +

∑m
i=1 fiwi is the right-hand side of

system Σ. The second expression in (3.43) is obtained by invoking the relation satisfied by the Lie

derivative operator LfLg − LgLf = L[f,g] (see Definition A.49 on p. 220 of Appendix A) and the

definition of the operator L(u) in (3.10). The last expression in (3.43) results from the fact that

V̇ (x, t) = LfwV (x, t) = 0 along the trajectories Φw(t, x) of the critically stable system.

Similarly, by induction on p, it is possible to confirm that

dp

dtp
(LXV (Φw(t, x), t)) = (LL(u)pXV )(Φw(t, x), t) (3.44)
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By (3.44), (3.42) and (3.41):

(LL(u)pfi
V )(Φw(t, x), t) = (3.45)

∂V

∂x
(Φw(t, x), t)L(u)pfi(Φw(t, x)) = 0 i = 0, 1, . . . ,m, p ≥ 0, ∀ t ∈ (0, T )

and hence, by (3.9), there exists t∗ ∈ (0, T ), such that

∂V

∂x
(Φw(t∗, x), t∗) = 0 (3.46)

By virtue of (3.35) and because Φ−1
w (t∗, ·) is a diffeomorphism, equation (3.46) implies that

Φ−1
w (t,Φw(t∗, x)) = x = 0. Hence, the M = {0} is the largest invariant set in E. Lyapunov

asymptotic stability of the closed-loop system Σ with control (3.11) then follows by the LaSalle’s

Invariance Principle for time-varying periodic systems in Theorem 14.7, p. 64 of [40]. �

Remark 3.5.

(i) The evaluation of the time-periodic control w(x, t) is carried out off-line. From an im-

plementation point of view, the continuity of w(x, t) with respect to the time variable is

not important, as shown by the example presented next. In many cases, finding a so-

lution to the LCIP is easier in the class of functions which are only continuous in x

and piece-wise constant in t. It should be noted, however, that in the latter case, the

Lyapunov function (3.26) is differentiable almost everywhere, with the exception of the

points of discontinuity of w (where the correction term ∆u would then fail to be defined).

Under reasonable assumptions, the latter should not inhibit the stabilizing properties of

the resulting combined time-varying control.

(ii) The evaluation of the correction term ∆u must be performed on-line and involves the

following:

(a) The reconstruction of x0 according to Φ−1
w (x, t) = x0 which, in theory, should be

done at each point (x(t), t) along the controlled system trajectory, and in practice

can be done only discretely in time.

(b) The calculation in (3.35) of the Jacobian of Φw(x, t) and its inverse.
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From a numerical point of view, both of the above tasks are non-trivial and require efficient

numerical techniques, see the example presented next for one possible approach to these

on-line calculations.

3.4. Example

As an example consider the following single-input dynamical system Σ, on R
3, described by:

Σ : ẋ = f0(x) + f1(x)u1
def
= f(x, u) (3.47)

where,

f0(x) =









−x2 + x2
3

−x3

0









f1(x) =









0

2x3

1









It can be verified that system (3.47) fails to satisfy Brockett’s conditions for smooth stabilizability

given in Theorem 1.1 on p. 10. In fact, the system has an uncontrollable linearization and moreover,

for any ε 6= 0, points of the form [−x2 ε 0]T in a neighbourhood of 0 do not belong to the image

f . This is because f(x, u) = [−x2 ε 0]T implies that x3 = 0 and u = 0, but then f(x, u) ≡ 0.

Consequently, system (3.47) cannot be asymptotically stabilized to the equilibrium point xe = 0 by

a C1 static state feedback.

However, this system satisfies the LARC and is nilpotent with dimL(F) = 4 as shown by the

following Lie bracket multiplication table:

f0 f1 f2 f3

f0 0 f2 f3 0

f1 0 0 0

f2 0 0

f3 0

with

f2
def
= [f0, f1] =









0

1

0









and f3
def
= [f0, [f0, f1]] =









1

0

0









(3.48)
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Letting G = {g0, g1, g2, g3} = {f0, f1, f2, f3} the extended system Σe is given by:

Σe : ẋ = g0(x) +

3∑

i=1

gi(x)vi

for which the vector fields gi = fi, i = 2, 3, correspond to Lie brackets generated by f0 and f1.

It can be verified that the γ-coordinate equation (2.17) for the extended system is given by:

γ̇e(t) =













1 0 0 0

0 1 0 0

0 −γe0(t) 1 0

0
γe
0(t)2

2 −γe0(t) 1













vd (3.49)

with initial conditions γei (0) = 0, i = 0, 1, 2, 3. , and vd = [1 v̂]T .

The control that produces periodic trajectories for the extended system (generates trivially periodic

orbits) can be found by solving:

ẋ|x0
= f0(x0) +Q(x0) v̂ = 0 (3.50)

where

Q(x0) = [f1(x0) f2(x0) f3(x0)]

v̂ = [v̂1 v̂2 v̂3]
T and x0 = x(0)

so that,

v̂ = −Q(x0)
−1f(x0) (3.51)

which is constant for a given initial condition x0, allowing an easy integration of the equation in the

γ-coordinates. For Σe, the control vector is calculated to be v̂ = v(x0) = [0, x3(0), x2(0)−x3(0)
2]T ,
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and the integration of (3.49) at time t = T yields:

γe0(T ) = T

γe1(T ) = 0

γe2(T ) =

∫ T

0

−γe0(t)γe1(t) + v̂2dt = x3(0)T (3.52)

γe3(T ) =

∫ T

0

γe0(t)
2

2
v̂1(t) − γe0(t)v̂2 + v̂3dt (3.53)

= (x2(0) − x3(0)
2)T − x3(0)

T 2

2

Hence,

Se(t) =
3∏

i=0

exp(γei (t)gi) = exp(γe0(t)g0) exp(γe2(t)g2) exp(γe3(t)g3)

Using the CBH formula (see equation (A.13), p. 224 of Appendix A),

Se(t) = exp

(

γe0(t)g0 + γe2(t)g2 +

(
γe0(t)γe2(t)

2
+ γe3(t)

)

g3

)

(3.54)

A particular piece-wise constant solution to the TIP defined as a sequence of constant controls

w̄ = [w1, w2, w3], each applied to Σ for ε units of time with ε = T/3, is found by employing the CBH

formula (A.13) to obtain the expression for
∑3
i=0 ci(w̄, ε)gi in

S(T ) =
3∏

i=0

exp (εfwi) = exp

(
3∑

i=0

ci(w̄, ε)gi

)

(3.55)

such that S(T ) = Se(T ), where fwi , i = 1, 2, 3, is the right-hand side of Σ, (1.1), with constant

control wi. Equating the coefficients ci of gi, i = 0, 1, 2, 3, in (3.55) to those of gi in (3.54) and then

solving for the constant controls wi yields the sequence of controls w̄(v(x0), T ) =

{w1(v(x0), T ), w2(v(x0), T ), w3(v(x0), T )}. The periodic continuation of w(v(x0), t+ nT ) =

w̄(v(x0), T ) which solved the TIP is thus found to be:

w(v(x0), t+ nT ) =







9x3(0)
2T + 27

T 2

(
x2(0) − x3(0)

2
)

nT ≤ t < nT + ε

− 54
T 2

(
x2(0) − x3(0)

2
)

nT + ε ≤ t < nT + 2ε

− 9x3(0)
2T + 27

T 2

(
x2(0) − x3(0)

2
)

nT + 2ε ≤ t < nT + 3ε

(3.56)

with ε =
T

3
, forall n ∈ Z+
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Remark 3.6. Notice that the above solution corresponds to solving the TIP as a flow interception

problem in which controls u and v for the original and extended system are sought such that S(T ) =

Se(T ). The above problem could also have been solved as a logarithmic coordinate interception

problem by integrating the γ-coordinates equation (2.17) corresponding to system Σ with control

ud = [1 w̄ 0 . . . 0]T ∈ R
r, and then equating the resulting γ-coordinates at time T to those of Σe

given in (3.52).

The simulation results obtained by applying the proposed stabilizing feedback control calculated

with T = 3, K = 100 to system (3.47) starting from x0 = [2 − 1 .1]T are shown in Figure 3.2.
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(a) State trajectory x(t). (b) Lyapunov function V (x(t)).
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(c) Stabilizing feedback u(x, t). (d) Lyapunov function time derivative V̇ (t).

Figure 3.2. Results for the stabilization of the closed-loop system (3.47) with the control (3.11).

It is worth noting that efficient stabilization is achieved despite the fact that the time periodic,

critically stabilizing control w is only piece-wise continuous (and not continuously differentiable, as

required by the TIP formulation).
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Stabilization is also achieved despite that hypothesis H4 is not satisfied.

The numerical evaluation of the gradient involves “retrieving” the starting point x0 at time t of the

corresponding orbit generated with the control w which passes through the current state x(t). The

problem of numerically finding x0 is solved here by seeking:

x0 = arg min
x0∈Rn

‖x(t) − Φw(t, x0)‖2 (3.57)

The Levenberg-Marquardt modification of the Gauss-Newton method is employed as minimization

procedure.

The gradient ∇V is calculated here by using finite difference approximations to the partial derivatives

needed.
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CHAPTER 4

Discontinuous Time-Varying Feedback Approaches

This chapter presents two related approaches to the construction of stabilizing feedback controls for

strongly nonlinear systems, [79, 80, 82, 83]. The class of systems of interest includes systems with

drift which are affine in control and which cannot be stabilized by continuous state feedback. The

approaches are independent of the selection of a Lyapunov type function, but require the solution of

a nonlinear programming satisficing problem which is stated in terms of the logarithmic coordinates

of flows, or in terms of expressions resulting from the composition of flows using the Campbell-

Baker-Hausdorff (CBH) formula. As opposed to other approaches, point-to-point steering is not

required to achieve asymptotic stability. Instead, the flow of the controlled system is required to

intersect periodically a certain reachable set in the space of the logarithmic coordinates.

4.1. Introduction

This chapter presents two approaches to the design of feedback stabilizing controls for systems with

drift of the form of system Σ in equation (1.1).

The proposed approaches are a combination of a smooth and a discontinuous time-varying state

feedback law. In most applications the control law is sought in the class of functions with some

desirable degree of smoothness. As earlier mentioned, systems of the type of system Σ may however

not be smoothly stabilizable, and therefore, time-varying or discontinuous feedback laws are required.

Since time-varying and discontinuous control laws are: (a) harder to design, (b) significantly more

complex than smooth static feedback laws and (c) result in highly oscillatory motions, a reasonable

approach is to apply a general smooth feedback control as much as possible (i.e. for all those
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states where the smooth feedback can be defined), in combination with a discontinuous time-varying

control. What is exactly meant by “as much as possible” will become clear soon, once the general

smooth feedback law is presented.

The construction of the smooth feedback law is based on standard Lyapunov techniques, cf. [24, 26],

and considers an arbitrary Lyapunov function V : R
n → R+. The smooth feedback law is defined as

u(x)
def
=

−a(x) − k(x)

‖b(x)‖2
b(x)T (4.1)

for all x /∈ Eb
def
= {x ∈ R

n | b(x) = 0}, where k(x) : R
n → R+ is a Cp, p ≥ 1, positive definite

function such that k(0) = 0 and

u(x) = [u1(x) u2(x) · · · um(x)]T

a(x)
def
= Lf0V (x)

b(x)
def
= [Lf1V (x) Lf2V (x) · · · LfmV (x)]

In the above expressions, Lfi
V

def
= ∂V

∂x fi denotes the Lie derivative of the chosen Lyapunov function

V along the vector field fi.

It can be verified that the time derivative of the Lyapunov function along trajectories the closed-loop

system with feedback control (4.1) satisfies:

V̇ = −k(x) < 0 ∀ x /∈ Eb (4.2)

and hence, (4.1) guarantees the decrease of V for all x /∈ Eb. Clearly, the feedback (4.1) can be

applied as long as the system’s state is not in the set Eb, in which the input is singular. Under the

assumption that the system Σ fails to satisfy Brockett’s condition for smooth stabilizability, it will be

impossible to find a smooth function V such that the set Eb is empty, and therefore, a time-varying

or discontinuous feedback law will inevitably be required instead of the smooth control (4.1). Since

the design of (4.1) is based on the well known Lyapunov approach, the attention in this chapter is

placed on the design of discontinuous time-varying control laws. The interested reader is referred

to [24, 11, 73, 6, 2] for details on different results concerning the standard Lyapunov techniques
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and the control law (4.1). It is worth pointing out that universal formulas which have the form

of (4.1) for stabilization of systems of the type Σ are studied in [73] based on ideas that can be

traced back to the approaches described in [11] and other references therein.

In the above context, the contributions of this chapter can be described as follows. Two approaches

to the stabilization of general systems of the form (1.1) are presented. The methods are based on:

• Method 1: The explicit calculation of a reachable set of desirable states for the controlled

system. Such reachable set is determined when the system Σ is reformulated as a right-

invariant system on an analytic, simply connected, nilpotent Lie group and once the

stabilization problem is re-stated accordingly. The reformulation allows for the time-

varying part of the stabilizing feedback control to be derived as the solution of a nonlinear

programming problem for steering the open-loop system Σ to the given reachable set of

states.

• Method 2: The generation of system motions along vector fields which span the con-

trollability Lie algebra of system Σ. This is accomplished by composing flows arising

from the application of piece-wise constant controls and the use of the Campbell-Baker-

Hausdorff (CBH) formula. The values of the controls are calculated as the solution of a

nonlinear programming problem which guarantees that a given Lyapunov type condition

is satisfied.

The construction of the feedback laws does not require numerical integration of the model differential

equation and is independent of the choice of the Lyapunov type function.

The proposed approaches might prove useful for the construction of feedback laws with a reduced

number of control discontinuities and for the development of computationally feasible methods to-

ward the design of smooth time-varying stabilizing feedback. This is because, in Method 1, the

system is shown to remain asymptotically stable provided that the state of the system traverses the

sets of desirable states periodically in time. Since the sets of desirable states are typically large,

the latter condition leaves much freedom for improved design. A similar argument is also valid for

Method 2 in which the requirement is that the controls periodically generate motions that satisfy a

given Lyapunov type condition.
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Examples are presented in the last sections of this chapter. The examples employ the software

package described in Chapter 6 that was developed in Maple to facilitate the tedious symbolic Lie

algebraic calculations involved and that would otherwise be very difficult to carry out by hand.

The approaches presented are based on a different concept than those used in [68, 64, 72] and com-

pares favourably with the previous methods proposed in [75, 77]. The advantages of the proposed

approaches are in that:

• They do not require the exact analytic solution of the trajectory interception problem for

the flows for the original and extended system, as in [75].

• They also avoid the expensive on-line computation of the value and the gradient of the

Lyapunov function whose level sets are the trajectories of the critically stabilized system,

as required by the method presented in Chapter 3, [77].

• Furthermore, they should be easier to apply to systems with larger dimension of the state

or controllability Lie algebra than the methods in [68, 64].

4.2. Problem Definition and Assumptions

Problem Definition. The objective is to construct time-varying feedback controls ui(x, t) : R
n ×

R+ → R, i = 1, . . . ,m, which globally stabilize system Σ to the origin.

It is assumed that system Σ satisfies hypotheses H1–H3 stated in Chapter 2, p. 26.

The methods presented here employ an arbitrary Lyapunov type function V : R
n → R+ which is

only required to satisfy the following conditions:

H7.a. V is twice continuously differentiable with V (0) = 0. Additionally, there exists a constant

ζ > 0, such that for all x ∈ R
n, ‖∇V (x)‖ ≥ ζ‖x‖.

H7.b. V is positive definite and decrescent, i.e. there exist continuous, strictly increasing func-

tions α(·) : R+ → R+ and β(·) : R+ → R+, with α(0) = β(0) = 0, such that for all

x ∈ R
n, α(‖x‖) ≤ V (x) ≤ β(‖x‖).
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Remark 4.1. The function V is not a Lyapunov function in the usual sense in that it will be allowed

to increase instantaneously along the trajectories of the stabilized system. However, in the sequel,

the function V will still be referred to as a Lyapunov function.

4.3. Stabilizing Feedback Control Design

Generally, a control Lyapunov function which leads to a smooth feedback control law for system Σ

is not guaranteed to exist. An alternative idea for the construction of a stabilizing feedback relies

on achieving a periodic decrease in an arbitrarily imposed Lyapunov function V , through the action

of a time-varying control. Periodic decrease is defined in terms of the condition V (x(t0 + kT )) −

V (x(t0 + (k − 1)T )) < 0, which is required to hold for all k ∈ N and where x(t), t ≥ t0, is the

trajectory of the closed-loop system and T > 0 is the “period” of decrease.

The following sections present two different methods to construct a feedback control which guarantees

a periodic decrease in V . It is convenient for sake of clarity to motivate the basic idea underlying

both approaches as follows, before presenting a rigorous exposition of each of them.

The traditional Lyapunov approach to the problem of stabilizing system Σ, in which a control

u : R
n 3 x → u(x) ∈ R

m is sought such that a given control Lyapunov function V decreases

instantaneously along some vector field fu ∈ spanF , cannot be applied as there might not exist a

control u such that V̇ = ∇V fu(x) < 0 for some x ∈ R
n. However, if vector fields f̄ ∈ spanLx(F)

are also considered, where by the controllability hypothesis H2 and H3, spanLx(F) = R
n, for

all x ∈ B(0, R), then it is always possible to find some motion within B(0, R) along f̄ such that

V̇ = ∇V f̄ < 0, thus resulting in a decrease in V , see Fig. 4.1. The latter condition does not imply an

instantaneous decrease, as f̄ is realized through switching controls ū ∈ Pm applied to Σ, but it will

be shown that for a suitably selected time interval T > 0 and for any t ∈ R+ this condition ensures

that
∫ t+T

t
V̇ dτ =

∫ t+T

t
∇V f ūdτ = V (x(t + T )) − V (x(t)) < 0, implying a periodic decrease in V .

The core problem is thus to devise a method for the generation of motions along f̄ ∈ spanL(F).

The two methodologies proposed to produce such motions draw on the following ideas:

• Method 1: based on the solution of a relaxed interception problem in the

γ-coordinates that parametrize the flows of system Σ. This method exploits the
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fact that the solutions of both system Σ and its Lie algebraic extension Σe, in equa-

tion (2.1), can be written as products of exponentials of the basis elements of the Lie

algebra L(F). The solution of system Σ as a product of exponentials is given by x(T ) =

∏r−1
i=0 exp(γi(ū)gi)x(0), while a similar representation, xe(T ) =

∏r−1
i=0 exp(γei (v)gi)x(0)

exists for system Σe. Therefore, the stabilization problem can be solved by first finding

an extended control v that stabilizes Σe and that gives rise to γ-coordinates γei , and then

finding a control ū ∈ Pm such that the γ-coordinates γi of the original system match

those of the extended system Σe at time T , i.e. γi(T ) = γei (T ), thus implying that

x(T ) =
∏r−1
i=0 exp(γi(ū)gi)x(0) =

∏r−1
i=0 exp(γei (v)gi)x(0) = xe(T ) and that the trajecto-

ries of the system Σ follow those of the stable system Σe at least periodically.

• Method 2: based on the computation of motions f̄ ∈ spanL(F) employing

the CBH formula. In this method a sequence ū = [u(1), u(2), . . . , u(s)] of constant

controls u(i) ∈ R
m, i = 1, . . . , s, where s is the number of switches, is applied to system

Σ. Each control u(i) is applied for an equal interval of time ε, such that T = sε. The

trajectory of system Σ at time T is expressed as the concatenation of trajectories resulting

from the application of each control u(i), i = 1, . . . , s, given by x(T ) = exp(εfu(1)) ◦

· · · ◦ exp(εfu(s))x(0) and can be written in terms of a single exponential exp(T f̄) =

exp
(

T
∑r−1
i=0 ci(ū)gi

)

, where the scalar coefficients ci are obtained using the CBH formula

and the vector fields gi form a basis of L(F). A desired direction of system motion f̄ can

then be realized to decrease V by adequately “selecting” the coefficients ci.

Notice that in the first method the trajectory at time T is given by an expression of the form

x(T ) =
∏r−1
i=0 exp(bigi)x(0), while in the second method x(T ) = exp(

∑r−1
i=0 aigi)x(0). The latter

representation can be associated with the Magnus representation [145] (where ai are Lie-Cartan

coordinates of the first kind), while the former is known as Wei-Norman representation [149] (where

bi are Lie-Cartan coordinates of the second kind).

The concepts presented in Chapter 2 are essential in the reformulation of system Σ as a right-invariant

system on the analytic, simply connected, nilpotent Lie group H. This formalism is convenient for

the development of the proofs concerning the properties of the time-varying discontinuous control

ū ∈ Pm obtained by either of the two methods.
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V (x) = c2

V (x) = c1

0

x

∇V (x)

e
Tfe

x

e
T f̄

x

Figure 4.1. Cone of directions in which the Lyapunov function V decreases (instanta-

neously along the extended system trajectory eTfe

x and after a period T along the original

system trajectory eT f̄x).

4.3.1. Method 1: Stabilizing Feedback Design in the γ-Coordinates

In Method 1, the construction of a feedback control which guarantees a periodic decrease in V is

more conveniently achieved by re-stating the stabilization problem on the Lie group H, as explained

in Chapter 2. Since Σe is instantaneously controllable in any direction of the state space, it is helpful

to employ the extended system as the first instrument to achieve such a decrease. To this end, for

any x ∈ B(0, R) let a set U e(x) of admissible extended controls be introduced as follows:

Ue(x)
def
=

{
v ∈ R

r−1 | ∇V gv(x) < −η‖x‖2, ‖v‖ ≤M‖x‖
}

(4.3)

where the constant R > 0 is sufficiently large to accommodate for all initial conditions of interest,

and M > 0 is to be chosen later. The set U e(x) translates into a reachable set of states of the

extended system Σe at time T , RG(T, x, Ue(x)):

RG(T, x, Ue(x))
def
= {z ∈ R

n | z = xe(T, x, v), v ∈ U e(x)} (4.4)

where xe(T, x, v) denotes the trajectory of Σe emanating from x at time t = 0 and resulting from the

application of the control v over the time interval [0, T ]. The reason for introducing U e(x) is explained

in terms of the following result, Proposition 4.1, which is analogous to that of Proposition 4.5 for

Method 2, but applies to the extended system Σe rather than system Σ. It will be shown later in
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Proposition 4.3 that an equivalent condition to that of Proposition 4.1 also holds for the original

system Σ, i.e. that Proposition 4.5 for Method 2 is also ensured by the control ū ∈ Pm obtained

using Method 1. Even if Proposition 4.3 for Method 1 and Proposition 4.5 for Method 2 state the

same result, their proofs differ. For this reason, and for clarity of exposition, it is deemed convenient

to repeat the proposition statements.

Proposition 4.1. Under hypotheses H1–H3 and H7 there exists a time horizon Tmax > 0 such that

for all t > 0 and T ∈ [0, Tmax]:

V (z) − V (x) ≤ −η
2
‖x‖2T (4.5)

for all z ∈ RG(T, x, Ue(x)).

Proof. Since V is twice continuously differentiable, gv is analytic and linear in v, and g0(0) =

0, then ∇V and gv are Lipschitz continuous onB(0, 2R), uniformly with respect to v = [v1, . . . , vr−1]
T

satisfying ‖v‖ ≤M‖x‖. Hence, there exists a K > 0 such that:

‖gw(y) − gv(x)‖ ≤ K‖y − x‖ and ‖∇V (y) −∇V (x)‖ ≤ K‖y − x‖

for all x ∈ B(0, R), y ∈ B(0, 2R), and for any constant v and w such that ‖v‖ ≤ M‖x‖ and

‖w‖ ≤M‖x‖.

Let xe(t)
def
= xe(t, x, v), t ≥ 0. First, it is shown that there exists a T1 > 0 and a constant K1 > 0

such that

‖xe(s) − x‖ ≤ ‖x‖ (exp(K s) − 1) (4.6)

and

‖xe(s)‖ ≤ K1‖x‖ (4.7)

for all s ∈ [0, T1] such that xe(s) ∈ B(0, 2R).
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To this end it suffices to notice that

‖xe(s) − x‖ ≤
∫ s

0
‖gv(x)‖dτ +

∫ s

0
‖gv(xe(τ)) − gv(x)‖dτ ≤ K ‖x‖ s+

∫ s

0
K‖xe(τ) − x‖dτ

which, by the application of the Gronwall-Bellman lemma in Appendix C.1, p. 249, yields inequal-

ity (4.6).

It can be shown that if T1 is chosen so that (exp(K T1) − 1) ≤ 1
2 then (4.6) holds for s ∈ [0, T1].

By contradiction, suppose that there exists an s1 < T1 such that ‖xe(s1)‖ = 2R. It follows that

2R ≤ ‖x‖+ ‖xe(s1)−x‖ ≤ R+ ‖x‖ (exp(K s1) − 1) ≤ 3
2R which is false, and hence (4.6) is valid for

s ∈ [0, T1]. Inequality (4.7) follows from (4.6) since

‖xe(s)‖ ≤ ‖xe(s) − x‖ + ‖x‖ ≤ ‖x‖ exp(K s) ≤ K1‖x‖

with K1 = exp(KT1).

Now,

V (xe(T )) − V (x) ≤ ∇V (x)gv(x)T +

∫ T

0

‖∇V (xe(s))gv(xe(s)) −∇V (x)gv(x)‖ ds

(4.8)

≤ −η ‖x‖2 T + K̄‖x‖
∫ T

0

‖xe(s) − x‖ ds

because

‖∇V (xe(s))gv(xe(s)) −∇V (x)gv(x)‖ ≤ ‖∇V (xe(s))gv(xe(s)) −∇V (xe(s))gv(x)‖

+ ‖∇V (xe(s))gv(x) −∇V (x)gv(x)‖

≤ K̄‖x‖ ‖xe(s) − x‖

with K̄ = K2(K1 + 1).

Hence, if T < T1 then xe(s) ∈ B(0, 2R) for all s ∈ [0, T ] and, using (4.6) in (4.8), yields

V (xe(T )) − V (x) ≤ −η ‖x‖2 T + K̄‖x‖2

∫ T

0

(exp(K s) − 1) ds ≤ −η
2
‖x‖2q(T )
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where q(T )
def
=
(

2 + 2 K̄
η

)

T − 2 K̄
η K (exp(K T ) − 1). If r(T )

def
= q(T ) − T , then r(0) = 0 and r′(0)

def
=

dr
dT

∣
∣
T=0

= 1, so there exists a Tmax ≤ T1 such that r(T ) ≥ 0 for all T ∈ [0, Tmax]. Hence q(T ) ≥ T

for all T ∈ [0, Tmax] which proves (4.5). �

In this context it is desirable to construct an open-loop control for system Σ which guarantees

an equivalent decrease in the Lyapunov function as stated by (4.5). This can be achieved by the

construction of any ū ∈ Pm which ensures:

x(T, x, ū) ∈ RG(T, x, Ue(x)) (4.9)

The above is a control problem for which the terminal constraint set has no direct characterization.

However, when (4.9) is re-stated on the Lie group H it translates into a computationally feasible

nonlinear programming problem which can be formulated in terms of the γ-coordinates. This is

done as follows.

By virtue of the definitions in Section 4.2 the reachable set RG(T, x, Ue(x)) is the orbit

G(T,Ue(x))x = RG(T, x, Ue(x)) where

G(T,Ue(x))
def
= {exp(Tgv) | v ∈ Ue(x)} ⊂ G (4.10)

Also

H(T,Ue(x))
def
= {Se(T, v) | v ∈ Ue(x)} = (φ+

G)−1
(
G(T,Ue(x))

)
⊂ H (4.11)

where Se(T, v) denotes the value of the solution to equation (2.9) at time T and due to extended

control v. When expressed in the global coordinate system, (2.10), each element of H(T,U e(x)) has

the representation:

Se(T, v) =

r−1∏

i=0

exp(γei (T, v
d)ψi) (4.12)

where γe(T, vd)
def
= [γe0 , . . . , γ

e
r−1](T, v

d), is the value of the solution to equation (2.17) at time T and

due to control vd = [1 v]T with v ∈ Ue(x). Since

x(T, x, ū) = φ+
G

(
r−1∏

i=0

exp(γi(T, ū
d)ψi)

)

x (4.13)
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where γ(T, ūd)
def
= [γ0, . . . , γr−1](T, ū

d) is the value of the solution to equation (2.17) at time T and

due to control ūd = [1 ū 0 . . . 0]T ∈ Pr with ū ∈ Pm, then (4.9) holds if

r−1∏

i=0

exp(γi(T, ū
d)ψi) ∈ H(T,Ue(x)) (4.14)

Due to the representation (4.12), it hence follows that (4.9) holds if

γ(T, ūd) ∈ Rγ(T,U
e(x)) (4.15)

where

Rγ(T,U
e(x))

def
= {γe(T, vd) | v ∈ Ue(x)} (4.16)

For any constant control vd = [1, v] ∈ R
r equation (2.17) can be integrated symbolically to yield

γe(T, vd) =
∫ T

0
Γ−1(γe(τ, vd))dτ vd

def
= M(T ) vd. Since Γ is nonsingular and triangular for any of its

arguments γe, then M(T ) is also nonsingular and triangular for any integrated trajectory γe(τ, vd),

τ ∈ [0, T ], with a constant vd. Since one of the components of vd is equal to one (due to the

presence of the drift vector field), an analytic expression can be derived for the inverse mapping

F : R
r × R → R

r−1 such that v = F (γe(T, vd), T ).

It follows that

Rγ(T,U
e(x)) = {γ ∈ R

r | F (γ, T ) ∈ U e(x)} (4.17)

which is given explicitly and permits to express (4.9) as a nonlinear programming problem with

respect to the variables parametrizing the piece-wise constant control ū. Assuming that such a

parametrization is given by u(k), k = 1, . . . , s, s ∈ N, so that

ū(τ)
def
= u(k), τ ∈ [tk, tk + ε), εs = T and t1 = 0, tk = tk−1 + ε, k = 1, 2, . . . , s (4.18)

the solution of (2.17), γ(T, ūd), is also parametrized by u(k), k = 1, . . . , s.

Before stating the nonlinear programming problem corresponding to (4.9) is worth noting that (4.9)

can be regarded as a relaxed trajectory interception problem, since the original system trajectory
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must reach at time T any state in the set of states attainable at time T by the extended system

using controls v ∈ U e, instead of exactly matching a given state of system Σe. By the above

discussion, the relaxed TIP translates accordingly into a relaxed logarithmic coordinate interception

problem (relaxed LCIP), shown in Fig. 4.2. The freedom to reach any γ-coordinate in Rγ(T,U
e)

as depicted in Fig. 4.2, instead of requiring an exact end-point matching of the γ-coordinates such

that γ(T ) = γe(T ) as in Fig. 2.2, is what makes of this approach to be computationally feasible as

compared to the exact, but more restrictive, LCIP in (2.22).

γ(0) = 0

γ(T, û) = γe(T, v̂)

γ(t, û)

Rγ(T,U
e(x))

γe(t, v̂)

γ(0) = 0

γ(t, u)

Rγ(T,U
e(x))

γe(t, v(2))

γe(T, v(2))
γ(T, u)

γe(t, v(1))

γe(t, v(3))

(a) The exact trajectory interception
problem in the logarithmic coordi-
nates.

(b) The logarithmic coordinate satisficing
problem.

Figure 4.2. The “exact” and the “relaxed” trajectory interception problems in the log-
arithmic coordinates of flows are shown in figures (a) and (b), respectively. In the above
diagrams, γ(t, u) and γe(t, v) denote the logarithmic coordinates of systems Σ and Σe at
time t and due to controls u and v, respectively. In contrast to the exact trajectory in-
terception problem, in which the logarithmic coordinates of both systems Σ and Σe must
match exactly at time T , the satisficing problem simply requires that γ(T, u) belongs to
the reachable set Rγ(T, Ue(x)) = {γe(T, v) | v ∈ Ue(x)} in equation (4.16). It thus is
conceivable that γ(t, u) is smoother than γ(t, û).

The nonlinear programming problem equivalent to (4.9) is now stated as the following satisficing

problem (SP1) for Method 1:

SP1: For given constants η > 0, T > 0 and M > 0, and for x ∈ B(0, R),

find feasible parameter vectors u(k), k = 1, . . . , s, such that:

γ(T, ūd) ∈ Rγ(T,U
e(x)) (4.19)
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Concerning the selection of the constant M and the existence of solutions to SP1, it is possible to

show the following.

Proposition 4.2. Under assumptions H1–H3 and H7, for any neighbourhood of the origin B(0, R)

and any η > 0, there exists a constant M(R, η) > 0, such that a solution to SP1 exists for any

x ∈ B(0, R), and any control horizon T > 0, provided that s ∈ N, the number of switches in the

control sequence ū, is allowed to be large enough.

Proof. For any ε ∈ (0, ηζ2 ] and any given x ∈ B(0, R) let

z(x)
def
= −ε∇V T (x) (4.20)

Then, by virtue of hypothesis H7.b, z(x) satisfies

∇V z(x) = −ε‖∇V (x)‖2 ≤ −εζ2‖x‖2 ≤ −η‖x‖2 (4.21)

and is realizable as the right-hand side of the extended system (2.1), i.e. there exists an extended

control v such that

g0(x) +

r−1∑

i=1

gi(x)vi = z(x) (4.22)

It follows from (4.22) that for a given x ∈ R
n:

v(x) = Q†(x) (z(x) − g0(x)) , v = [v1 v2 . . . vr−1]
T (4.23)

where Q† = QT
(
QQT

)−1
is the pseudo-inverse of the n× (r − 1) matrix Q(x) =

[g1(x) g2(x) . . . gr−1(x)], which is guaranteed to exist for all x ∈ R
n because rank

(
Q(x)

)
= n by

construction of the extended system (2.1). Moreover, Q† is a smooth matrix function of x, thus

there exists a constant c(R) > 0 such that

‖Q†(x)‖ ≤ c, ∀ x ∈ B(0, R) (4.24)
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By Lipschitz continuity of g0 and ∇V , there exist constants d(R) > 0 and K(R) > 0 such that:

‖v‖ ≤ ‖Q†(x)‖ ‖z(x) − g0(x)‖

≤ ‖Q†(x)‖ (‖z(x)‖ + ‖g0(x)‖) (4.25)

≤ c

(
ηK

ζ2
‖x‖ + d‖x‖

)

and hence with M = c
(
ηK
ζ2 + d

)

, the extended control v is in the set U e(x); it is only one of

many controls which satisfy v ∈ U e(x). Let γe(T ) be the γ-coordinates of the flow at time T of the

extended system (2.1) with control v. Then γe(T ) ∈ Rγ(T,U
e(x)). By virtue of the controllability

assumption H2, there exists an open-loop control ū ∈ Pm such that γe(T, vd) = γ(T, ūd). Hence,

γ(T, ūd) ∈ Rγ(T,U
e(x)) thus proving the existence of solutions to SP1 at any x ∈ B(0, R). �

Proposition 4.3. Let ū(x, τ), τ ∈ [0, T ], be a control generated by the solution ū to SP1. There

exists a Tmax > 0 such that for all T ∈ [0, Tmax]:

V (x(T, x, ū)) − V (x) < −η
2
‖x‖2T (4.26)

Proof. If ū solves SP1 then γ(T, ūd) ∈ Rγ(T,U
e(x)). Hence, there exists a control v ∈ U e(x)

such that x(T, x, ū) = xe(T, x, v) ∈ RG(T, x, Ue(x)) which proves (4.26) by virtue of Proposition 4.1.

�

The results presented above underlie the construction of the stabilizing feedback presented in Sec-

tion 4.4.

4.3.2. Method 2: Stabilizing Feedback Design using the CBH formula

A result essential to the construction of the stabilizing control is the Campbell-Baker-Hausdorff

(CBH) formula. By virtue of the CBH formula, the composition of exponentials in (2.3) can be

expressed in terms of a single exponential. This is seen as follows:

exp(ε1f
u(1)) ◦ · · · ◦ exp(εkf

u(k)) = φ+
G (exp(ε1λ1) ◦ · · · ◦ exp(εkλk))

(4.27)

= φ+
G

(
exp(T λ̄)

)
for all εi, i = 1, . . . , k
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where φ+
L(λi) = fu(i) for i = 1, . . . , k, T =

∑k
i=1 εi, and where λ̄ ∈ L(H) is a uniquely defined

element which exists because the exponential map on H is a global diffeomorphism of L(H) onto

H, so that the CBH formula holds globally on H, see [162, Thm. 3.6.1 and 3.6.2].

Let ū
def
= {u(1), . . . , u(s)} and ε̄

def
= {ε1, . . . , εs}, and let

f̄(·, ū, ε̄) def
= φ+

L

(
λ̄
)
∈ L(F) (4.28)

Therefore,

exp(ε1f
u(1)) ◦ · · · ◦ exp(εsf

u(s)) = exp(T f̄) for all ū ∈ Pm and ε̄ ∈ R
s (4.29)

By hypothesis H3.a, f̄ has the following finite expansion in terms of the vector fields in the definition

of system Σe:

f̄(x, ū, ε̄) = g0(x) +
r−1∑

i=1

ci(ū, ε̄)gi(x) for all x ∈ B(0, R) (4.30)

The coefficients ci are nonlinear functions in the components of (ū, ε̄), whose analytic expressions

can be determined from the CBH formula, after collection of terms. For an arbitrary x ∈ B(0, R),

the components of (ū, ε̄) are employed in the parametrization of the piece-wise constant control,

ū(x, τ), as follows:

ū(x, τ)
def
= u(k), τ ∈ [tk, tk + εk),

∑s
i=1 εi = T, k = 1, 2, . . . , s (4.31)

where t1 = 0 and tk = tk−1 + εk−1, k = 2, . . . , s.

Since the state of the system Σ at time T resulting from the application of control ū in equation (4.31)

is given by x(T, x, ū) = GT x = exp(T f̄(x, ū, ε̄))x, it is possible to regard x(T, x, ū) as the solution

to the differential equation ẋ = f̄(x, ū, ε̄) and therefore the standard Lyapunov argument towards

establishing the stability of system Σ, which requires that for all x ∈ B(0, R), V̇ (x) = ∇V f̄(x, ū, ε̄) =

Lf̄V (x) < 0, gives an explicit condition for the selection of the parameters in (ū, ε̄) and permits for

the following formulation of a satisficing problem (SP2) with respect to the pair (ū, ε̄), where the

selection of the constants M and η will be specified later, and the control horizon T is the same as

the one used in hypothesis H2:
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SP2: For given constants η > 0, T > 0 and M > 0, and for a given x ∈ B(0, R) find

a feasible pair (ū, ε̄) ∈ Pm × R
s, such that for some s <∞:

∇V f̄(x, ū, ε̄) ≤ −η‖x‖2 (4.32)

‖c(ū, ε̄)‖ ≤ M‖x‖ (4.33)

where f̄ and c(ū, ε̄)
def
= [c1(ū, ε̄) · · · cr−1(ū, ε̄)]

T are defined by (4.30), and s is

the number of switches in the control sequence ū ∈ Pm.

Remark 4.2. A comment concerning the practical implementation of SP2 is worth at this point.

Noting that f̄ is written in terms of the elements of G (see hypothesis H3, Section 2.2, p.27), as the

right-hand side of system Σe, but with the coefficients ci replacing the parameters vi. It is convenient

to solve the above satisficing problem as an optimization problem involving two stages. First, values

for the parameters vi determining the orientation and magnitude of the extended system’s vector field

gv(x)
def
=
∑r−1
i=0 gi(x)vi, v0 = 1, are found such that they solve the following constrained minimization

problem for a given x ∈ R
n:

minv∈Rr−1 F (v) = ∇V gv(x)

subject to:







F (v) ≤ −η‖x‖2

(
∑r−1
i=1 (vi)

2
)1/2

≤ M‖x‖

If the the coefficients ci in SP2 can be made equal to the parameters vi computed from the above

minimization problem, then they would clearly be a candidate solution to SP2. A feasible solution to

SP2 thus can finally be obtained by solving the following least squares minimization problem:

min
(ū,ε̄)

r−1∑

i=1

[vi − ci(ū, ε̄)]
2

which ideally yields the values for the control pair (ū, ε̄) such that ci(ū, ε̄) = vi, i = 1, . . . , r− 1. In

practice, though, the non-uniqueness of minimizers and the limitations of the existing optimization

algorithms can make it difficult to find the global minimizer for the latter optimization problem.

The following results warrant the existence of solutions to SP2 and their stabilizing properties.
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Proposition 4.4. Under assumptions H1–H3 and H7, for any neighbourhood of the origin B(0, R)

and any η > 0, there exists a constant M(R, η) > 0, such that a solution to SP2 exists for any

x ∈ B(0, R), and any control horizon T > 0, provided that s ∈ N, the number of switches in the

control sequence ū, is allowed to be large enough.

Proof. For any ε ∈ (0, ηζ2 ] and any given x ∈ B(0, R) let

z(x)
def
= −ε∇V T (x) (4.34)

Then, by virtue of hypothesis H7.a, z(x) satisfies

∇V z(x) = −ε‖∇V (x)‖2 ≤ −εζ2‖x‖2 ≤ −η‖x‖2 (4.35)

Furthermore, z(x) can be written in terms of the right-hand side of the extended system Σe as

z(x) = g0(x) +

r−1∑

i=1

gi(x)vi
def
= gv(x) (4.36)

where gi(x) are vector fields defined as in (4.30) and v
def
= [v1 v2 · · · vr−1]

T ∈ R
r−1 is a vector of

constant parameters.

It follows from (4.36) that for a given x ∈ R
n:

v(x) = Q†(x) (z(x) − g0(x)) , v = [v1 v2 . . . vr−1]
T (4.37)

where Q†(x) = QT
(
QQT

)−1
is the pseudo-inverse of the n× (r − 1) matrix Q(x) =

[g1(x) g2(x) . . . gr−1(x)], which is ensured to exist for all x ∈ R
n because rank

(
Q(x)

)
= n by the

79



CHAPTER 4. DISCONTINUOUS TIME-VARYING FEEDBACK APPROACHES

assumption that gi, i = 1, . . . , r− 1, contains the basis for Lx(F). Moreover, Q† is a smooth matrix

function of x so there exists a constant c(R) > 0 such that

‖Q†(x)‖ ≤ c, ∀ x ∈ B(0, R) (4.38)

By Lipschitz continuity of g0 and ∇V there exist constants d(R) > 0 and K(R) > 0, respectively,

such that:

‖v‖ ≤ ‖Q†(x)‖ ‖z(x) − g0(x)‖ (4.39)

≤ ‖Q†(x)‖ (‖z(x)‖ + ‖g0(x)‖) (4.40)

≤ c

(
ηK

ζ2
‖x‖ + d‖x‖

)

(4.41)

Let M = c
(
ηK
ζ2 + d

)

be the constant employed in (4.33). Then, a solution to SP exists if there is a

control pair (ū, ε̄) such that ci(ū, ε̄) = vi, i = 1, . . . , r− 1. To demonstrate the existence of a control

pair (ū, ε̄), consider the extended system:

ẏ = gv(y), y(0) = x (4.42)

with state y ∈ R
n and constant control v defined as in (4.37), (note that v is a function of x but not

of y).

The integration of (4.42) over [0, T ] yields

y(T ) = exp(Tgv)x

(4.43)

= φ+
G(Se(T ))x

where Se(·) is the solution to the system (4.42) reformulated as a right-invariant system on the Lie

group H. By virtue of global strong controllability of ΣH on H, as demonstrated in Proposition 2.1,

there exists a control pair (ū, ε̄) ∈ Pm × R
s, which steers system ΣH from e ∈ H to S(T ) = Se(T )

in time T , i.e.:

exp(ε1λ1) ◦ · · · ◦ exp(εsλs) = exp(T λ̄) = Se(T ) (4.44)
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where λi = (φ+
L)−1 (fu(i)), for i = 1, . . . , s, and λ̄ results from the application of the CBH formula

on H. It follows from (4.43) and (4.44) that

exp(T λ̄) = (φ+
G)−1 exp(Tgv) = exp(T (φ+

L)−1(gv)) (4.45)

Since the exponential map is a global diffeomorphism on H, it follows that λ̄ = (φ+
L)−1(gv), i.e.

φ+
L(λ̄) = f̄ = gv, with f̄ as in (4.28). Due to the expansion (4.30), ci = vi for all i = 1, . . . , r − 1, as

required. �

Proposition 4.5. Let ū(x, τ), τ ∈ [0, T ], be a control generated by the solution pair (ū, ε̄) to SP2.

There exists a Tmax > 0 such that for all T ∈ [0, Tmax]:

V (x(T, x, ū)) − V (x) ≤ −η
2
‖x‖2T (4.46)

Proof. Since V ∈ C2, f̄ is analytic and linear in ci(ū, ε̄), i = 1, . . . , r − 1, and f0(0) =

0, then ∇V and f̄ are Lipschitz continuous on B(0, 2R), uniformly with respect to c(ū, ε̄) =

[c1(ū, ε̄) · · · cr−1(ū, ε̄)]
T satisfying ‖c(ū, ε̄)‖ ≤M‖x‖. Hence, there exists a K > 0 such that:

∥
∥f̄(y, ū, ε̄) − f̄(x, ū, ε̄)

∥
∥ ≤ K‖y − x‖ and ‖∇V (y) −∇V (x)‖ ≤ K‖y − x‖ (4.47)

for all x ∈ B(0, R), y ∈ B(0, 2R), and for all control pairs (ū, ε̄) satisfying ‖c(ū, ε̄)‖ ≤M‖x‖.

Let x(t)
def
= x(t, x, ū), t ≥ 0. First, it is shown that there exists a T1 > 0 and a constant K1 > 0 such

that

‖x(s) − x‖ ≤ ‖x‖ (exp(K s) − 1) (4.48)

and

‖x(s)‖ ≤ K1‖x‖ (4.49)

for all s ∈ [0, T1] such that x(s) ∈ B(0, 2R).

To this end it suffices to notice that

‖x(s) − x‖ ≤
∫ s

0
‖f̄(x, ū, ε̄)‖dτ +

∫ s

0
‖f̄(x(τ), ū, ε̄) − f̄(x, ū, ε̄)‖dτ ≤ K ‖x‖ s+

∫ s

0
K‖x(τ) − x‖dτ
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which, by the application of the Gronwall-Bellman lemma (see Appendix C.1, p. 249), yields in-

equality (4.48).

It is possible to see that if T1 is chosen so that (exp(K T1) − 1) ≤ 1
2 then (4.48) holds for s ∈ [0, T1].

By contradiction, suppose that there exists an s1 < T1 such that ‖x(s1)‖ = 2R. It follows that

2R ≤ ‖x‖ + ‖x(s1) − x‖ ≤ R + ‖x‖ (exp(K s1) − 1) ≤ 3
2R which is false, and hence (4.48) is valid

for s ∈ [0, T1]. Inequality (4.49) follows from (4.48) since

‖x(s)‖ ≤ ‖x(s) − x‖ + ‖x‖ ≤ ‖x‖ exp(K s) ≤ K1‖x‖

with K1 = exp(KT1).

Now,

V (x(T )) − V (x) ≤ ∇V (x)f̄(x, ū, ε̄)T +

∫ T

0

∥
∥∇V (x(s))f̄(x(s), ū, ε̄) −∇V (x)f̄(x, ū, ε̄)

∥
∥ ds

(4.50)

≤ −η ‖x‖2 T + K̄‖x‖
∫ T

0

‖x(s) − x‖ ds

since

∥
∥∇V (x(s))f̄(x(s), ū, ε̄) −∇V (x)f̄(x, ū, ε̄)

∥
∥ ≤ ‖∇V (x(s))f̄(x(s), ū, ε̄) −∇V (x(s))f̄(x, ū, ε̄)‖

+ ‖∇V (x(s))f̄(x, ū, ε̄) −∇V (x)f̄(x, ū, ε̄)‖

≤ K̄‖x‖ ‖x(s) − x‖

with K̄ = K2(1 +K1).

Hence, if T < T1 then x(s) ∈ B(0, 2R) for all s ∈ [0, T ] and, using (4.48) in (4.50), yields

V (x(T )) − V (x) ≤ −η ‖x‖2 T + K̄‖x‖2

∫ T

0

(exp(K s) − 1) ds ≤ −η
2
‖x‖2q(T )

where q(T )
def
=
(

2 + 2 K̄
η

)

T − 2 K̄
η K (exp(K T ) − 1). If r(T )

def
= q(T ) − T , then r(0) = 0 and r′(0)

def
=

dr
dT

∣
∣
T=0

= 1, so there exists a Tmax ≤ T1 such that r(T ) ≥ 0 for all T ∈ [0, Tmax]. Hence q(T ) ≥ T

for all T ∈ [0, Tmax] which proves (4.46). �

82



4.4. THE STABILIZING FEEDBACK AND ITS ANALYSIS

The results concerning the control ū ∈ Pm obtained as a solution to the satisficing problem SP1 or

SP2 presented above in Section 4.3.1 and Section 4.3.2, respectively, serve now for the construction

of the stabilizing feedback.

4.4. The Stabilizing Feedback and its Analysis

The stabilizing feedback control, uc(x, τ), τ ≥ 0, x ∈ B(0, R) for system Σ is defined as a concate-

nation of solutions to SP1 or SP2, ū(x(nT ), τ), τ ∈ [nT, (n+ 1)T ], computed at discrete instants of

time nT , n ∈ Z+:

uc(x, τ)
def
= ū(x(nT ), τ) for all τ ∈ [nT, (n+ 1)T ], n ∈ Z+ (4.51)

where x(nT ) is the state of the closed-loop system Σ at time nT .

Remark 4.3.

• The concatenated control uc(x, t) is a feedback control in the sense that a solution to SP1

or SP2 is computed at each t = nT , n ∈ Z+, and thus depends on x(nT ).

• An off-line construction of the feedback law could possibly be envisaged in that the satis-

ficing problem could be solved on a finite collection of compact non-overlapping subsets

Cs covering B(0, R). The objective function for SP1 should for this purpose be modified

as follows:

γ(T, ūd) ∈
⋃

x∈Cs

Rγ(T,U
e(x)) (4.52)

• The computation of the analytic expression for: (a) the mapping F defining the reachable

set Rγ(T,U
e(x)) in (4.17) of SP1, or (b) the coefficients ci defining f̄(x, ū, ε̄) in (4.30)

of SP2, can be facilitated by adequate supporting software for symbolic manipulation of

Lie algebraic expressions. Such software has been developed in the form of a software

package for Lie algebraic computations in Maple, see Chapter 6 or [175], which can be

used here for the construction of a basis for the controllability Lie algebra, simplification

of arbitrary Lie bracket expressions, the derivation of the equation for the evolution of the
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γ-coordinates, and the composition of flows using the Campbell-Baker-Hausdorff-Dynkin

formula.

The stabilizing property of the feedback (4.51) constructed by concatenation of the solutions to SP1

or SP2 can now be stated.

Theorem 4.1. Let T ∈ [0, Tmax], where Tmax is specified in Proposition 4.1 (for Method 1) or 4.5

(for Method 2) and let the constant M be selected as in Proposition 4.2 (for Method 1) or 4.4 (for

Method 2). Suppose there exists a constant C > 0 such that the solutions to SP1 or SP2 are bounded

as follows

‖ū(x(nT ), τ)‖ ≤ C‖x(nT )‖ for all τ ∈ [0, T ], n ∈ Z+ (4.53)

Under these conditions, the concatenated control uc(x, τ) given by (4.51) renders the closed-loop

system Σ uniformly asymptotically stable.

Proof. Let tk = t0 + kT , k ∈ N, and let x(t) denote the state of the closed-loop system at

time t due to control (4.51). By Proposition 4.3 (for Method 1) or 4.5 (for Method 2), the state of

system Σ with control input (4.51) satisfies

V (x(tk+1)) − V (x(tk)) ≤ −ϕ(‖x(tk)‖) ∀ k ∈ Z+ (4.54)

where ϕ(‖x(tk)‖) = η
2‖x(tk)‖2T .

By invoking the Gronwall-Bellman lemma with ū satisfying (4.53) it is easy to show (see the proof

of Proposition 4.1 for Method 1, or Proposition 4.5 for Method 2, in which the state of Σe should be

replaced by the state of Σ) that for any constants R > 0 and T > 0, there exist constants r ∈ [0, R]

and K > 0 such that

‖x(tk + τ)‖ ≤ ‖x(tk)‖ exp(Kτ) < R (4.55)

for all x(tk) ∈ B(0, r), and for all τ ∈ [0, T ].
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To prove global uniform asymptotic stability, it is necessary to show that: (1) the equilibrium point

of (1.1) is uniformly stable, and (2) that the trajectories x(t), t ≥ 0, converge to the origin uniformly

with respect to time.

(1) Uniform stability:

Uniform stability is proved by showing that for all R > 0 there exists δ(R) > 0 such that for

‖x(t0)‖ < δ(R), the state remains in B(0, R), i.e. ‖x(t)‖ < R for all ∀ t, t0, with t ≥ t0. To

this end, define δ(R)
def
= β−1(α(r)). By assumption H7.b, α(δ) ≤ β(δ) = α(r), so δ ≤ r. For all

x(t0) ∈ B(0, δ) ⊂ B(0, r), we further have that β(‖x(t0)‖) < β(δ) = α(r) because β(·) is strictly

increasing. Therefore, by assumption H7.b: V (x(t0)) ≤ β(‖x(t0)‖) < α(r), and due to (4.54),

V (x(t1)) < V (x(t0)) < α(r), whenever x(t0) 6= 0. Again, by assumption H7.b, α(‖x(t1)‖) ≤

V (x(t1)), which implies that α(‖x(t1)‖) < α(r), so ‖x(t1)‖ < r. Now, suppose that V (x(tn)) < α(r),

for some integer n. If x(tn) 6= 0 then, by virtue of the same argument as the one presented above,

V (x(tn+1)) < V (x(tn)) < α(r), and α(‖x(tn+1)‖) ≤ V (x(tn+1)) < α(r), so, again ‖x(tn+1)‖ < r.

By induction, then ‖x(tk)‖ < r for all k ∈ Z+, and by direct application of (4.55), ‖x(tk + τ)‖ ≤

‖x(tk)‖ exp(Kτ) < r exp(Kτ) ≤ R for all τ ∈ [0, T ], k ∈ Z+. It hence follows that system Σ with

feedback law (4.51) is uniformly stable.

(2) Global uniform convergence:

Global uniform convergence, requires the existence of a function ξ : R
n × R+ → R+ such that, for

all x ∈ R
n, limt→∞ξ(x, t) = 0 and such that ‖x(t)‖ ≤ ξ(x(t0), t − t0) for all t0, t ≥ t0. The last

inequality translates into the requirement that for all R > 0 there exists T̄ (R, x0) ≥ 0 such that

‖x(t)‖ < R, for all t0 > 0 and for all t ≥ t0 + T̄ .

Let R > 0 be any given constant and let δ(R) > 0 be such that ‖x(t0)‖ < δ(R) implies that

‖x(t)‖ < R for all t0 ≥ 0 and for all t ≥ t0. Such a δ exists by virtue of uniform stability of the

closed-loop system. It remains to show that there exists an index k∗(x(t0), δ) ∈ Z+ such that

‖x(tk∗)‖ < δ (4.56)

85



CHAPTER 4. DISCONTINUOUS TIME-VARYING FEEDBACK APPROACHES

By contradiction, suppose that ‖x(tk)‖ ≥ δ, for all k ∈ Z+. By virtue of (4.54), for any k ∈ N:

V (x(t1)) − V (x(t0)) ≤ −ϕ(‖x(t0)‖) ≤ −ϕ(δ)

...

(4.57)
V (x(tk)) − V (x(tk−1)) ≤ −ϕ(‖x(tk−1)‖) ≤ −ϕ(δ)

V (x(tk+1)) − V (x(tk)) ≤ −ϕ(‖x(tk)‖) ≤ −ϕ(δ)

Adding the above (k + 1) inequalities, yields

V (x(tk+1)) − V (x(t0)) ≤ −(k + 1)ϕ(δ) (4.58)

which implies that

V (x(tk+1)) ≤ V (x(t0)) − (k + 1)ϕ(δ) ≤ β(‖x(t0)‖) − (k + 1)ϕ(δ) ∀ k ∈ Z+ (4.59)

The above inequality directly indicates the existence of a finite index k̄ ≥ 0 such that V (x(tk̄)) < 0

which contradicts the fact that V is positive definite. Hence, there exists a finite index k∗ ∈ N

such that (4.56) is valid. Clearly, the index k∗ depends only on the value of x(t0) and R, but is

independent of the particular value of t0.

By virtue of uniform stability, we now conclude that for all t0 ≥ 0 and for all t > t0+k
∗T , ‖x(t)‖ < R,

which proves global uniform convergence with T̄ (x0, R)
def
= k∗T . This completes the proof of global

uniform asymptotic stability of the closed-loop system Σ with control (4.51). �

Remark 4.4.

• The assumption (4.53) is not restrictive as it can always be satisfied if the system is

uniformly controllable in the following sense: for every constant control vi = ci(ū, ε̄),

i = 1, . . . , r − 1, there exists a ū ∈ Pm such that the state x(T, x, ū) of system Σ is equal

to the state xe(T, x, v) of system Σe in (2.1) is equal to the state x(T, x, ū) of system Σ,

i.e. x(T, x, ū) = xe(T, x, v) and such that ‖ū(τ)‖ ≤ M1‖v‖, for all τ ∈ [0, T ] and some

M1 > 0. The last requirement is not included as a design condition in SP for brevity of

exposition and because it is easy to satisfy.
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• For any given R and η, the constant M should be chosen using the estimates derived in

the proof of Proposition 4.2 or Propostion 4.4.

• The above proof is similar to the proof of a general result found in [9] concerning a

general criterion for asymptotic stability of nonlinear time-variant differential equations.

The result presented here applies to time-invariant control systems of the form (1.1) while

the result in [9] applies to time-varying uncontrolled systems.

The next two sections present application examples of the proposed approaches. Although more

efficient stabilization methods have been conceived in the literature for the particular systems con-

sidered in the examples, these methods explicitly exploit the structure and the form of the system

equations. The purpose of these examples is merely to explain the approaches presented which apply

to systems with drift, in their full generality.

4.5. Examples for Method 1

This section presents two examples that illustrate the design of stabilizing feedback controls using

the approach described in Section 4.3.1. The first example considers the steering of a unicycle,

while the challenging problem of stabilizing both the orientation and the angular velocities of an

underactuated rigid body in space is treated in the second example.

4.5.1. Steering the Unicycle

The stabilization of the kinematic model of the unicycle is presented in this section. The simulation

results obtained by solving the satisficing problem SP1 in a single or two stages, as explained in

Remark 4.2, are also compared. The kinematic model of the unicycle is given by the following

driftless system (see [7]):









ẋ1

ẋ2

ẋ3









=









cos(x3)u1

sin(x3)u1

u2









(4.60)

where (x1, x2) refer to the unicycle’s position on the plane and x3 is the orientation angle with

respect to the x1-axis as shown in Fig. 4.3. The inputs u1 and u2 are the driving speed and the rate
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of change in the orientation angle, respectively. The system is not nilpotent but can be nilpotenized

by the following feedback [44]:

u1 =
1

cos(x3)
w1

(4.61)

u2 = cos2(x3)w2

which transforms (4.60) to









ẋ1

ẋ2

ẋ3









=









1

tan(x3)

0









︸ ︷︷ ︸

f1(x)

w1 +









0

0

cos2(x3)









︸ ︷︷ ︸

f2(x)

w2 (4.62)

The latter model is nilpotent of order two with [f1, f2] = [0 − 1 0]T (all higher order brackets are

zero). Letting g1 = f1, g2 = f2, g3 = [f1, f2], a basis {g1, g2, g3} can be constructed for L(F) (which

is verified to satisfy the LARC).

Let ai(x)
def
= ∇V gi(x), i = 1, 2, 3, denote the coefficients that define the set U e(x) in (4.3), given

here by:

Ue(x) =

{

v ∈ R
3 | ∇V gv(x) =

3∑

i=1

ai(x)vi < −η‖x‖2, ‖v‖ ≤M‖x‖
}

Choosing V (x) = 1
2‖x‖2 then

a1(x) = x1 + x2 tan(x3)

a2(x) = x3 cos2(x3)

a3(x) = −x2

88



4.5. EXAMPLES FOR METHOD 1

x1

x3

x2

u1

u2

Figure 4.3. Unicycle or single-wheel drive cart modelled as a rolling disk.

The γ-coordinates equations for system (4.62) are easily calculated (following the steps explained in

Chapter 6, p. 150) to be:









γ̇1

γ̇2

γ̇3









=









1 0 0

0 1 0

0 −γ1 1

















u1

u2

u3









(4.63)

with γ1(0) = γ2(0) = γ3(0) = 0. Integration of (4.63) for t ∈ [0, T ] yields

γ1(T ) = u1T γ2(T ) = u2T γ3(T ) = −u1u2
T 2

2
+ u3T (4.64)

Substituting the constant extended system controls vi, i = 1, 2, 3, in (4.64) and solving for vi in

terms of γi, i = 1, 2, 3, yields the map F : R
3 × R → R

3. The components of the map F (γ, T ) are
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given by1:

v1 = F1(γ
e, T ) =

γe1(T )

T

v2 = F2(γ
e, T ) =

γe2(T )

T

v3 = F3(γ
e, T ) =

1

T

(

γe3(T ) +
γe1(T )γe2(T )

2

)

These expressions allow to re-state the set U e(x) in terms of the γ-coordinates.

Substituting vi = Fi(γ
e, T ), i = 1, 2, 3, in (4.3) yields the following reachable set for the γ-coordinates

of the extended system:

Rγ(T, Ue(x)) =

{

γ ∈ R
3 :

3∑

i=1

∇V gi(x)Fi(γ, T ) =

a1(x)γ
e
1(T ) + a2(x)γ

e
2(T ) + a3(x)

(

γe
3(T ) +

γe
1(T )γE

2 (T )

2

)

< −η‖x‖2, (4.65)

‖F (γ, T )‖ ≤M‖x‖

}

The last step involves finding a control sequence ū such that the γ-coordinates at time T for the

original system, γ(T, ū), belong to the set Rγ(T,U
e(x)). To this is end, consider a control sequence

with s = 4 and equal time intervals εi = ε = T/4. Integration of the γ-equations (4.63) with u3 = 0

and the corresponding concatenated control, u1 = ū1(x, t) and u2 = ū2(x, t), over the period T ,

yields:

γ1(T ) = (u1(1) + u1(2) + u1(3) + u1(4))ε

γ2(T ) = (u2(1) + u2(2) + u2(3) + u2(4))ε

γ3(T ) = −(u1(1)u2(1) + 2u1(1)u2(2) + u1(2)u2(2) + 2u2(3)(u1(1) + u1(2)) + (4.66)

u1(3)u2(3) + 2u2(4)(u1(1) + u1(2) + u1(3)) + u1(4)u2(4))
ε2

2

1In this example the map F : (γe, T ) → F (γe, T ) is from R
r ×R to R

r, instead of R
r ×R to R

r−1, because the system

has no drift an its Lie algebra is of dimension r = 3.
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Since the above γi(T ) must be in Rγ(T,U
e(x)), they must satisfy (4.66). Hence, replacing each

γei in (4.66) by γi(ū, ε̄), i = 1, 2, 3, the satisficing problem can be solved directly in terms of the

parameters of the control pair (ū, ε̄) sought.

Figure 4.4 shows the stabilization of (4.60) using the control law obtained by solving the satisficing

problem in one stage, i.e. by solving SP1 directly with respect to the control pair (ū, ε̄). Figure 4.5

shows the simulation results corresponding to the solution of SP1 in two stages, i.e. by finding first

values for the functions Fi(γ, T ), i = 1, 2, 3, that ensure greatest decrease in V , and then solving for

the control pair (ū, ε̄) which yields the closest values to those of Fi(γ, T ), i = 1, 2, 3.

The initial condition in both simulations is x0 = [0 10.1 0]T , which is in the bad set defined by

V̇ (x, u) = 0 for all u ∈ R
2, i.e. in the set where there are no control values that instantaneously

decrease V . The period of the control sequence was chosen to be T = 0.1. For the single stage

implementation of SP1, the constant C bounding the magnitudes of the controls ui(k) was found to

be C = 10, while for the two-stage approach the bound M on the extended system controls yielding

the best results (in terms of convergence speed) was M = 26.

A comparison of the unicycle’s trajectories in the plane resulting from each approach to the im-

plementation of SP1 are shown in Fig. 4.6. From Fig. 4.6 and comparing Fig. 4.4 and Fig. 4.5 it

is possible to conclude that the trajectory resulting from the two-stage solution of SP1 traverses

a longer distance than the one obtained from the single stage implementation of SP1. However,

the trajectory computed using the two-stage approach converges faster to the origin (compare the

decrease of the Lyapunov functions) as the controls ū that result from SP1 are of greater magnitude.

As a concluding remark to this example, it is worth noting that the solutions to SP1 are not unique.

This encourages the exploration of other approaches, for example, approaches in which SP1 is solved

using continuous or smooth time-varying feedback controls.
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(a) State trajectory x(t). (b) Lyapunov function V (x(t)).
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(c) Control inputs u(t). (d) Time derivative of V (x(t)).

Figure 4.4. Results for the stabilization of the unicycle obtained by solving the single-
stage implementation of SP1.

4.5.2. Stabilization of the Attitude and Angular Velocities of an Underactuated

Rigid Body in Space

The second stabilization approach is applied here to the model in R
6 of the underactuated rigid

body with two inputs given by equation (1.4) on p. 5. After the input transformation:

τ1 = J1(u1 − a1 x5 x6) τ2 = J2(u2 − a2 x4 x6) (4.67)
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(a) State trajectory x(t). (b) Lyapunov function V (x(t)).
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Figure 4.5. Results for the stabilization of the unicycle obtained by solving the two-stage
implementation of SP1.

and with a3 = a = −0.5, the model equation (1.4) becomes

ẋ = f0(x) + f1(x)u1 + f2(x)u2 (4.68)

where, f0(x) = (sin(x3) sec(x2)x5 + cos(x3) sec(x2)x6)
∂

∂x1

+ (cos(x3)x5 − sin(x3)x6)
∂

∂x2

+ (x4 + sin(x3) tan(x2)x5 + cos(x3) tan(x2)x6)
∂

∂x3
+ a x4x5

∂

∂x6
,

f1(x) =
∂

∂x4
, f2(x) =

∂

∂x5
, and x = [x1, x2, x3, x4, x5, x6]

T

which is more convenient to analyze since several of its Lie brackets are zero.

The model used here is non-nilpotent, thus it does not lend itself directly to the application of

the method presented. It was however selected to indicate to the reader that the approach can be
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Figure 4.6. Comparison of the trajectories of the unicycle obtained by solving SP1 in
one (Method 1a) and two stages (Method 1b).

extended to non-nilpotent systems, provided that the last are suitably “approximated” by nilpo-

tent systems. At this stage, it is not our aim to introduce rigorous criteria for obtaining such

approximations (see [69]), but rather to demonstrate that even a type of nilpotent truncation of

the controllability Lie algebra of the original system can prove sufficient to implement the method.

Obviously, any such approximation or truncation should necessarily preserve controllability of the

system. It is further known, (see Theorem 2 in [44], or Theorem 5.1 on p. 112), that the steering

error introduced while employing a truncated version of the controllability Lie algebra is a decreas-

ing function of the distance between the initial and target points. It follows that the steering error

can be controlled by selecting an adequately small time horizon T . Both the degree of nilpotency

and the horizon T can be selected on a trial and error basis by requesting periodic decrease in the

Lyapunov function which is a directly verifiable criterion for the adequacy of the truncation.

94



4.5. EXAMPLES FOR METHOD 1

In the above context, system (4.68) is assumed to be approximated by another system of a similar

structure

Σ̃ : ẋ = g0(x) + g1(x)u1 + g2(x)u2

whose controllability Lie algebra, L(g0, g1, g2), corresponds to a nilpotent truncation of order four

of L(f0, f1, f2). This is to say that L(g0, g1, g2) is nilpotent of order four and has

{g0, g1, g2, [g0, g1], [g0, g2], [g1, [g0, g2]], [[g0, g1], [g0, g2]]}

as its basis. Such truncation preserves the STLC property of the system, as is easily verified using

Theorem 7.3 in [39] (see Thm. B.3 on p. of Appendix B).

The differential equations (2.17) for the evolution of the γ-coordinates for the approximating system

are:























γ̇0

γ̇1

γ̇2

γ̇3

γ̇4

γ̇5

γ̇6























=























1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 −γ0 0 1 0 0 0

0 0 −γ0 0 1 0 0

0 γ0γ2 γ0γ1 −γ2 −γ1 1 0

0 −aγ2
0γ2 γ0γ3 − aγ2

0γ1 aγ0γ2 aγ0γ1 − γ3 −aγ0 1













































u0

u1

u2

u3

u4

u5

u6























(4.69)

with γi(0) = 0, i = 0, 1, . . . , 6. A detailed derivation of these equations is presented in Example 6.4.2

on p. 161 and makes extensive use of the package for Lie algebraic computations described in

Chapter 6 and [175]. A quadratic Lyapunov function V (x) = 1
2‖x‖2 is chosen to define U e(x).
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Integrating (4.69) with constant controls vi over the interval [0, T ] yields the required map F :

R
7 × R → R

6

v1 = F1(γ
e, T ) =

γe
1(T )

T

v2 = F2(γ
e, T ) =

γe
2(T )

T

v3 = F3(γ
e, T ) =

1

T

(

γe
3(T ) +

γe
0(T )γe

1(T )

2

)

(4.70)

v4 = F4(γ
e, T ) =

1

T

(

γe
4(T ) +

γe
0(T )γe

2(T )

2

)

v5 = F5(γ
e, T ) =

1

T

(

γe
5(T ) +

γe
1(T )γe

4(T )

2
+
γe
2(T )γe

3(T )

2
−
γe
0(T )γe

1(T )γe
2(T )

6

)

v6 = F6(γ
e, T ) =

1

T

(

γe
6(T ) +

a γe
0(T )γe

5(T )

2
+
γe
3(T )γe

4(T )

2
+
a γe

0
2(T )γe

1(T )γe
2(T )

12

−
γe
0(T )γe

2(T )γe
3(T )

12
(1 + a) +

γe
0(T )γe

1(T )γe
4(T )

12
(1 − a)

)

The above results in the following expression for the reachable set in the γ-coordinates:

Rγ(T,U
e(x)) =

{

γ ∈ R
7 |

6∑

i=0

∇V gi(x)Fi(γ, T ) < −η‖x‖2, ‖F (γ, T )‖ ≤M‖x‖
}

(4.71)

The expressions for γ(T, ūd) in terms of the constant parameters defining ūd ∈ Pr are easily obtained

by symbolic integration and are subsequently employed to solve SP1. The values s = 6, T = 0.1,

η = 1, M = 10, R = 2 and C = 50, were assumed in the solution of SP1. The simulation results are

obtained using an initial condition x0 = [−0.1 0 0.2 0 0 0.1]T and are shown in Figure 4.7.
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(a) State trajectory x(t). (b) Lyapunov function V (x(t)) for
t = kT , k = 0, 1, . . . , 35.

Figure 4.7. Results for the attitude and angular velocities stabilization of the rigid body
obtained by solving SP1.
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4.6. Examples for Method 2

The design of stabilizing controls using the approach presented in Section 4.3.2 is illustrated by some

examples of practical interest such as is the steering of the unicycle, the steering of a front-wheel

drive car, and the rotational stabilization of an underactuated rigid-body in space.

4.6.1. Steering the Unicycle

The model of the unicycle given in (4.60) is considered once again with the purpose of illustrating

the synthesis of a feedback law by the approach proposed in Method 2.

Using a control sequence with four intervals, i.e. s = 4, application of the CBH formula to the

composition of flows (4.29) yields the following coefficients ci to the vector fields gi, i = 1, 2, 3, of f̄

in (4.30):

c1(ū, ε̄) =

4∑

k=1

εku1(k)

c2(ū, ε̄) =

4∑

k=1

εku2(k)

c3(ū, ε̄) =
ε1ε2
2

(u1(2)u2(1) − u1(1)u2(2))

+
ε3
2

(
(ε1u2(1) + ε2u2(2))u1(3) − (ε1u1(1) + ε2u1(2))u2(3)

)

+
ε4
2

(
(ε1u2(1) + ε2u2(2) + ε3u2(3))u1(4) − (ε1u1(1) + ε2u1(2) + ε3u1(3))u2(4)

)

The stabilization results obtained by solving SP2 with the above coefficients and V (x) = 1
2‖x‖2

are shown in Fig. 4.8. In order to clearly show the periodic decrease of V , the time interval for this

simulation was selected to be [0, 1]. The complete simulation, however, does show the convergence of

x2 to zero in a larger time interval. The initial condition x0 = [0 0.1 0]T is in the set {x | Lfi
V (x) =

0, i = 1, 2} in which V̇ (x, u) = 0 independently of the input values. The time intervals are equal, i.e.

εi = T
4 , i = 1, 2, 3, 4, with T = 0.1. In this simulation, SP2 is solved in a single stage with R = 104

and C = 0.1. Notice that the constant M is not actually needed in the one-step solution to SP2.
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(a) State trajectory x(t). (b) Lyapunov function V (x(t)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

Time

In
pu

t u

u
1

u
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

dV
/d

t

(c) Control inputs u(t). (d) Time derivative of V (x(t)).

Figure 4.8. Results for the stabilization of the unicycle obtained by solving SP2.

4.6.2. Steering the Front-Wheel Drive Car

The kinematic model of a front-wheel drive car, shown in Fig. 4.9, is given by (see [6]):













ẋ1

ẋ2

ẋ3

ẋ4













=













cos(x3) cos(x4)u1

cos(x3) sin(x4)u1

u2

1
L sin(x3)u1













(4.72)

The first two components of the state vector, x1 and x2, represent the Cartesian position of the rear

axle center. Component x3 corresponds to the steering angle of the front wheels and x4 to the angle

between the main (longitudinal) axis of the car and the x1-axis. The controls are the driving speed

u1 and the steering speed of the front wheels u2.
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x1

x2

x3

x4

L

Figure 4.9. Front-wheel drive car.

System (4.72) can be nilpotenized by the following state feedback, [44],

u1 =
1

cos(x3) cos(x4)
w1

(4.73)

u2 = cos3(x4) cos2(x3)w2 −
3

L

sin(x4) sin2(x3)

cos2(x4)
w1

in combination with the state transformation:

z1 = x1, z2 =
tan(x3)

cos3(x4)
, z3 = tan(x4), z4 = x2 (4.74)
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The nilpotenized system in z-coordinates can be rewritten as:













ż1

ż2

ż3

ż4













=













1

0

z2/L

z3













︸ ︷︷ ︸

f1(z)

w1 +













0

1

0

0













︸ ︷︷ ︸

f2(z)

w2 (4.75)

A basis for the Lie algebra L(F) is obtained by first constructing a Hall basis for the free Lie

algebra L(X1, X2) of two indeterminates X1, X2 (see Chapter 6) and then applying the canonical

homomorphism ν : Xi → fi which assigns Xi to fi. The basis so constructed for L(F) of the

nilpotenized system (4.75) is defined by:

g1(z) = f1(z)

g2(z) = f2(z)

g3(z) = [f1, f2] = [0 0 − 1/L 0]T

g4(z) = [f1, [f1, f2]] = [0 0 0 1/L]T
(4.76)

It can be verified that ν([X2, [X1, X2]]) = [f2, [f1, f2]] = 0 and that all brackets of order higher than

three also vanish. Hence, the Lie algebra L(F) is nilpotent of order three with a basis of dimension

r = 4.

The coefficients ci to the vector fields gi = 1, 2, 3, 4, of f̄ in (4.30) obtained by application of the

CBH formula to the composition of flows (4.29) arising due to a control sequence with s = 4 are

now given by:

c1(ū, ε̄) =

4∑

k=1

εku1(k) (4.77)

c2(ū, ε̄) =

4∑

k=1

εku2(k) (4.78)

c3(ū, ε̄) = a4 + a5 (4.79)

c4(ū, ε̄) =
ε4
2
a4u1(4) +

ε24
12
a5u1(4) −

ε4
12
a1a5 + a6 (4.80)
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where

a1 =

3∑

k=1

εku1(k)

a2 =

3∑

k=1

εku2(k)

a3 = (ε1u2(1) + ε2u2(2))u1(3) − (ε1u1(1) + ε2u1(2))u2(3)

a4 =
ε3
2
a3 +

ε1ε2
2

(u1(2)u2(1) − u2(2)u1(1))

a5 =
ε4
2

(a2u1(4) − a1u2(4))

a6 =
1

12

((
ε22ε1u1(2) − ε21ε2u1(1)

) (
u1(2)u2(1) − u2(2)u1(1)

))
+

ε1ε2ε3
4

(
u1(2)u2(1) − u2(2)u1(1)

)
u1(3) +

ε23
12
a3u1(3) −

ε3
12

(
ε1u1(1) + ε2u1(2)

)
a3

The derivation of the above expressions is facilitated by the software package described in Chapter 6.

The stabilization results obtained by solving SP2 with the above coefficients and V (x) = 1
2‖x‖2 are

shown in Fig. 4.10. The initial condition x0 = [1 1 0 − π
4 ]T is in the set {x | Lfi

V (x) = 0, i = 1, 2} in

which V̇ (x, u) = 0 for all input values. The time intervals are equal, i.e. εi = T
4 , i = 1, 2, 3, 4, with

T = 0.1. In this simulation, SP2 is solved in a two stages with R = 1.61, M = 0.1 and C = 100. It

is possible to see in Fig. 4.10 that in this case the concatenated control uc(x, t) steers the car to the

origin in finite time.

4.6.3. Stabilization of the Angular Velocities of an Underactuated Rigid Body

in Space

This example considers the rotational stabilization of an underactuated rigid-body in space. After

a suitable feedback transformation, the model equations are given by:









ẋ1

ẋ2

ẋ3









=









0

0

a3x1x2









︸ ︷︷ ︸

f0(x)

+









1

0

0









︸ ︷︷ ︸

f1(x)

u1 +









0

1

0









︸ ︷︷ ︸

f2(x)

u2 (4.81)
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(a) State trajectory x(t). (b) Lyapunov function V (x(t)).
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(c) Control inputs u(t). (d) Time derivative of V (x(t)).

Figure 4.10. Results for the stabilization of the front-wheel drive car obtained by solving SP2.

with a = −0.5. The above model corresponds to the last three equations of system (1.4), describing

the evolution of the angular velocities xi, i = 1, 2, 3, of the rigid body about its principal axes. For

details on the model derivation see [198].

The vector fields f0, f1 and f2 generate a nilpotent Lie algebra of order three and dimension r = 6.

A basis for the controllability Lie algebra L(f0, f1, f2) can be constructed by forming all Lie product

combinations according to the Hall procedure for free Lie algebras, see [6], and by noting that the

brackets [f1, f2], [f0, [f0, f1]], [f0, [f0, f2]], [f1, [f0, f1]], [f2, [f0, f2]], [f1, [f1, f2]], [f2, [f1, f2]] and those

of order four and higher are all zero. The resulting basis for L(f0, f1, f2) is thus given by the Lie
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algebra generators gi = fi, i = 0, 1, 2, and the Lie products gi, i = 3, 4, 5, where:

g0(x) = f0(x) = [0 0 a3x1x2]
T

g1(x) = f1(x) = [1 0 0]T

g2(x) = f2(x) = [0 1 0]T

g3(x) = [f0, f1] = [0 0 − a3x2]
T

g4(x) = [f0, f2] = [0 0 − a3x1]
T

g5(x) = [f1, [f0, f2]] = [0 0 − a3]
T (4.82)

g6(x) = [f2, [f0, f1]] = g5(x)

In this example a control sequence of length s = 2 is considered. The corresponding composition

of flows, (4.29), employing the CBH formula yields the following coefficients ci to the above gi,

i = 0, . . . , 5, defining f̄ as in (4.30):

c0(ū, ε̄) = 1

c1(ū, ε) = 1
T

∑2
k=1 εku1(k)

c2(ū, ε̄) = 1
T

∑2
k=1 εku2(k)

c3(ū, ε̄) = ε1ε2
2T (u1(2) − u1(1))

c4(ū, ε̄) = ε1ε2
2T (u2(2) − u2(1))

c5(ū, ε̄) = 1
12T

(
ε21ε2(u1(1)u2(2) − u2(1)u1(1)) + ε1ε

2
2(u2(1)u1(2) − u1(2)u2(2))

)

The stabilization results obtained by solving SP2 with the above coefficients and V (x) = 1
2‖x‖2 are

shown in Fig. 4.11. The initial condition x0 = [0 0 0.2]T is a member of the set S def
= {x | Lf0V (x) ≥

0, Lfi
V (x) = 0, i = 1, 2}. It is easily seen that for any x ∈ S, V̇ (x) ≥ 0 independently of the values

of the inputs. The time intervals are equal, i.e. ε1 = ε2 = T
2 , and T = 0.1. The values R = 0.2,

M = 1 and C = 500 are considered for the solution of SP2.
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(a) State trajectory x(t). (b) Lyapunov function V (x(t)) for
t = kT , k = 0, 1, . . . , 10.

Figure 4.11. Results for the angular velocity stabilization of the rigid body obtained
obtained by solving SP2.

103





CHAPTER 5

Stabilization of Bilinear Systems with Unstable Drift

This chapter presents two different methods for the stabilization of bilinear systems with unstable

drift, [76, 78]. The first method relies on the solution of the trajectory interception problem (2.21)

described in Section 2.5 of Chapter 2. This method is universal in the sense that it does not depend

on the particular vector fields defining the dynamics of the system and does not require a Lyapunov

function.

In the second approach, stabilization is carried out in two stages. In the first stage, the system

is steered to a stable manifold which corresponds to a special selection of constant controls in the

original bilinear system. This stage employs a control Lyapunov function in conjunction with a Lie

algebraic control allowing the system to reach a stable manifold in finite time. The Lie algebraic

control involves a solution to a non-linear programming problem whose formulation results from a

direct application of the Campbell-Baker-Hausdorff formula for composition of flows as explained

in Section 4.3.1 of Chapter 4. In the second stage, the system is made to “slide” through the

ensemble of stable manifolds corresponding to the largest set of constant controls for which such

stable manifolds exist.

Although the second method is not as general as the first approach, (because it requires the identi-

fication of the ensemble of stable manifolds and the definition of a control Lyapunov function as the

“distance” to the stable manifold), its advantage lies in the fact that it is much simpler to implement.

In fact, identifying a stable (linear) subspace is not difficult, and can be done even for high order

systems using standard numerical procedures to calculate eigenvalues and eigenvectors.



CHAPTER 5. STABILIZATION OF BILINEAR SYSTEMS WITH UNSTABLE DRIFT

5.1. Introduction

This chapter presents two approaches to the stabilization of homogeneous (in the state) bilinear

systems of the form (1.5), re-stated below:

ẋ = A0x+

m∑

i=1

Aixui

ΣBS : (5.1)

= (A0 +

m∑

i=1

Aiui)

︸ ︷︷ ︸

A(u)

x

Systems of this form are of practical relevance as they arise from the linearization of certain nonlinear

systems with respect to the state only; see [132, 120]. The stabilization problem for bilinear systems

has thus received much attention in the literature, see for example [102, 104, 115, 120, 127, 125,

126, 76] and [132] for a recent survey.

Several methods for stabilizing (5.1) start by finding a suitable Lyapunov function for the free system

ẋ = A0x (assuming that A0 is stable), cf. [100, 126]. The proposed feedback controls are either

linear, quadratic, or piece-wise constant, and usually result in slower than exponential asymptotic

stability.

Stabilization of homogeneous bilinear systems in the plane has been fully analyzed. Bacciotti and

Boieri, [118], using constant, linear, and quadratic feedbacks, and Chabour et al., [120], using

feedbacks differentiable except at zero, have given complete classifications of the possibilities for

stabilizability of ẋ = A0 x+A1 xu on R
2 \ 0. The methods of analysis in these papers again involve

Lyapunov functions, center manifolds, and properties of plane curves.

For higher dimensional systems, however, relatively few methods for feedback stabilization are avail-

able. Although in [127], Wang gives a sufficient condition for stabilizability of systems in R
n

by piece-wise constant controls, no general procedure for their construction is provided. There

is a lack of constructive approaches to stabilization of higher order systems for which the matrix

A0 +
∑m
i=1Aiui is unstable for all choices of constants ui.
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Unlike many existing stabilization methods, the control laws proposed in this chapter do not require

the drift term A0x to be critically stable, or stabilizable by constant controls. With this motivation,

the following stabilization approaches are proposed:

• Method 1: The first proposed approach follows the idea, already suggested in [132],

of stabilizing (5.1) by employing time-periodic feedback which brings into play the Lie

brackets of the system matrices A0, A1, . . . , Am.

The method relies on the Lie algebraic extension (2.1) of the original system (5.1). Under

reasonable assumptions, a stabilizing feedback control is easy to construct for the extended

system. The stabilizing time-invariant feedback control for the extended system is then

combined with a periodic continuation of a specific solution to the open-loop, finite horizon

control problem on the Lie group, described in Section 2.5, p. 35. The open-loop control

problem is posed in terms of the γ-coordinates of flows and its purpose is to generate

open-loop controls such that the trajectories of the extended system and the original

system intersect after a finite time T , independent of their common initial condition.

It is hence, a finite horizon interception problem for the flows parametrized by the γ-

coordinates. While the time-invariant feedback for the extended system dictates the

speed of convergence of the original system trajectory to the desired terminal point, the

open-loop solution serves to ensure that the motion of the original system is on “average”

that of the controlled extended system.

The proposed approach demonstrates that synthesis of time-varying feedback stabilizers

for bilinear systems is possible and can be viewed as a procedure of combining static

feedback laws for a Lie algebraic extension of the system with a time-varying solution of

an open-loop control problem on the associated Lie group.

• Method 2: The second stabilization approach merely requires the existence of a constant

control which renders the resulting linear system to have at least one eigenvalue in the

open left-half of the complex plane. By continuity, the latter induces the existence of a

set of constant controls which yield a family of linear systems with stable manifolds.
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The proposed control law comprises two phases: the reaching phase and the sliding phase.

In the reaching phase, the state of the system is steered to a selected stable manifold em-

ploying a suitably designed control Lyapunov function in conjunction with a Lie algebraic

control. The latter is necessary when there do not exist smooth controls that generate

instantaneous velocities decreasing the Lyapunov function. The Lie algebraic control is

constructed in terms of a sequence of constant controls which yield a decrease in the

value of the Lyapunov function after a finite time T . The control sequence is based on

the method proposed in Section 4.3.1 of Chapter 4 and is calculated as a solution to a

non-linear programming problem whose formulation results from a direct application of

the Campbell-Baker-Hausdorff formula for composition of flows. Once the set of stable

manifolds is reached, the control is switched to its sliding phase whose task is to confine

the motion of the closed-loop system to the latter set, making it invariant under limited

external disturbances.

The contributions of this chapter are summarized as follows:

• Two novel Lie algebraic approaches to the synthesis of stabilizing feedback control for

homogeneous bilinear systems with an unstable drift are presented.

• The methods are relatively general and apply to systems in which the drift cannot be

stabilized by any constant control. Feedback stabilization of such systems has not yet

found a general solution (except for systems which evolve in the plane).

• Sufficient conditions for the existence of the proposed control laws are given, including

conditions under which the constructed feedback control of the second approach renders

the stable manifold globally attractive and attainable in finite time.

• Examples are given to demonstrate the effectiveness of the proposed stabilizing feedback

laws.
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5.2. Problem Definition and Basic Assumptions

Problem Definition. The objective is to construct time-varying feedback controls ui(x, t) : R
n ×

R+ → R, i = 1, . . . ,m, in the class of piece-wise continuous functions in x, such that system (5.1)

is Lyapunov asymptotically stable.

For simplicity of notation, system ΣBS in (5.1) will simply be referred to as “system Σ” or just “Σ”.

Similarly, the Lie algebraic extension (2.1) corresponding to the bilinear system (5.1) will be denoted

by Σe. Let A def
= {A0, A1, . . . , Am} be the set of matrices describing system (5.1), and denote by

L(A) the matrix Lie algebra of (n × n)-dimensional square and real matrices generated by A with

the Lie product of two matrices A and B defined as the matrix commutator [A,B] = BA−AB.

For the construction to be valid, the basic assumptions H1–H2 introduced in Chapter 2 are now

replaced by the following hypotheses:

H1.BS The vector fields fi(x) = Aix i = 0, 1, . . . ,m, are real linearly independent vector fields

that generate a Lie algebra L(F), of dimension is dimL(F) = r ≥ n+ 1.

H2.BS The system Σ is strongly controllable, i.e. for any T > 0 and any two points x0, xf ∈ R
n,

xf is reachable from x0 by some control u ∈ Pm of Σ in time not exceeding T ; i.e. there

exists a control u ∈ Pm and a time t ≤ T such that x(t, x0, u) = xf .

Remark 5.1. Note that, unlike hypothesis H1 of Chapter 2, the above hypothesis H1.BS does not

assume that the Lie algebra of vector fields L(F) is nilpotent. Also analyticity and completeness are

not assumed, because these properties are obviously satisfied by the linear vector fields in F .

The Lie algebra L(F) of a bilinear system is only finite dimensional, and in general, it is not nilpotent

even if the vector fields fi(x) = Aix, i = 0, . . . ,m, defining the system’s dynamics are linear. The

finite dimensionality of L(F) follows from the fact that the structure of the Lie algebra L(F) is

defined by the structure of the matrix Lie algebra L(A). Specifically, dimL(F) ≤ n2, because the

dimension of L(A) is at most n2 (the dimension of the space of n× n matrices).

Furthermore, there do not exist general transformations, either by state feedback or coordinate

changes, that render the system nilpotent while preserving its bilinear form. The only general trans-

formations that preserve the system’s bilinearity are linear coordinate transformations of the form
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z = Tx. However, the Lie algebra structure remains unchanged by this transformation, i.e. the Lie

algebras are equivalent as their elements are related by the similarity transformation X̂ = TXT−1,

where X and X̂ denote elements of the Lie algebra of the original system (5.1) and the transformed

one (using the coordinate change z = Tx):

Σ∗ : ż = TA0T
−1z +

m∑

i=1

TAiT
−1zui = Â0z +

m∑

i=1

Âizui (5.2)

It can easily be verified that the Lie brackets of (5.1) and (5.2) satisfy:

[Âi, Âj ] = [TAiT
−1, TAjT

−1] = T [Ai, Aj ]T
−1 (5.3)

and hence, the Lie algebra structures of the matrix Lie algebras L(A) and L(Â) of systems (5.1)

and (5.2), respectively, are the same.

These facts suggest that even though the apparent linear aspect, bilinear systems should be treated

within the class of general more complex non-nilpotent nonlinear systems. The lack of nilpotency

significantly complicates the stabilization of such systems. The latter should be clear from the fact

that neither the CBH formula nor the γ-coordinate equations (2.17) can easily be determined exactly,

as both involve infinite series in the Lie products generated by F . This in turn means that previous

approaches that steer the system exactly between any two points p and q can now only steer it

approximately. Note, however, that the exponential CBH formula (A.12), (see Appendix A, p. 224),

is absolutely and uniformly convergent for all t ∈ R, (see [12]), since for any two matrices X, Y :

‖eXtY e−Xt‖ = ‖Y + [Xt, Y ] +
1

2!
[Xt, [Xt, Y ]] +

1

3!
[Xt, [Xt, [Xt, Y ]]] + . . . ‖

≤ ‖Y ‖
(

1 + 2‖X‖t+
1

2!
(2‖X‖t)2 +

1

3!
(2‖X‖t)3 + . . .

)

(5.4)

≤ ‖Y ‖ exp(2‖X‖t)

as the norm of the n+1-th term in the series (5.4) is not greater than 2‖X‖n‖Y ‖/n! ≤ 2n‖X‖n‖Y ‖/n!.
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Once again, it will be useful to consider the Lie algebraic extension Σe of the original bilinear system

Σ in (5.1), given here by:

Σe : ẋ = A0x+
r−1∑

i=1

Aixvi
def
= gv(x) (5.5)

where the additional matrices Ai, i = m+ 1, . . . , r − 1, are Lie products of the original matrices in

A such that:

H3.BS.a. The vector fields in G def
= {g0, . . . , gr−1}, gi(x) = Aix, i = 0, . . . , r − 1, define a basis for

L(F).

H3.BS.b. The set of vectors gi(x) = Aix, i = 1, . . . , r − 1, of the extended system Σe contains a

basis for Lx(F), x ∈ R
n \ 0.

H3.BS.c. The set of matrices {A0, A1, . . . , Ar−1} is a basis for the matrix Lie algebra L(A) such

that the extended system corresponds to a strongly controllable nilpotent approximation

of system Σ.

Remark 5.2.

Unlike assumption H3.b of Chapter 2, the above hypothesis H3.BS.b does not require here that for

any x in a sufficiently large neighbourhood of the origin B(0, R), the set of vector fields G(x)
def
=

{g0(x), . . . , gr−1(x)} contains a basis for Lx(F). This is because the vector fields gi(x) = Aix,

i = 0, . . . , r − 1, are linear, and hence, any basis of Lx(F) for x ∈ B(0, R) \ 0 is also a basis for all

x ∈ R
n \ 0.

The fact that L(F) is in general non-nilpotent implies that the TIP, or equivalently LCIP, can only be

solved approximately. This is because the infinite series involved in the derivation of the logarithmic

coordinates equation are now replaced by finite series. In these circumstances, the computation of

an approximate solution to LCIP does not differ from the one previously discussed in Chapter 2, but

the trajectories of system Σ and Σe are no longer guaranteed to intercept periodically every T units

of time, and hence, it is not obvious that the stabilizing properties of the constructed time-varying

feedback law are preserved. It is thus necessary to ensure that the error made in steering the system

while neglecting higher order brackets can be made sufficiently small. An important result which

delivers an estimated bound on the error was obtained by Lafferriere in [44]. This result, adequately
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interpreted in the context of the TIP, is essential to the stability analysis of system Σ and is restated

here as follows.

Theorem 5.1 (Laferriere, [44]). Suppose that the Lie algebra of vector fields L(F) is not nilpotent

but that the TIP is solved as an LCIP on a nilpotent Lie group Gk of order k < ∞, corresponding

to a nilpotent approximation of L(F). Let û denote the approximate solution of the LCIP, and let

t → x(t, x0) and t → xe(t, x0) denote the integral curves, through x0 = x(t0) at time t0, of the

original system Σ with control û and the extended system Σe with control v̂, respectively. Further,

let xT
def
= x(T, x0) and xeT

def
= xe(T, x0). Finally, let R be a bounded region in R

n. Under these

conditions, there exists a function F : [0,∞) → [0,∞], which is finite and bounded near zero, such

that if x0, x
e
T ∈ R, t0 ≥ 0, then

‖xeT − xT ‖ ≤ F (‖xeT − x0‖)‖xeT − x0‖1+ 1
k (5.6)

It follows from Theorem 5.1 that the steering error defined as the difference between trajectories

of the original system and the trajectories of the approximating system (constructed in terms of

a truncated version of the original controllability Lie algebra; see example in Section 5.4, p. 121)

is a decreasing function of the distance between the initial and target points. This error can be

controlled by selecting the degree of nilpotency and the time horizon T . Hence, it will simply be

assumed, in the sequel, that L(F) is a nilpotent Lie algebra. The approaches to the design of the

stabilizing feedback control are presented in the next two sections.

5.3. Method 1: Time-Varying Stabilizing Feedback Design Based on the

TIP

This section presents a method for construction of time varying stabilizing feedback control for

homogeneous bilinear systems. The method is universal in the sense that it is independent of the

vector fields determining the motion of the system, and does not require a Lyapunov function. The

proposed feedback law is constructed in terms of a repeated continuation of the specific solution to

an open-loop control problem on the associated Lie group. The latter is posed as the trajectory

interception problem (TIP) in the logarithmic coordinates of flows (2.22) described in Section 2.5,
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p. 35. The method thus requires first the stabilization of the Lie algebraic extension Σe of the

original bilinear system Σ, which is described in the next section. The subsequent section discusses

the solution of the open-loop control problem and the stabilizing properties of the resulting time-

varying feedback law.

5.3.1. Stabilization of the Lie Algebraic Extension of the Original System

A stabilizing feedback for system Σe is first defined in the form of (2.18) as

v(x)
def
= [v1(x) · · · vr(x)]T = Q(x)†(Adx−A0x) (5.7)

where Q(x)
def
= [A1x · · ·Arx], Q(x)† denotes the Moore-Penrose right pseudo-inverse of the state

dependent matrix Q, i.e. Q(x)Q(x)† = I, which under the assumption H3.BS is guaranteed to exist

for all x ∈ R
n \0, see (2.18) on p. 36, and where Ad is some asymptotically stable “reference system”

matrix, i.e. eig(Ad) ∈ C
◦
−; here eig(Ad) denotes the set of eigenvalues of Ad. It follows that the

trajectories of the extended system satisfy

ẋ = A0x+Q(x)v(x) = Adx (5.8)

so that the extended system is stable, as desired.

Although the feedback given in (5.7) is exponentially stabilizing for the extended system, it is not

stabilizing for the original system unless the action of the r−1 feedback controls in (5.7) is somehow

translated into a corresponding action of the m < r − 1 controls of (5.1). To facilitate such a

construction, the trajectory interception problem of Section 2.5, p. 35, is solved once and evaluated

repeatedly every period T using a discretized version v̂ of the controls v(x). The feedback controls

for the extended system v̂ are “updated” only at discrete moments of time nT , n ∈ Z+, in terms

of the values of v(x(nT )). More precisely, on the n + 1-th interval [nT, (n + 1)T ], n ∈ Z+, the

discretized control v̂(n) is defined as the constant control:

v̂(n)
def
= v(x(nT )), t ∈ [nT, (n+ 1)T ), n ∈ Z+ (5.9)
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Hence, v̂(n) is obtained from v by the “sample and hold” operation. The corresponding extended

system with discretized controls is thus given by:

ẋ = A0x+

r−1∑

i=1

Ai x v̂i(n) (5.10)

It should be pointed out that such a discretization is only needed if the extended controls are not

constant, and is introduced in order to ensure that the feedback controlled extended system (5.10) has

the same Lie algebraic structure as the original system (5.1) within each time interval [nT, (n+1)T ).

Intuitively, it is clear that sufficiently fine discretization of the extended controls (reflected by a

sufficiently small T ) will preserve their stabilizing properties; the latter is confirmed by the following

result.

Proposition 5.1. Suppose that hypotheses H1.BS–H3.BS are valid, so that the controlled extended

system given by (5.8) is globally exponentially stable. Under these conditions, for any region

B(0, R) ⊂ R
n there exists a constant T > 0, T ∈ [0, Tmax], such that the extended system (5.10)

with discretized controls (5.9) is asymptotically stable with region of attraction B(0, R).

Proof. First, notice that the extended system (5.5) with control (5.7) satisfies equation (5.8),

and therefore, by asymptotic stability of the linear system ẋ = Adx there exists1 positive matrices

P > 0, Q > 0 and a Lyapunov function V (x)
def
= xTPx, such that V̇ = xT (ATd P+PAd)x ≤ −xTQx <

−λmin(Q)‖x‖2 for all x 6= 0, where λmin(Q) denotes the smallest eigenvalue of Q. Clearly, the chosen

Lyapunov function satisfies hypothesis H7 in Chapter 4 and with η
def
= −λmin(Q)

V̇ (x) = ∇V gv(x) = ∇V Adx < −η‖x‖2, for all x ∈ R
n \ 0 (5.11)

Since (5.11) is valid for all x along the trajectory of (5.1), it is also true for x = x(nT ). Furthermore,

by the definition (5.7) and the fact that the matrix Q† is a smooth matrix function of x, there exists

constants K1(R) and K2(R) such that

‖Q†(x)‖ ≤ K1, ∀ x ∈ B(0, R) (5.12)

1This is a well known converse of Lyapunov’s Theorem, see for example [4, Thm. 3.12, p. 149].
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and

‖v‖ ≤ ‖Q†(x)‖ ‖Adx−A0x‖

≤ K1K2 ‖x‖

(5.13)

and hence, with M = K1K2, ‖v̂‖ ≤ M‖x‖ and v̂(n) = v(x(nT )) ∈ U e(x(nT )), (see equation (4.3),

p. 69), for some constant M(R) > 0 and all x ∈ B(0, R). By Proposition 4.1, the latter implies

that there exists T > 0 in [0, Tmax] such that V (xe(T, x, v̂)) − V (x) < − η
2‖x‖2T . Final application

of Theorem 4.1 to the extended system with discretized controls (instead of the original system)

guarantees its asymptotic stability. �

5.3.2. The Open-Loop Control Problem on the Lie Group

The next step is to generate open-loop controls ui, i = 1, . . . ,m, for the original system such that its

trajectories and the trajectories of the discretized extended system (5.10) intersect periodically with

the given frequency of discretization 1/T . To this end, the open-loop control problem discussed in

Section 2.5, p. 35, is solved yielding controls û(v̂, t) such that the trajectory x(t, x, û) of the original

system, starting from x = x(0) 6= 0 at time t = 0, intersects the trajectory xe(t, x, v̂) of the discretized

extended system (5.10), at time T , i.e. such that x(T, x, û) = xe(T, x, v̂). The reformulation of the

TIP as an LCIP, presented in Section 2.5 for a rather general class of systems, is described next

with reference to the specific class of bilinear systems.

Re-stating systems Σ and Σe as system on the Lie group H is essential for the design and analysis of

the proposed feedback law. This reformulation is possible due to the results described in Chapter 2,

specifically Theorem 2.1 by Palais and the result by Wei-Norman [149]. However, a less rigorous

approach is adopted in the present exposition2, not only for simplicity of notation, but rather to

make more tangible the application of the ideas presented in Chapter 2. The rigour is sacrificed here

in the sense that the relation between the Lie groups H and G established by the homomorphism

φ+
G, and the corresponding Lie algebra homomorphism φ+

L , are “ignored”. Thus with some abuse of

notation the solution x(t, x, u) = φ+
G(S(t, u))x to system Σ is simply written as x(t, x, u) = S(t, u)x

2This informal exposition is similar to that found in [6] or [180].
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and eA ∈ G, A ∈ A are used in place of eψ ∈ H, ψ ∈ L(H), i.e. (φ+
L)−1(A) = ψ is simply identified

with its image such that “A = ψ”.

Since any solution trajectory of Σ, x(t, x, u) = S(t, u)x starting from x ∈ R
n, clearly must satisfy

its differential equation, a representation of Σ in terms of S(t, u) as a right-invariant system on the

Lie group H can be obtained by substituting x(t, x, u) = S(t, u)x in (5.1) yielding the following

differential equation, “on the Lie group H” , for S(t, u):

Ṡ(t, û) =

[

A0 +

m∑

i=1

Aiûi(v̂, t)

]

S(t, û)

S(0) = I

An analogous equation also holds for the extended system Σe, which together with the above equation

allows to reformulate the TIP as the following flow interception problem (FIP):

FIP: Consider the two formal initial value problems:

S1 :







Ṡe(t) =
[

A0 +
∑r−1
i=1 Aiv̂i

]

Se(t)

Se(0) = I
(5.14)

S2 :







Ṡ(t) = [A0 +
∑m
i=1Aiûi(v̂, t)]S(t)

S(0) = I
(5.15)

For a fixed value of the time horizon T ≤ Tmax, find control functions ûi(v̂, t),

i = 1, . . . ,m, t ∈ [nT, (n + 1)T ), n ∈ Z+, in the class of functions which are

continuous in v̂ and piece-wise continuous in t, such that for any constant

control vector v̂ ∈ R
r−1 the above flows (of the extended and original systems,

respectively) intersect at time T , thus satisfying:

S(T, û) = Se(T, v̂) (5.16)

Employing the powerful formalism of Wei-Norman [149] is now essential as it enables to find a

solution of the TIP while abstracting from the actual form of the matrices A0, . . . , Am, any particular

values of the initial condition x, as well as the values of the extended system control v̂. The result
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of Wei-Norman implies that the solution to both initial value problems S1 and S2 has the same

general form (see Section 2.4, p. 31, and also Chapter 6, p. 150 for additional details concerning this

result in the general setting of free Lie algebras of indeterminates):

Se(t) =

r−1∏

i=0

exp(γei (t)Ai) (5.17)

S(t) =
r−1∏

i=0

exp(γi(t)Ai) (5.18)

where the matrix exponentials are defined in the usual way:

exp(γ(t)A)
def
= I + γ(t)A+

γ(t)2

2!
A2 + . . . (5.19)

and where {A0, . . . , Ar−1} is a basis for the algebra L(A). The functions γei and γi, i = 0, . . . , r− 1,

will be dependent on the control values v̂i, i = 1, . . . , r, and ûi, i = 1, . . . ,m, respectively. The

representations (5.17)–(5.18) are generally only local (valid for sufficiently small times t). The latter

can be shown to be global if the algebra has special properties (is solvable), or else in the case of

real 2 × 2 systems.

The above equations (5.17)–(5.18) allow to obtain the γ-coordinates equations (2.17) and reformulate

the FIP as an LCIP. The procedure to obtain (2.17) is explained in detail in Appendix A, p. 227. In

the context of the class of systems considered here, it requires the substitution of expression (5.17)

into equation (5.14) which it satisfies, and the application of a form of Campbell-Baker-Hausdorff,

namely the first expression in (5.4) before application of the norm3, to rearrange the equation in

such a way as to be able to equate the coefficients which correspond to the same basis elements

A0, . . . , Ar−1 on its both sides. The resulting set of ordinary differential equations (2.17) has in

general a matrix Γ which is invertible only in a neighborhood of γe = 0. However, if Γ−1 exists for

all values of γe then the representation (5.17) is global and the functions γe can be solved explicitly

by solving the corresponding equation in (2.17) with v = [1 v̂]. A similar solution procedure can, of

course, be applied to the flow equation for the original system (5.18), which yields the final statement

of the TIP, now with respect to the logarithmic coordinates of the corresponding flows:

3This formula is referred to as exponential formula in [6], and is also included on p. 224 of Appendix A.
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LCIP: Consider the two formal “control systems” of equation (2.17):

CS1 : γ̇e(t) = Γ (γe(t))
−1
vd, γe(0) = 0 (5.20)

CS2 : γ̇(t) = Γ (γ(t))
−1
ud, γ(0) = 0 (5.21)

with ud = [1 û] and vd = [1 v̂]. For a fixed value of the time horizon T ≤ Tmax,

find control functions ûi(v̂, t), i = 1, . . . ,m, t ∈ [nT, (n + 1)T ), n ∈ Z+, in the

class of functions which are continuous in v̂ and piece-wise continuous in t, such

that for any constant control vector v̂ ∈ R
r−1:

γ(T, û) = γe(T, v̂) (5.22)

where γ(T, û) and γe(T, v̂) denote the γ-coordinates at time T corresponding to

systems ΣH and ΣeH with controls û ∈ R
m and v̂ ∈ R

r−1, respectively.

Both FIP and LCIP are clearly independent of the initial condition x(0) = x, but the control

functions û(v̂, t) must be found in terms of the parameter v̂, the value of the discretized extended

controls.

The existence of solutions to LCIP is not obvious, and if it exists it is often not unique. Solutions

to LCIP will however always exist under assumption H1.BS, since it implies that the motion in the

direction of any Lie bracket Ai, i = m + 1, . . . , r − 1, can be realized by switching controls in the

original system.

Using Proposition 5.1, it is now possible to show the following stabilization result for the closed-loop

system (5.1).

Theorem 5.2. Under the hypotheses H1.BS–H3.BS, and with v̂i(n), i = 1, . . . , r−1, defined in (5.9)

(evaluated at periodically at states x(nT ), n ∈ Z+, of the original system), for any region B(0, R),

there exists a constant T > 0 in [0, Tmax] such that the time-varying feedback controls ui(x, t),

i = 1, . . . ,m, defined as the periodic continuation of the solutions to LCIP:

ui(x, t) = ûi(v̂(n)), for t ∈ [nT, (n+ 1)T ), n ∈ Z+, i = 1, . . . ,m, (5.23)
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are asymptotically stabilizing for system (5.1), with region of attraction B(0, R).

Proof. Proceeding similarly as in [75] and propositions 4.1 and 4.3 of Chapter 2, let xT
def
=

x(T, x, û) denote the state of system Σ in (5.1) reached from x at time T by application of the

time-varying feedback control û (which approximately solves the TIP), and let xeT
def
= xe(T, x, v̂)

denote the state of system Σe in (5.5) reached from x at time T by application of the discretized

control v̂.

By Propostion 5.1 the extended system is Lyapunov stable with Lyapunov function V (x) = xTPx,

and therefore there exists a closed ball B̄(0, R), R > 0, which contains all the trajectories xet
def
=

xe(t, x, v̂), t ≥ 0 for all (t, x) ∈ R+ × B(0, R). Additionally, there exists η > 0 and T > 0 such that

for any (t, x) ∈ R+ ×B(0, R):

V (xeT ) − V (x) ≤ −η
2
‖x‖2T (5.24)

with extended system controls v̂ satisfying ‖v̂‖ ≤M‖x‖.

Let KA be a common bound for gi(x) = Aix, i = 0, 1, . . . , r − 1, on B̄(0, R). Since for all s ∈ [0, T ],

xes ∈ B(0, R), there exists a constant K1 such that ‖xes‖ ≤ K1‖x‖ ≤ R and the following estimates

are immediate:

‖xeT − x‖ ≤
∫ t0+T

t0

‖A0x
e
s‖ +

r−1∑

i=1

‖Aixes‖‖v̂‖ds

≤ K1‖A0‖‖x‖T +KAM‖x‖T (5.25)

≤ cT‖x‖

where c = K1‖A0‖ +KAM , and

‖xeT ‖ ≤ ‖xeT − x‖ + ‖x‖ ≤ (1 + cT )‖x‖ (5.26)

By (5.24),

V (xeT ) ≤ V (x) − η

2
‖x‖2T (5.27)
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and letting ∆xT = xT − xeT , the last inequality clearly implies that

V (xT ) = V (xeT ) + (V (xT ) − V (xeT ))

≤ V (x) − η

2
‖x‖2T + (V (xT ) − V (xeT ))

≤ V (x) − η

2
‖x‖2T + (xeT + ∆xT )TP (xeT + ∆xT ) − (xeT )TPxeT (5.28)

≤ V (x) − η

2
‖x‖2T + 2(∆xT )TPxeT + (∆xT )TP∆xT

≤ V (x) − η

2
‖x‖2T + ‖P‖

(
2‖xeT ‖ ‖∆xT ‖ + ‖∆xT ‖2

)

Let δ ∈ (0, 1) be such that the function ξ → F (ξ) of Theorem 5.1 is bounded by some constant MF

for ξ ∈ [0, δ]. Since B̄(0, R) is bounded, there exists a T1 such that

max{cT1, T
1
2
1 }‖x‖ ≤ δ, for all x ∈ B̄(0, R) (5.29)

Then, by virtue of the definition of ∆xT , equation (5.25) and the result of Theorem 5.1:

‖∆xT ‖ ≤ MF ‖xeT − x‖1+ 1
k

≤ MF c
1+ 1

k T 1+ 1
2k ‖x‖

(

T
1
2 ‖x‖

) 1
k

(5.30)

≤ MF c
1+ 1

k T 1+ 1
2k ‖x‖

for all T ≤ T1, and all x ∈ B̄(0, R), as δ < 1. Using (5.26) and (5.30), the “error” on the right-hand

side of (5.28) can be bounded as follows:

‖P‖
(
2‖xeT ‖ ‖∆xT ‖ + ‖∆xT ‖2

)

(5.31)

≤ ‖P‖
(

2(1 + cT )MF c
1+ 1

k T 1+ 1
2k ‖x‖2 +M2

F c
2+ 2

k T 2+ 1
k ‖x‖2

)

for all T ≤ T1 and (t0, x) ∈ R+ × B̄(0, R).

Finally, by (5.28) and (5.31),

V (xT ) − V (x) ≤ −q(T )‖x‖2 (5.32)
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where

q(T ) =
η

2
T − ‖P‖

(

2(1 + cT1)MF c
1+ 1

k T 1+ 1
2k +M2

F c
2+ 2

k T 2+ 1
k

)

(5.33)

Noting that q(0) = 0 and that dq
dT (0) = η

2 > 0, implies that there exists T ≤ T1 such that q(T ) > 0 is

increasing for all T ∈ [0, T1). Hence, by inequality (5.32) and Theorem 4.1 on page 84 of Chapter 4,

the original system with time-varying control û (that approximately solves the TIP with period

T ≤ T1), is also asymptotically stable in B(0, R). �

Remark 5.3. The estimation of the order of truncation k and the constant R is a difficult problem

since both parameters depend on the structure and the dimension of the Lie algebra.

5.4. Example Using the TIP Approach

For simplicity, the system to be stabilized is defined on the plane:

ẋ = A0x+A1xu (5.34)

with x
def
= [x1 x2]

T and the matrices A0, A1 given by:

A0 =






0 1

−1 4




 A1 =






0 0

−1 0




 (5.35)

It is worth noticing that the above system has the property that there exists no constant control u

for which the system matrix A0 +A1u becomes stable (in terms of u, the eigenvalues of this matrix

are λ{1,2} = 2 ±
√

3 − u), hence stabilization of (5.34) is non-trivial.

The Lie algebra L(A0, A1) is of dimension four as shown by the following Lie bracket multiplication

table in which the Lie product of any two matrices A and B is calculated as the matrix commutator

[A,B]
def
= BA−AB.

A0 A1 A2 A3

A0 0 A2 A3 12A3

A1 0 −2A1 −2A2

A2 0 24A1 − 2A3

A3 0
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In the above table the following shorthand notation is used:

A2
def
= [A0, A1] (5.36)

A3
def
= [A0, [A0, A1]] (5.37)

To facilitate further the derivation of the equations for the logarithmic coordinates of flows, the series

expansions of the exponentials will be truncated at Lie brackets of order one whenever employing

the following Campbell-Baker-Hausdorff formula (see Lemma A.1, on p. 224 of Appendix A):

exp(X)Y exp(−X) = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + . . .

=
∞∑

k=0

1

k!
adkXY

def
= exp(adX)Y (5.38)

for any X = g(t)A and Y = h(t)B, g, h : R → R, A,B ∈ R
n×n, where by the bilinear nature of the

Lie product [g(t)A, h(t)B] = g(t)h(t)[A,B], and where the operation “ad” can be defined recursively

as follows (see (A.9), p. 220):

adkXY
def
= (adk−1

X )adXY

adXY
def
= [X,Y ] (5.39)

ad0
XY

def
= Y

The latter amounts to stating that all the higher order Lie brackets of A0 and A1 can be assumed to

be equal to zero. Considering this simplifying assumption, the extended system for (5.34) involves

only the first order Lie bracket and is given by:

ẋ = A0x+A1xv1 + [A0, A1]xv2 (5.40)

This simplification is possible due to the fact that

spanL(A1x, [A0, A1]x) = R
2 (5.41)
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for all x ∈ S def
= {x ∈ R

2 | x1 6= 0}. Thus the matrix Q(x)
def
=
[
A1x [A0, A1]x

]
is invertible on S.

The singularity of Q(x) on the complement of S, SC , does not incur problems as, in this case, the

un-forced system escapes SC .

The extended system control can thus be evaluated as

v(x) = Q(x)−1[Adx−A0x] (5.42)

where v(x)
def
= [v1(x) v2(x)]

T , and where Ad is a suitably chosen matrix such that the reference

system ẋ = Adx is asymptotically stable.

The FIP now requires finding a control û(v̂, t) such that the flows Se(t) and S(t) , respectively

satisfying:

Ṡe(t) = (A0 +A1v̂1 +A2v̂2)S
e(t), Se(0) = I (5.43)

Ṡ(t) = (A0 +A1û(v̂, t))S(t), S(0) = I (5.44)

intersect at T .

To this end, it remains to derive the equations describing the evolution of the corresponding loga-

rithmic coordinates and to solve the associated LCIP. Assuming that the solution to (5.43) is of the

form Se(t) = exp(γ0(t)A0) exp(γ1(t)A1) exp(γ2(t)A2), its time derivative is calculated as:

Ṡe(t) = [γ̇0A0 + γ̇1 exp(γ0adA0
)A1 + γ̇2 exp(γ0adA0

) exp(γ1adA1)A2]S
e(t) (5.45)

Using the Campbell-Baker-Hausdorff formula (5.38) (with higher order brackets taken to be zero)

yields:

exp(γ0adA0
)A1 = A1 + γ0A2 (5.46)

exp(γ0adA0
) exp(γ1adA1

)A2 = A2 (5.47)
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Substituting (5.45)–(5.47) into (5.43) and equating coefficients of A0, A1 and A2 gives the control

system CS1 of LCIP:

CS1 :







γ̇e0 = 1

γ̇e1 = v̂1

γ̇e2 = −γe0 v̂1 + v̂2

(5.48)

Similarly the control system CS2 is

CS2 :







γ̇0 = 1

γ̇1 = û

γ̇2 = −γ0û

(5.49)

It can be verified that one possible solution of the LCIP is

û(v̂, t) = v̂1 +
2πv̂2
T

sin(
2π

T
t) (5.50)

defined for t ∈ [0, T ]. In terms of the continuous extended feedback controls the final stabilizing

control law is thus

û(v(x), t) = v1(x) +
2πv2(x)

T
sin(

2π

T
t) (5.51)

which is now defined for t ∈ [0,∞), due to the periodic continuation of the sine.

One set of simulation results is presented and corresponds to a reference system in which Ad = −αI,

with gain α = 8. The period used in the solution of LCIP was T = 0.01. Fig. 5.1 (a)–(b) show

the extended system trajectory and the corresponding extended controls, respectively. Fig. 5.2

(a)–(b) show the original system trajectory (in the phase plane) and the respective stabilizing control

u(x, t) = û(v(x), t), in which the extended controls vi(x), i = 1, 2, have been updated every T/10.

Finally, Fig. 5.3 displays the controlled system state variables versus time.

5.5. Method 2: Stabilization to the Stable Manifold Approach

The underlying idea of the feedback synthesis is simple and draws on variable structure control

approach. The feedback control comprises two stages: the reaching phase and the sliding phase.
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Figure 5.1. Stabilization of the Lie algebraic extension of the original bilinear system (5.34).
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Figure 5.2. Stabilization of the original bilinear system (5.34) using the trajectory inter-
ception approach.

The task of the reaching phase control is to steer the system to a stable subspace in finite time,

while the task of the sliding phase control is to keep the system’s state evolving in the set of stable

subspaces in the presence of limited external disturbances.

For simplicity of exposition, the approach will be explained with reference to bilinear systems which,

through the use of constant controls, yield linear systems with stable manifolds of co-dimension one

with respect to the state space. The approach can be generalized to systems with stable manifolds

of any co-dimension, as is later shown in terms of an example. Thus, in addition to assumptions

H1.BS–H3.BS, the following assumption is needed:
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Figure 5.3. Original system state variables x1, x2 versus time.

H4.BS. There exists constant controls u∗
def
= [u∗1, . . . , u

∗
m]T such that the corresponding linear

system with system matrix A(u∗) = A0 +
∑m
i=1Aiu

∗
i has n− 1 stable eigenvalues λi(u

∗),

i = 1, . . . , n− 1, i.e. λi(u
∗) ∈ C

◦
−

def
= {z ∈ C | Re(z) < 0}, i = 1, . . . , n− 1.

Remark 5.4. Assumption H4.BS implies that there does not exist constant controls such that A(u) =

A0 +
∑m
i=1Aiui is stable.

Under assumption H4.BS, let λi(u
∗) = ai+i bi, i = 1, . . . , n−1, and let wi = si+i vi, i = 1, . . . , n−1,

be the generalized eigenvectors of the matrix A(u∗). Then the stable subspace corresponding to the

constant control u∗ can be defined as:

Es(u∗) = span
{
si, vi | ai < 0, i ∈ {1, 2, . . . , n}

}
(5.52)
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It will also be useful to define the collection of stable subspaces

S def
=
⋃

u∈U

Es(u) (5.53)

where U def
= B(u∗, δ) is ball B(u∗, δ) ⊂ R

m of center u∗ and radius δ for some δ > 0 such that

assumption H4.BS is satisfied.

5.5.1. The Reaching Phase Control

Let n(u∗), ‖n(u∗)‖ = 1, be the normal vector to the stable subspace Es(u∗) defined by (5.52).

Drawing on the ideas presented in [93], a generalized control Lyapunov function is defined by the

signed distance to the stable subspace:

V (x)
def
= ζnTx (5.54)

Along the trajectories of the system (5.1) the time derivative of V (x) is given by

V̇ (x)
def
=

dV

dt
(x) =

∂V

∂x
fu(x) = a(x) + b(x)u

where

a(x)
def
= ∇V A0x, bi(x)

def
= ∇V Aix, i = 1, . . . ,m

b(x)
def
= [b1(x) · · · bm(x)], u

def
= [u1, . . . , um]T

It is clear that the feedback control of the form (2.20) defined here as

ur(x)
def
=

−a(x) − η sign{V (x)}
‖b(x)‖2

b(x)T (5.55)

with η > 0 is well defined and bounded for all x /∈ Nε(E
b), where Nε(E

b) denotes a suitably chosen

ε-neighbourhood of the set

Eb
def
= {x ∈ R

n | b(x) = 0}
(5.56)

= {x ∈ R
n | nTAix = 0, i = 1, . . . ,m}
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so that Nε(E
b)

def
= {x ∈ R

n | ‖b(x)‖ < ε}. Moreover, for all x /∈ Nε(E
b)

V̇ (x)
def
= a(x) + b(x)ur(x) = −η sign{V (x)} (5.57)

which implies that the distance between the current state of the system using the control ur and

the stable subspace Es(u∗) is decreasing at a constant rate η as long as the closed-loop trajectory

evolves in the complement of Nε(E
b).

Once the system trajectory enters Nε(E
b), a different control needs to be constructed as for x ∈

Nε(E
b) there may not exist any control value u which renders V̇ (x) < 0 guaranteeing monotonic

decrease in V . In this event, further (non-monotonic) decrease in the generalized Lyapunov function

is achieved employing the stabilization approach presented in Section 4.3.2, p. 76, for the synthesis

of discontinuous time-varying controls. For clarity of exposition, this approach is explained here in

the context of bilinear systems as follows.

Consider a sequence of constant inputs ū
def
= {u(1), u(2), . . . , u(s)}, where each u(i) is applied to (5.1)

for a time εi, i = 1, . . . , s, in the set ε̄
def
= {ε1, ε2, . . . , εs}, such that T =

∑s
i=1 εi. The state of (5.1),

x(T, x, ū), resulting from the application of (ū, ε̄) to this system with initial condition x at time

t = 0 is given as the composition of flows:

x(T, x, ū) = exp(εsA(u(s))) ◦ · · · ◦ exp(ε2A(u(2))) ◦ exp(ε1A(u(1)))x (5.58)

where exp(εA(u))x0 denotes the solution of ẋ = A(u)x through x0 at t = 0 evaluated at t = ε; i.e

exp(εA(u))x denotes the flow of A(u)x.

As in Section 4.3.2 (see equation (4.29)), by virtue of the CBH formula, for sufficiently small times

ε̄, the composition of flows (5.58) can be expressed in the form of a single flow; i.e. there exists a

matrix Ā(ū, ε̄) such that

x(T, x, ū) = exp(T Ā(ū, ε̄))x for all ū ∈ Pm and ε̄ ∈ R
s (5.59)
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By assumption H3.BS.a, the matrix Ā(ū, ε̄) has the following finite expression in terms of the matrices

in the definition of system ΣeBS :

Ā(ū, ε̄) = A0 +

r−1∑

i=1

ci(ū, ε̄)Ai (5.60)

where the scalar coefficients ci are nonlinear functions in the components of (ū, ε̄), whose analytic

expressions can be determined from the CBH formula after collection of terms involving the same

basis elements, see Example 2 in Section 5.6.

Equation (5.59) can be regarded as the solution to a system ẋ = f̄(x, ū, ε̄)
def
= A(ū, ε̄)x. In this

sense, equation (4.30) is equivalent to (5.60), as f̄ is given in the case of bilinear systems simply by

f̄ = Āx. Now, since f̄ is spanned by the elements of G (as implied by f̄ = Āx), motions of system Σ

along f̄ can be made to lie in any direction of R
n. To achieve motions in an adequate direction such

that the Lyapunov function V (x) is decreased, the SP2 in (4.32)–(4.33) is solved to yield a control

pair (ū, ε̄).

For a given x ∈ Nε(E
b), the satisficing problem SP2 is stated here as follows:

SP-BS: For given constants η > 0, T > 0 and M > 0, and for a given x ∈ B(0, R),

find a feasible pair (ū, ε̄) ∈ Pm × R
s, such that for some s <∞:

sign{V (x)}nT Ā(ū, ε̄)x ≤ −η‖x‖ (5.61)

‖c(ū, ε̄)‖ ≤ M‖x‖ (5.62)

where Ā and c(ū, ε̄)
def
= [c1(ū, ε̄) · · · cr−1(ū, ε̄)]

T are defined by (5.60), and s is

the number of switches in the control sequence ū ∈ Pm.

The following propositions ensure the existence of solutions to the above satisficing problem and

their stabilizing properties.

Proposition 5.2. Under assumptions H1.BS–H4.BS, for any neighbourhood of the origin B(0, R)

and any η > 0, there exists a constant M(R, η) > 0, such that a solution to SP-BS exists for any

x ∈ B(0, R), and any control horizon T > 0, provided that s ∈ N, the number of switches in the

control sequence ū, is allowed to be large enough.
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Proof. For any ε ∈ (0, ηζ2 ] and any given x ∈ B(0, R) let

z(x)
def
= −ε∇V T (x)‖x‖ (5.63)

Then,

∇V z(x) = −ε‖∇V (x)‖2 ‖x‖ ≤ −εζ2‖x‖ ≤ −η‖x‖ (5.64)

since by (5.54), ‖∇V (x)‖ = ζ for all x /∈ Eb.

Furthermore, z(x) can be written in terms of the right-hand side of the extended system Σe as

z(x) = g0(x) +

r−1∑

i=1

gi(x)vi
def
= gv(x) (5.65)

where gi(x) = Aix, Ai ∈ R
n×b are matrices defined as in (5.60), and v

def
= [v1 v2 · · · vr−1]

T ∈ R
r−1

is a vector of constant parameters.

It follows from (5.65) that for a given x ∈ R
n:

v(x) = Q†(x) (z(x) − g0(x)) , v = [v1 v2 . . . vr−1]
T (5.66)

where Q†(x) = QT
(
QQT

)−1
is the pseudo-inverse of the n× (r − 1) matrix Q(x) =

[g1(x) g2(x) . . . gr−1(x)], which is ensured to exist for all x ∈ R
n because rank

(
Q(x)

)
= n by the

assumption that gi, i = 1, . . . , r− 1, contains the basis for Lx(F). Moreover, Q† is a smooth matrix

function of x so there exists a constant c(R) > 0 such that

‖Q†(x)‖ ≤ c, ∀ x ∈ B(0, R) (5.67)

By Lipschitz continuity of g0 = A0x there exists a constant d(R) > 0, such that:

‖v‖ ≤ ‖Q†(x)‖ ‖z(x) − g0(x)‖ (5.68)

≤ ‖Q†(x)‖ (‖z(x)‖ + ‖g0(x)‖) (5.69)

≤ c

(
η

ζ
‖x‖ + d‖x‖

)

(5.70)
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Let M = c
(
η
ζ + d

)

be the constant employed in (5.62). Then, a solution to SP-BS exists if there

is a control pair (ū, ε̄) such that ci(ū, ε̄) = vi, i = 1, . . . , r − 1. To demonstrate the existence of a

control pair (ū, ε̄), consider the extended system:

Σe : ẏ = gv(y), y(0) = x (5.71)

with state y ∈ R
n and constant control v defined as in (5.66), (note that v is a function of x but not

of y).

The integration of (5.71) over [0, T ] yields

y(T ) = exp(Tgv)x

(5.72)

= φ+
G(Se(T ))x

where Se(·) is the solution to the system (5.71) reformulated as right-invariant system on the Lie

group H. By virtue of global strong controllability of ΣH on H, as shown in Proposition 2.1, there

exists a control pair (ū, ε̄) ∈ Pm×R
s, which steers system ΣH from e ∈ H to S(T ) = Se(T ) in time

T , i.e.:

exp(ε1λ1) ◦ · · · ◦ exp(εsλs) = exp(T λ̄) = Se(T ) (5.73)

where λi = (φ+
L)−1 (fu(i)), for i = 1, . . . , s, and λ̄ resulting from the application of the CBH formula

on H. It follows from (5.72) and (5.73) that

exp(T λ̄) = (φ+
G)−1 exp(Tgv) = exp(T (φ+

L)−1(gv)) (5.74)

Since the exponential map is a global diffeomorphism on H it follows that λ̄ = (φ+
L)−1(gv), i.e.

φ+
L(λ̄) = Āx = gv, with f̄ = Āx and f̄ as in (4.28). Due to the expansion (5.60), ci = vi for all

i = 1, . . . , r − 1, as required. �

131



CHAPTER 5. STABILIZATION OF BILINEAR SYSTEMS WITH UNSTABLE DRIFT

Proposition 5.3. Let ū(x, τ), τ ∈ [0, T ], be a control generated by the solution pair (ū, ε̄) to SP-BS.

There exists a Tmax > 0 such that for all T ∈ [0, Tmax]:

V (x(T, x, ū)) − V (x) ≤ −η
2
‖x‖T (5.75)

Proof. Since V (x) = ζnTx, for all x /∈ Es, and f̄ = Āx is analytic and linear in ci, i =

1, . . . , r − 1, and f0(0) = 0, then ∇V = ζnT and f̄ is Lipschitz continuous on B(0, 2R), uniformly

with respect to c(ū, ε̄) = [c1(ū, ε̄) · · · cr−1(ū, ε̄)]
T satisfying ‖c(ū, ε̄)‖ ≤ M‖x‖. Hence, there exists

a K > 0 such that:

∥
∥f̄(y, ū, ε̄) − f̄(x, ū, ε̄)

∥
∥ ≤ K‖y − x‖ (5.76)

for all x ∈ B(0, R), y ∈ B(0, 2R), and for all control pairs satisfying ‖c(ū, ε̄)‖ ≤M‖x‖.

Let x(t)
def
= x(t, x, ū), t ≥ 0. First, it is shown that there exists a T1 > 0 and a constant K1 > 0 such

that

‖x(s) − x‖ ≤ ‖x‖ (exp(K s) − 1) (5.77)

and

‖x(s)‖ ≤ K1‖x‖ (5.78)

for all s ∈ [0, T1] such that x(s) ∈ B(0, 2R).

To this end it suffices to notice that

‖x(s) − x‖ ≤
∫ s

0
‖f̄(x, ū, ε̄)‖dτ +

∫ s

0
‖f̄(x(τ), ū, ε̄) − f̄(x, ū, ε̄)‖dτ ≤ K ‖x‖ s+

∫ s

0
K‖x(τ) − x‖dτ

which, by the application of the Gronwall-Bellman lemma (see Appendix C.1, p. 249), yields in-

equality (5.77).

It is possible to see that if T1 is chosen so that (exp(K T1) − 1) ≤ 1
2 then (5.77) holds for s ∈ [0, T1].

By contradiction, suppose that there exists an s1 < T1 such that ‖x(s1)‖ = 2R. It follows that

2R ≤ ‖x‖ + ‖x(s1) − x‖ ≤ R + ‖x‖ (exp(K s1) − 1) ≤ 3
2R which is false, and hence (5.77) is valid
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for s ∈ [0, T1]. Inequality (5.78) follows from (5.77) since

‖x(s)‖ ≤ ‖x(s) − x‖ + ‖x‖ ≤ ‖x‖ exp(K s) ≤ K1‖x‖

with K1 = exp(KT1).

Now,

V (x(T )) − V (x) ≤ ∇V (x)f̄(x, ū, ε̄)T +

∫ T

0

∥
∥∇V (x(s))f̄(x(s), ū, ε̄) −∇V (x)f̄(x, ū, ε̄)

∥
∥ ds

(5.79)

≤ −η ‖x‖T +K ζ

∫ T

0

‖x(s) − x‖ ds

since ∇V (x) = ζnT for any x /∈ Es and

∥
∥∇V (x(s))f̄(x(s), ū, ε̄) −∇V (x)f̄(x, ū, ε̄)

∥
∥ ≤ ‖∇V (x(s))‖ ‖f̄(x(s), ū, ε̄) − f̄(x, ū, ε̄)‖

≤ K ζ‖x(s) − x‖

Hence, if T < T1 then x(s) ∈ B(0, 2R) for all s ∈ [0, T ] and, using (5.77) in (5.79), yields

V (x(T )) − V (x) ≤ −η ‖x‖T +K ζ‖x‖
∫ T

0

(exp(K s) − 1) ds ≤ −η
2
‖x‖q(T )

where q(T )
def
=
(

2 + 2K ζ
η

)

T − 2 ζ
η (exp(K T ) − 1). If r(T )

def
= q(T )−T , then r(0) = 0 and r′(0) = 1,

so there exists a Tmax ≤ T1 such that r(T ) ≥ 0 for all T ∈ [0, Tmax]. Hence q(T ) ≥ T for all

T ∈ [0, Tmax] which proves (5.75). �

The concatenated control uc(x, τ) is defined in terms of the solution pair (ū, ε̄) to SP-BS computed

at discrete instants of time nT , n ∈ Z+ as:

uc(x, τ)
def
= ū(x(nT ), τ) for all τ ∈ [nT, (n+ 1)T ], n ∈ Z+

(5.80)

= u(k), for t ∈ [nT +
k−1∑

i=1

εi, nT +
k∑

i=1

εi], k = 1, . . . , s, n ∈ Z+

where x(nT ) is the state of the closed-loop system Σ at time nT .
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The control uc(x, τ) now serves in the definition of the reaching phase control, whose stabilizing

property is established established by the following theorem.

Theorem 5.3. Under hypotheses H1.BS–H4.BS, the reaching phase control defined by

uR(x, t)
def
=







ur(x) x /∈ Nε(E
b)

uc(x, t) x ∈ Nε(E
b)

(5.81)

brings the system (5.1) to the set Nε(E
s(u∗)) in finite time T ∗, where Nε(E

s(u∗))
def
= {x : ‖x− y‖ ≤

ε, for all y ∈ Es(u∗)} is an arbitrary small ε-neighbourhood of the stable subspace Es(u∗).

Proof. If x /∈ Eb, the reaching phase control ur(x), in (5.55), is such that V̇ (x) = −η < 0

if V (x) > 0 and x /∈ Es(u∗), or V̇ (x) = η > 0 if V (x) < 0 and x /∈ Es(u∗). Also, V̇ (x) = 0 if

V (x) = 0 and x ∈ Es(u∗). It is then possible to conclude that V (x(t)) decreases in magnitude for

all x /∈ Es(u∗) ∪ Eb. Moreover, if x(t) /∈ Eb for all t ≥ t0 the set Es(u∗) may be reached in finite

time T ∗ = 1
η |V (x0)|, i.e. V (x(t0 + T ∗)) = 0, since V (x(t)) = V (x(t0)) − η

∫ t

t0
sign{V (x(s))}ds =

V (x(t0)) − ηsign{V (x(t0))}(t− t0) for all t < t0 + T ∗.

If x(t) ∈ Nε(E
b) for some t ≥ t0 then the application of the time-varying concatenated control

uc(x, t) is necessary. By Proposition 5.3 the state of system Σ in (5.1) with control the concatenated

control (5.80) satisfies V (x(tk+1))−V (x(tk)) ≤ −η
2‖x(tk)‖T , for all k ∈ Z+ with tk = kT and hence,

application of Theorem 4.1, now with γ(‖x(tk)‖) = η
2‖x(tk)‖T , ensures the asymptotic convergence

of the trajectories of the closed-loop system to the stable manifold Es(u∗), i.e. for any ε > 0 there

exits a time T ∗ > t0 such that x(t, x, uR) ∈ Nε(E
s(u∗)) for all t ≥ t0 + T ∗. �

5.5.2. The Sliding Phase Control

Once the closed-loop system using the control uR reaches the the neighbourhood Nε(E
s(u∗))∩S of

stable subspaces Es(u∗) it is then logical to switch the control to a constant value u ∈ U = B(u∗, δ)

such that Es(u) 3 x for x ∈ S, and which, in the absence of any external disturbances, keeps the

system’s state evolving in S for all future times. The latter results in asymptotic stabilization since

S is stable. As the assumption about the absence of external disturbances is not practical, a more

realistic (feedback) version of the sliding control must take account of any possible deviations of the
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system’s state from the desirable stable subspace Es(u∗). To this end, it is worth pointing out the

following consequence of continuity of the eigenvalues as functions of the control u ∈ U .

Proposition 5.4. For a system (5.1) satisfying H1.BS and H2.BS, let u∗ ∈ R
m be a control which

satisfies assumption H4.BS. Then there exists a δ > 0 such that assumption H4.BS holds for all

u ∈ U = B(u∗, δ). The mapping u→ n(u), with n(u) ∈ R
n, ‖n(u)‖ = 1, the normal vector to Es(u),

is continuous on U . Consequently, the point to set mapping u→ Es(u) is continuous on U .

Proof. First, note that for a fixed control u the right hand side of equation (5.1) corresponds

to a linear system with constant matrix A(u). It is well-known that solutions to the corresponding

characteristic equation, defined by P (s, u) = det (sI −A(u)) = 0, are continuous with respect to the

parameters u.

Also notice that the controllability assumptions H1.BS–H2.BS imply that no invariant subspace Q

exists such that solution trajectories starting from x0 ∈ Q remain in Q for all t ≥ 0 and any u ∈ Pm.

This means that there does not exist an invariant linear subspace and an associated set of spanning

eigenvectors that remain constant for any choice of u. The latter implies by continuity of solutions

of P (s, u) = 0 with respect to u that for a given u∗ satisfying H4.BS, there exists a ∆u such that the

solution to P (s, u∗ + ∆u) = 0 yields n− 1 eigenvalues λi(u
∗ + ∆u) ∈ C

◦
−, i = 1, . . . , n− 1, in some

neighborhood of λ(u∗). The existence of δ such that H4.BS is satisfied for all u ∈ B(u∗, δ) simply

follows by letting δ = inf∆u∈{v|Re(λ(u∗+v))=0} ‖∆u‖.

The continuity of solutions to P (s, u) = 0 also implies the continuity of the eigenvectors w(u) that

solve [sI−A(u)]w(u) = 0 for a given u ∈ R
m, and hence that of the point to set mapping u→ Es(u)

on U . �

The sliding phase control is now defined on the set S as:

uS(x)
def
= u ∈ R

m such that Es(u) 3 x (5.82)

where, additionally, uS(x(t)) is required to be continuous along any trajectory of the system t →

x(t) ∈ S. It is now possible to prove the following stabilization result.
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Theorem 5.4. Suppose all assumptions H1.BS–H4.BS are satisfied. Let T be such that the reaching

control defined by (5.81) steers the system from any initial point x0 ∈ R
n to Nε(E

s(u∗)) in finite

time, and let uTIP : R
n×R → R

m be the asymptotically stabilizing control (5.23) obtained using the

approach of Section 5.3. Under these conditions, the combined reaching and sliding phase controls,

together with uTIP :

u(x, t)
def
=







uR(x, t) x /∈ Nε(E
s(u∗))

uS(x) x ∈ Nε(E
s(u∗)) and x ∈ S

uTIP (x, t) x ∈ Nε(E
s(u∗)) and x /∈ S

(5.83)

provide an asymptotically stabilizing feedback control for system (5.1).

Proof. The asymptotic stability of system (5.1) with control u(x, t) given by (5.83) directly

follows from Theorem 5.3, which guarantees that the reaching control uR(x, t) steers the system to

Nε(E
s(u∗)) in some finite time T ∗, and the fact that once x(t) ∈ Nε(E

s(u∗))∩S, t ≥ T ∗, the sliding

control uS(x), whose continuity along trajectories t → x(t) ∈ S is ensured by Proposition 5.4,

keeps trajectories of the system confined to the set S of stable subspaces Es(u), u ∈ U . If x ∈

Nε(E
s(u∗)) \ {Nε(Es(u∗)) ∩ S}, i.e. if x ∈ Nε(E

s(u∗)) but x /∈ S, then uTIP asymptotically

stabilizes the system by Theorem 5.2. �

Remark 5.5. The above feedback control provides an alternative approach to the asymptotic stabi-

lization of system (5.1) which is in most situations much simpler than that provided by the control

uTIP alone (like in the method proposed in Section 5.3) since uTIP is usually not required as shown

by the examples presented next.
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5.6. Examples for the Stabilization to the Stable Manifold Approach

5.6.1. Example 1: System on R
3 with dimEs(u∗) = 2.

The feedback control constructed is applied to a single-input bilinear system on R
3, with the following

matrices:

A0 =









1 −1 0

1 1 0

0 0 1









A1 =









−1 0 −1

0 0 1

1 −1 1









(5.84)

It can easily be verified that:

• The drift term A0x is unstable as all the eigenvalues of A0 have positive real parts.

• The system matrix A(u) = A0 +A1u has at most two eigenvalues with negative real part

for all u ∈ R.

• The two stable eigenvalues of A(u) occur for u < 0 and are complex conjugate.

• The Lie algebra generated by A0x and A1x satisfies the LARC condition.

The trajectories of the closed-loop system are shown in Fig. 5.4 (a) for an initial state

x0 = [−0.0939 0.6460 -0.7575]T

in Eb. The trajectory x(t) never enters the set Eb again, thus the control (5.55) is enough two reach

Es. A value of u∗ = −6 was adopted for the design of the feedback ur(x), in which case

n(u∗) = [−0.8860 − 0.3047 − 0.3496]T

In this simulation the constant rate of decrease η was chosen to be 0.05.
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(a) Closed-loop system trajectory x(t). (b) Lyapunov function V (x(t)).

Figure 5.4. Stabilization of system (5.84) to a stable plane, with initial condition x0 ∈ Eb.

5.6.2. Example 2: System on R
3 with dimEs(u∗) = 1.

Consider a single-input bilinear system on R
3 with matrices:

A0 =









1 −1 0

1 1 0

0 0 −1









A1 =









0 −2 1

2 0 1

−1 −1 0









(5.85)

In this example A(u) = A0 + A1u has only one stable eigenvalue regardless of the choice of u ∈ R.

The set S is then a collection of one dimensional subspaces Es, where:

Es = {x ∈ R
n | x = s d(u), s ∈ R} (5.86)

Here d(u) denotes the eigenvector corresponding to the stable eigenvalue λ(u). It is now convenient

to consider a control Lyapunov function V , which is defined as the distance between the current

state x and its orthogonal projection on Es, given by:

V (x) = xTx− (dTx)2

dT d
(5.87)

The reaching phase control ur(x) is hence defined as:

ur(x)
def
=

−a(x) −K

‖b(x)‖2
b(x)T (5.88)
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whenever x /∈ Nε(E
b), with K > 0 and

Eb = {x ∈ R
n | xT (dT dA1 − ddTA1)x = 0} (5.89)

It is easy to check that Es ⊂ Eb, thus in the process of reaching Es it is inevitable for the state of

the controlled system to enter the set Nε(E
b). This necessitates the construction of the time-varying

component uc(x, t) of the reaching control uR(x, t).

Let X0 = A0x and X1 = A1x. The system satisfies the LARC, since

spanL{X0, X1, [X0, X1], [X1, [X0, X1]]}(x) = R
3

The Lie algebra of this system is non-nilpotent, however it is finite dimensional and can be approx-

imated by the following fourth order P. Hall basis:

B1 = X0 B2 = X1 B3 = [X0, X1]

B4 = [X0, [X0, X1]] B5 = [X1, [X0, X1]] B6 = [X0, [X0, [X0, X1]]]

B7 = [X1, [X0, [X0, X1]]] B8 = [X1, [X1, [X0, X1]]]

The stable subspace Es(u∗) is spanned by d(u∗) = [0 0 1]T , which corresponds to the direction of

the stable eigenvector generated with u∗ = 0 and for which

V (x) =
1

2
(x2

1 + x2
2) (5.90)

The reaching phase feedback (5.81) may now be written as:

uR(x, t) =







−(x2
1+x

2
2)−K

(x1+x2)x3
for x /∈ Nε(E

b)

ū(x(t∗), T ) for x /∈ Nε(E
b)

(5.91)

where NεE
b = {x | (x1 + x2)x3 < ε; ε = 0.01}.

The computation of the values the control sequence ū requires of the expressions for the coefficients

ci(ū, ε̄) that define the vector field f̄(x, ū, ε̄) = Ā(ū, ε̄)x of equation (5.60), resulting from the com-

position of flows in equation (5.58). Considering a control sequence ū with s = 4, application of the
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CBH formula yields:

c1(ū, ε̄) = T

c2(ū, ε̄) = (u(1) + u(2) + u(3) + u(4))ε

c3(ū, ε̄) = (−3u(1) − u(2) + u(3) + 3u(4))
ε2

2

c4(ū, ε̄) = (u(1) − u(2) − u(3) + u(4))
ε3

2

c5(ū, ε̄) = (−3u2
(1) − 2u(1)u(2) + 4u(1)u(3) − 3u2

(2) − 2u(3)u(2)

−3u2
(3) + 10u(4)u(1) + 4u(4)u(2) − 2u(4)u(3) − 3u2

(4))
ε3

12

c6(ū, ε̄) = (5u(1) + 7u(2) − 3u(3) − 9u(4))
ε4

24

c7(ū, ε̄) = (5u2
(1) + 4u(1)u(2) + u2

(3) − 4u(4)u(3) + 4u(4)u(2) − 9u2
(4) − 4u(1)u(3) + 3u2

(2))
ε4

24

c8(ū, ε̄) = (−5u2
(4)u(1) − 3u2

(4)u(2) − u2
(4)u(3) + 5u(4)u

2
(1)

+4u(4)u(1)u(2) − 4u(4)u(1)u(3) + 3u(4)u
2
(2) + u(4)u

2
(3))

ε4

24

for equal time intervals εk = ε = T/4, k = 1, 2, 3, 4, and the basis (5.90).

With the above ci the control ū is computed by solving (5.61)–(5.62) employing nonlinear least

squares procedures, as explained in Remark 4.2.

The stabilization of (5.85), by means of (5.91) and the sliding phase control with u∗ = 0 is shown

in Fig. 5.5. The initial condition, x0 = [−0.1 0.1 0.4]T , lies in Eb. The control sequence period

is selected to be T = 1. The simulation results show that the trajectory x(t) stays in Nε(E
b) for

almost the first 0.5 seconds until it enters S.
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(a) Closed-loop system trajectory x(t). (b) Lyapunov function V (x(t)).

Figure 5.5. Stabilization of system (5.85) to a stable line, with initial condition x0 ∈ Eb.
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CHAPTER 6

A Software Package for Symbolic Lie Algebraic

Computations

This chapter presents a computer algebra package that facilitates Lie algebraic symbolic compu-

tations required in the solution of a variety of problems, such as the solution of right-invariant

differential equations evolving on Lie groups. Lie theory is a powerful tool, helpful in the analysis

and design of modern nonlinear control laws, nonlinear filters, and the study of particle dynamics.

The practical application of Lie theory often results in highly complex symbolic expressions that are

difficult to handle efficiently without the aid of a computer software tool. The aim of the package

is to facilitate and encourage further research relying on Lie algebraic computations. In view of the

assistance the package might provide, its capabilities and applications are presented in [175].

6.1. Introduction

The purpose of this chapter is to describe some of the capabilities of a software package for symbolic

calculations frequently encountered in the application of Lie algebra theory. The package, here

referred to as the Lie Tools Package (LTP), is implemented in Maple and can be employed for

computations involving Lie algebras of arbitrary type as it is constructed using a free Lie algebra of

indeterminates as its base. The results obtained with the help of the package can subsequently be

projected onto the specific Lie algebra arising in the concrete application of interest by the use of

an adequately constructed Lie algebra homomorphism.
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The theory of Lie algebras and groups was originally conceived by Sophus Lie as a tool for the solution

of differential equations and has since then become a discipline in its own right. Lie theory brings

together the mathematical disciplines of algebra and geometry to produce results relying on group-

theoretic and differential geometric developments. Such results have proved essential in the study

of kinematical symmetries in both classical and quantum mechanics [164, 166], the construction of

nonlinear filters [163, 165], the analysis of dynamical systems, and the design of feedback control

laws for nonlinear systems [6, 2, 180]. The use of Lie theory in the study of the symmetries of

differential equations is described in [168] from a practical perspective. The application of Lie theory

to the analysis and control of robotic systems is found in [180, 167, 6] and references therein. For a

comprehensive review of other applications of the Lie theory, the reader is referred to the books by

R. Gilmore and J. G. F. Belinfante [155, 151], which are intended to serve an audience of physicists

and engineers. Important basic references in Lie algebras and group theory are the books by J.-P.

Serre [160] and V.S. Varadarajan [162]. Despite the attention which the Lie theory has received in

a variety of fields, it has been limited mostly because of the complexity of the symbolic calculations,

and thus, the use of Lie theory for practical purposes has often been avoided, or has not yet received

proper attention.

The importance of developing software tools that facilitate the tedious symbolic computations arising

in applications of Lie theory has already been recognized by several authors, see for example [167,

p. 60] and [168, p. v., pp. 333–335]. Schwarz in his article [173], acknowledges that Lie theory,

as applied to identification of symmetries of differential equations, has previously failed to receive

adequate attention. It is also argued that significant progress in this and other areas of mathematics

has resulted from the development of software tools to assist in problems involving intensive algebraic

computations.

The development of LTP was motivated by the lack of software capable of handling completely

general symbolic Lie algebraic expressions and the fact that Lie algebraic computations are often

prohibitively difficult to perform by hand. Developing software tools, such as the LTP, can prove

essential to encourage further research based on Lie theoretical results 1.

1With this motivation in mind, the Lie Tools Package is freely available at

http://www.cim.mcgill.ca/∼migueltt/ltp/ltp.html

144



6.1. INTRODUCTION

The LTP package has unique capabilities which are not provided by other software such as, for

example, the liealg package developed by Yuly Billig and Matthias Mazzag2, which is conceived to

perform specific calculations involving Kac-Moody and Virasoro algebras, and their representations.

Specifically, the LTP package is capable of simplifying completely general Lie algebraic expressions

with symbolic coefficients and is designed to serve as an efficient aid in the solution of right-invariant

differential equations evolving on Lie groups. It can also deliver the Lie series which results in the

application of the Campbell-Baker-Hausdorff formula; the latter containing Lie products up to any

pre-specified order. The only previous computer-aided attempt to calculate the Campbell-Baker-

Hausdorff formula is reported in [159]. However, the procedure employed did not take account of

the dependencies between Lie products arising from the antisymmetry and Jacobi identities, thus

the result is of limited significance.

None of the mature computer algebra systems (CAS), such as Axiom (former Scratchpad II by R.

D. Jenks and D. Yun, IBM Watson Laboratories), Derive (D. R. Stoutemyer), Macsyma (Math Lab

Group, MIT), Maple (B. Char, Waterloo Maple, Inc.), Mathematica (Wolfram Research, Inc.) or

Reduce (A. C. Hearn), provide toolboxes with the functionality of LTP. For surveys and comparative

reviews of the different CAS, the reader is referred to [169, 197], the references in [168], and the

information on symbolic computation available through Internet sites, such as the comprehensive

Computer Algebra Information Network (CAIN)3 or the Symbolic Mathematical Computation In-

formation Center4. Furthermore, existing programs such as [171, 172, 173] or Maple’s liesymm

package [191], (see also references to specific software in the surveys [169, 170, 168]), are very

specialized and only focus on the computation of Lie symmetries.

Among its several capabilities, LTP greatly automates and simplifies the following computations:

• Construction of ordered bases for free Lie algebras of indeterminates (Hall bases).

• Simplification of arbitrary Lie algebraic expressions possibly involving symbolic scalar

coefficients.

2The liealg package has been developed in the School of Mathematics and Statistics, Carleton University, and is

available at http://mathstat.carleton.ca/∼billig/maple/
3http://www.mupad.de/CAIN/
4http://www.symbolicnet.org/
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• Composition of exponential mappings involving indeterminates by the use of Dynkin’s

expression for the Campbell-Baker-Hausdorff (CBH) formula.

• Construction of the Wei-Norman equations of logarithmic coordinates of flows on nilpo-

tent Lie groups.

A complete description of the package can be found in [174], including details of the algorithms and

their implementation. LTP has proved to be an essential tool in the development of the stabilization

methods proposed in the previous chapters.

For clarity of exposition, a brief reminder of basic concepts of the theory of Lie groups and Lie

algebras is introduced in the next section, and their practical relevance to applications is briefly

discussed in Section 6.3. Section 6.4 presents some general examples illustrating the capabilities

of the main functions provided by LTP. A practical example on the derivation of the Wei-Norman

equations for an underactuated rigid body in space is also presented. These equations are important

in the design of feedback control laws, as shown in Example 4.5.2 on p. 92, and are practically

impossible to compute by hand. The example thus demonstrates the usefulness and functionality of

the package. The chapter concludes with a summary of current work aiming at further extensions

of the package.

6.2. Preliminary Notions and LTP Formalism

Let {X1, . . . , Xm} denote a set of indeterminates. For brevity of notation, let X̄m = (X1, . . . , Xm).

Let A(X̄m) denote the free associative algebra (over R) of noncommutative polynomials in the in-

determinates X1, X2, . . . , Xm. Members of A(X̄m) are known to have the form of infinite sums

∑

I aIXI , where the summation is over all possible multi-indices I = (i1, . . . , im), with ij ∈

{0, . . . ,m}, for j = 1, . . . , k, and where the coefficients aI are real numbers, all of which vanish

except for a finite number of them. Here XI = Xi1 · · ·Xik , and XI=∅ = 1, where, in general,

XiXj 6= XjXi as implied by noncommutativity.

Let a Lie product [Xi, Xj ] of two indeterminates be defined as the noncommutative polynomial

XjXi − XiXj . The free associative Lie algebra of indeterminates X1, . . . , Xm is the subspace

L(X̄m) ⊆ A(X̄m) consisting of those elements S ∈ A(X̄m) which are linear combinations of
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X1, . . . , Xm or arbitrary nested Lie products involving X1, . . . , Xm. In other words, L(X̄m) is a Lie

algebra spanned by formal Lie products of X1, . . . , Xm. The elements of L(X̄m) are referred to as

Lie polynomials.

Further, let L̂(X̄m) denote the Lie algebra of Lie series in X1, . . . , Xm. The elements of L̂(X̄m)

are formal series of the type
∑∞
i=1 aiSi, where ai are real coefficients and Si ∈ L(X̄m). Clearly,

any element Z ∈ L̂(X̄m) can be written as a formal infinite series
∑

I aIXI in the indeterminates

X1, . . . , Xm, in which XI is some monomial in X1, . . . , Xm and aI=∅ = 0.

For any element in Z ∈ L̂(X̄m) the formal power series

eZ =
∞∑

k=0

1

k!
Zk (6.1)

is well defined because 1 /∈ L̂(X̄m). Here, Zk are infinite series in the indeterminates X1, . . . , Xm

obtained by the natural multiplication rule for the component monomials of Z, XIXJ = XI∗J ,

where I ∗ J is the concatenation of the components of the multi-indices I and J . The set Ĝ(X̄m) =

{eZ : Z ∈ L̂(X̄m)} is called the set of exponential Lie series in the indeterminates X1, . . . , Xm.

6.2.1. Philip Hall Basis

Note that, due to the antisymmetry property and the Jacobi identity of the Lie product, not all

the elements of a Lie algebra L(X̄m) are linearly independent. A procedure to construct a basis

for any Lie algebra of indeterminates, while taking into account the dependencies imposed by the

antisymmetry and the Jacobi identities, which was conceived by Philip Hall, involves listing all the

generators X1, . . . , Xm and selecting some of their Lie products according to the rules given below,

see [6, 160, 152].

Definition 6.1. - Hall basis (HB). Let B denote the basis for L(X̄m), and let Bi be the i-th

element in this basis. Let the length (order) of a Lie product G, l(G), be defined as the number of

indeterminates in the expansion of G, also given recursively by:

l(Xi) = 1 i = 1, . . . ,m

l([G,H]) = l(G) + l(H)
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where G and H are Lie products.

Then a Hall basis is an ordered set of Lie products {Bi} such that:

(i) Xi ∈ B, i = 1, . . . ,m

(ii) If l(Bi) < l(Bj) then Bi < Bj

(iii) [Bi, Bj ] ∈ B if and only if

(a) Bi, Bj ∈ B and Bi < Bj and

(b) either Bj = Xk for some k or Bj = [Bp, Bq] with Bp, Bq ∈ B and Bp ≤ Bi.

The proof that a Hall basis indeed constitutes a basis for the Lie algebra L(X̄m) is found in [156,

160].

Let Lk(X̄m) ⊂ L(X̄m) denote the free nilpotent Lie algebra of order k defined by assuming that

all the Lie products of degree k + 1 or greater are equal to zero. The above procedure can still be

employed to construct bases for Lk(X̄m) simply by forming all the Lie products that satisfy the

above properties and whose length does not exceed k.

By the result of Campbell, Baker, and Hausdorff, known as the CBH formula, it follows that Ĝ(X̄m)

is closed under multiplication, and is in fact a group, as it can be verified that eZe−Z = 1, for any

Z ∈ Ĝ(X̄m). Moreover, the map exp : L̂(X̄m) → Ĝ(X̄m) is a bijection from L̂(X̄m) onto Ĝ(X̄m). It

follows that for any Z1, Z2 ∈ L̂(X̄m) we can compute a unique Z3 ∈ L(X̄m) such that

eZ1eZ2 = eZ3 (6.2)

The way to compute Z3 is also delivered by the CBH formula which, in Dynkin’s form, is given

by [160, 147]:

Z3 =
∞∑

m=1

∑ (−1)m−1(adZ2
)qm(adZ1

)pm · · · (adZ2
)q1(adZ1

)p1

m (
∑m
i=1(pi + qi)

∏m
i=1(pi!qi!))

= Z1 + Z2 +
1

2
[Z1, Z2] +

1

12
([[Z1, Z2], Z2] − [[Z1, Z2], Z1]) (6.3)

− 1

48
([Z2, [Z1, [Z1, Z2]]] + [Z1, [Z2, [Z1, Z2]]]) + . . .
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where the inner sum is performed over all m-tuples of pairs of nonnegative integers (pi, qi) such that

pi + qi > 0. In (6.3), (adX)Y
def
= [X,Y ] and (adX)

def
= X.

It is worth noticing that the group Ĝ(X̄m) is not a Lie group because it is infinite dimensional.

As the package is primarily a tool for the analysis of dynamical systems, it will be applied in the

context of groups of transformations acting on the underlying manifold on which the system evolves,

see [162]. Since such groups of transformations are Lie groups, it is helpful to define Gk(X̄m), a

nilpotent version of Ĝ(X̄m):

Gk(X̄m)
def
= {eZ : Z ∈ Lk(X̄m)} (6.4)

The group Gk(X̄m) is now a Lie group with Lie algebra Lk(X̄m), see [162]. For a systematic

development it is assumed here that all groups of transformations act from the right on the underlying

manifolds M . With this notation, for x ∈M , the expression xeZ denotes the value of a group action

eZ at a point x ∈M , [160, p. LG 4.11] or [162, p. 74].

One of the many applications of the LTP package involves the solution of differential equations

defined on Lie groups. As will be explained later, the trajectories of these equations relate (through

a Lie group homomorphism) to trajectories evolving onGk(X̄m). It is hence mandatory thatGk(X̄m)

is equipped with a convenient coordinate system. Such a coordinate system can be constructed in

terms of a Hall basis and has the advantage of being global (consisting of a single chart) since

Gk(X̄m) is nilpotent, see [148]. In full rigour, if {B1, B2, . . . , Br} is the r-dimensional Hall basis

for a given nilpotent Lie algebra Lk(X̄m), then any element P in the Lie group Gk(X̄m) has the

following unique representation, [44]:

P = eγ1B1eγ2B2 · · · eγrBr (6.5)

The map P → (γ1, γ2, . . . , γr) establishes a global diffeomorphism between Gk(X̄m) and R
r and

is thus a global coordinate chart on Gk(X̄m). This coordinate system is a Lie-Cartan coordinate

system of the second kind [6], and as in previous chapters, its coordinates will simply be referred to

by the name of γ-coordinates.
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6.2.2. Wei-Norman Equation

Equation (6.5) can be viewed as a way to represent an arbitrary group action as a composition

of elementary group actions defined in terms of the elements of the Hall basis of the Lie algebra

associated with the group. This fact has been exploited by Wei and Norman in the solution of

right-invariant parametric differential equations evolving on Gk(X̄m):

Ṡ(t) =

(
m∑

i=1

Xiui(t)

)

S(t) (6.6)

S(0) = I ∈ Gk(X̄m)

where m < ∞ (finite), Xi are indeterminate operators independent of t that generate Lk(X̄m)

under the commutator product [Xi, Xj ] = XjXi −XiXj , and ui are scalar functions of t. Here, as

S(0) ∈ Gk(X̄m), S(t) evolves on Gk(X̄m).

Therefore, the solution to (6.6) is given by the product of exponentials:

S(t) = eγ1(t)B1eγ2(t)B2 · · · eγr(t)Br =

r∏

i=1

eγi(t)Bi (6.7)

where {B1, B2, . . . , Br} is the Hall basis for the Lie algebra Lk(X̄m), and the γi are scalar functions of

time, see [6, 149]. Without the loss of generality, it may be assumed that Bi = Xi, for i = 1, . . . ,m.

The γ-coordinates are shown to satisfy a set of nonlinear differential equations as is implied by the

following derivation, see also [149] or Appendix A, p. 227.

Differentiating (6.7) yields,

Ṡ(t) =
dS(t)

dt
=

r∑

i=1

γ̇i(t)

i−1∏

j=1

eγjBjBi

r∏

j=i

eγjBj (6.8)

Multiplying both sides of (6.8) by S(t)−1 from the right and using the exponential formula (see [162,

p. 40]):

(eX)Y (e−X) = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + . . .

=
∑

k=0

1

k!
(adkX)Y (6.9)

= (eadX )Y
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yields,

Ṡ(t)S−1(t) =

r∑

i=1

γ̇i(t)

i−1∏

j=1

eγjadBjBi (6.10a)

=
r∑

i=1

Biui(t) (6.10b)

with ui(t) = 0 for i = m+ 1, . . . , r, as S(t) satisfies (6.6).

Equating the coefficients on both sides of the last equality gives:













u1(t)

u2(t)

...

ur(t)













︸ ︷︷ ︸

u

=













ξ11(γ) · · · ξ1r(γ)

...
. . .

...

ξr1(γ) · · · ξrr(γ)













︸ ︷︷ ︸

Γ(γ)













γ̇1(t)

γ̇2(t)

...

γ̇r(t)













︸ ︷︷ ︸

γ̇

, γ(0) = 0 (6.11)

where the ξij(γ) are analytic functions of the γi’s. Clearly, γ(0) = 0 since S(0) = I.

It is worth noting that there exists a chain of ideals 0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ir = Lk(X̄m) where each

In is exactly of dimension n. The order of the elements in the Hall basis {B1, . . . , Br} is such that

is the ideal In is generated by {Bn, . . . , Br}, which implies that the multiplication table for Lk(X̄m)

satisfies:

[Bi, Bj ] =

r∑

n=i

cijnBn, for i > j (6.12)

It can be shown, see [149], that such a multiplication table implies that Γ(γ) is lower triangular and

invertible for all t. Hence, (6.11) yields the system of differential equations for the computation of

the γ-coordinates in explicit form:

γ̇(t) = Γ−1(γ)u(t), γ(0) = 0 (6.13)

Equation (6.13) will be referred to as the Wei-Norman equation. Its solution delivers S(t) of (6.7)

which solves (6.6).
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6.3. Relevance of LTP to Applications of Lie Algebras and Groups

To show the practical relevance of the concepts introduced in the previous section and further

motivate the development of the LTP, a few applications are discussed next. A rigorous exposition

of the examples presented and the associated assumptions can be found in [2, 165, 6] and references

therein.

6.3.1. Trajectory Planning and Control

A wide class of nonlinear control systems can be described by an ordinary differential equation which

is affine in the control inputs:

ẋ = f0(x)u0 + f1(x)u1 + . . .+ fm(x)um = f(x, u)) (6.14)

where x ∈ R
n is the state of the system, fi : R

n → R
n, i = 0, 1, . . . ,m, are smooth vector fields

defined on R
n, and ui ∈ R, i = 0, 1, . . . ,m, are scalar control inputs usually restricted to the

class of piece-wise continuous functions in t. The control problem for (6.14) becomes challenging if

m < n. Equation (6.14) can be thought to represent both driftless systems, and systems with drift

(if u0 = 1). Practical examples can be found in [6, 180, 167] and include robotic manipulators,

mobile robots, underwater vehicles, and rigid bodies in space.

With reference to systems described by (6.14), the theory of Lie algebras and groups is known to be

helpful in the following:

• Establishing the controllability properties of the system.

• Developing control laws that stabilize the system to a given equilibrium point, or ensure

tracking of a desired reference trajectory.

Chow’s Theorem delivers a conclusive result for the determination of complete controllability for

driftless system (6.14). Chow’s result involves the verification of the Lie algebra rank condition

(LARC), see [6]:

dim Ḡ(x) = n ∀x ∈ R
n (6.15)

where Ḡ(x)
def
= span{f(x) ∈ R

n|f ∈ L(F)} and F def
= {f0, f1, . . . , fm}.
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The LARC hence requires the construction of a basis for the Lie algebra of vector fields L(F). To

this end the LTP is used as follows. A Hall basis {B1, B2, . . .} is first generated for L(X̄m+1) and

then each Lie product Bi, i = 1, 2, . . . of this basis is mapped into a corresponding Lie product

of vector fields in L(F) by using the canonical Lie algebra homomorphism which assigns fi to Xi,

i = 0, . . . ,m, in any formal Lie product Bi, i = 1, 2, . . ..

For systems with drift the LARC only ensures accessibility of the system, i.e. that the reachable set

at any x0 has a non-empty interior, see [6]. The computation of a basis for L(F) is however still

useful since the dimension of the set G(x) and the highest order of the Lie products appearing in

G(x) reveal the difficulty of controlling (6.14).

Assuming that system (6.14) is completely controllable, a variety of Lie algebraic-based control

synthesis methods have been proposed in the literature, see for example [180, 6].

Pivotal to controllability considerations, the design, and the derivation of control strategies for

system (6.14) is the capability to generate system motions in directions outside the span of the

vector fields fi, i = 0, . . . ,m. Assuming that piece-wise constant switching controls are employed,

such motions can be generated by concatenation of system motions in directions included in the

span of fi, i = 0, . . . ,m. To this end, the LTP package proves helpful in determining the vector

field, which over a given interval of time T , yields motions equivalent to the concatenation. More

precisely, given s intervals of time εi, i = 1, . . . , s, the package can determine a vector field f̄(x, ε̄, T ),

with ε̄ = (ε1, . . . , εs), and T =
∑s
i=1 εi, such that for any x ∈ R

n:

xeε1z1 · · · eεszs = xeT f̄ (6.16)

where zi = f(x, u(i)), i = 1, . . . , s, are vector fields corresponding to control actions u(i) employed

by system (6.14) over intervals of time εi, i = 1, . . . , s, respectively. Here, eεz denotes the flow of

the differential equation ẋ = z so that xeεz is the solution of this equation with initial condition x,

evaluated at time ε.

Generally, f̄ will be an infinite series in the Lie products involving fi, i = 0, . . . ,m, which will

only converge for sufficiently small εi, i = 1, . . . , s. In practice, however, it is often sufficient to

evaluate only the first r terms of this series. The LTP package is then employed by repeatedly
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applying the CBH formula to perform formal calculations associated with the composition of the

formal exponential maps so that

eε1Y1 · · · eεsYs = eT Ȳ (6.17)

where Yi, i = 1, . . . , s, are members of Lk(X̄m+1) and correspond to fi, i = 0, . . . ,m, under the

Lie algebra homomorphism, ν : Xi+1 → fi, i = 0, . . . ,m, between L(X̄m+1) and ∼Lk(F). Here,

∼Lk(F) denotes the nilpotent truncation of L(F) which is obtained by assuming that all brackets of

order k + 1, and higher, are equal to zero. The resulting Lie series Ȳ then delivers a k-th order

approximation ν(Ȳ ) of f̄ . If the Lie algebra of vector fields L(F) is already nilpotent, and the vector

fields fi ∈ F , i = 1, . . . ,m, are real, analytic, and complete, then the Lie group G(F) corresponding

to L(F), is analytic, nilpotent, and simply connected, thus guaranteeing that (6.16) is valid for

arbitrary values of εi, i = 1, . . . , s, with ν(Ȳ ) = f̄ holding exactly, see [158, p. 95] and [162, p.

195].

In trajectory planning problems it is often necessary to calculate the flows of dynamical systems

such as (6.14) in terms of specific control functions ui, i = 0, . . . ,m. The flow of (6.14) is defined

as the map x→ xetf for x ∈ R
n, where the time t is a parametrizing variable which corresponds to

the total time of motion along the vector field f . Maintaining the assumptions about nilpotency of

L(f1, . . . , fm), as well as analyticity and completeness of f1, . . . , fm, the latter can be achieved by

solving the formal equation (6.6) with the assumption that fi corresponds to Xi+1, i = 0, . . . ,m,

through the Lie algebra homomorphism ν : Xi+1 → fi. Once S(t) is calculated in terms of its γ-

coordinates on the Lie group Ĝ(X̄m+1), the value xetf is calculated as x ν̃(S(t)), where ν̃ is the Lie

group homomorphism ν̃ : Ĝ(X̄m+1) → G(F) induced by the Lie algebra homomorphism ν, see [44].

6.3.2. Nonlinear Filtering

Lie algebraic methods originally conceived as tools for the analysis of nonlinear systems have also

found application in nonlinear filtering problems; the reader is referred to [165] for a complete

expository review. In the nonlinear filtering problem the objective is to estimate the state of a

stochastic process x(t), which cannot be measured directly, but may be inferred from measurements

of a related observation process y(t).
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Typical filtering problems consider the following signal observation model:

dx(t) = f(x(t))dt+ g(x(t))dv(t), x(0) = x0

(6.18)

dy(t) = h(x(t))dt+ dw(t), y(0) = 0

where x, v and y, w are R
n and R

m valued processes, respectively, and v and w have components

which are independent, standard Brownian processes. Furthermore, f, h are smooth and g is an

orthogonal matrix.

Essential for the estimation of the state is the conditional probability density of the state, ρ(t, x),

given the observation {y(s); 0 ≤ s ≤ t}. It is well known, see [202], that ρ(t, x) is obtained by

normalizing a function σ(t, x) which is the solution of the Duncan-Mortensen-Zakai (DMZ) equation:

dσ(t, x) = L0σ(t, x)dt+

m∑

i=1

Liσ(t, x)dyi(t), σ(0) = σ0 (6.19)

where

L0 =
1

2

n∑

i=1

∂2

∂x2
i

−
n∑

i=1

fi
∂

∂xi
−

n∑

i=1

∂fi
∂xi

+
1

2

m∑

i=1

h2
i (6.20)

and where Li is the operator of multiplication by hi, i = 1, . . . ,m, and σ0 is the probability density

of the initial point x0.

A particularly useful concept associated with the DMZ equation is the estimation Lie algebra, as

introduced in [200], which is defined as the Lie algebra generated by the differential operators

L0, . . . , Lm with the Lie product defined by [X,Y ]f = X(Y f)− Y (Xf), for any smooth function f .

The structure and dimensionality of the estimation Lie algebra is directly related to the existence of

a finite dimensional recursive filter for the computation of ρ(t, x), see [165]. It has been shown that

if the estimation Lie algebra can be identified with a Weyl algebra of any order, then no non-constant

statistics exist for the computation of the conditional density ρ(t, x) with a finite dimensional filter;

see references in [165]. In this context, the LTP package is helpful in the computation of the

generators for the Weyl algebras as it permits an arbitrary definition of Lie product.
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In the special case when the estimation Lie algebra is finite dimensional and solvable, (i.e. if there

exists a chain of ideals 0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ir = L(H) where each Ii is exactly of dimension i;

see [162] for the definition of solvability), the DMZ equation can be solved via the Wei-Norman

formalism. By introducing a transformation of the density σ(t, x), [201], and constructing a special

basis {B1, . . . , Br} for the estimation Lie algebra, [203], it is possible to bring the DMZ equation

into the following “robust” form:

dξ(t, x)

dt
= L0ξ(t, x)dt+

m∑

i=1

[L0, Li]ξ(t, x)dyi(t) + u(t)ξ(t, x) (6.21)

where u(t) = 1
2

∑m
i=1[[L0, Li], Li]y

2
i (t), and ξ(t, x) is the transformed density.

It can then be shown that equation (6.21) has a solution in the form of a product of exponentials:

ξ(t, x) = eγ1(t)B1 · · · eγr(t)Brσ0, t ≥ 0 (6.22)

where γi, i = 1, . . . , r, satisfy the Wei-Norman equation (6.13).

The Lie Tools Package is hence also useful for the construction of finite dimensional nonlinear filters.

6.4. LTP Functions and Examples

Any Lie product which is written in terms of the algebra generators only, will henceforth be referred

to as a pure Lie product. By the property of distributivity over scalar multiplication, an arbitrary

Lie bracket is a product of a symbolic coefficient and a pure Lie bracket.

The main and auxiliary functions provided by LTP are summarized in Table 6.1 and Table 6.2,

respectively. Auxiliary functions are invoked by the main functions, but are also made directly

available to the user to allow for perusal of intermediate results. Such an organization of the package

facilitates the addition of new functions. The reader is referred to the full package documentation

and the source code [174] for details on the syntax, algorithmic implementation, and other aspects.

Prior to invoking any function in the package, two special variables need to be declared, under

arbitrary names, to signify: the number of generators in the Lie algebra L(X̄m) and its assumed

order of nilpotency. The values of these variables are limited only by the available computer memory.
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Function Purpose

cbhexp
Calculates the exponent Z3 ∈ L̂(X̄m) resulting from the composition of exponential mappings

in equation (6.2) via the CBH formula (including brackets up to a given order k).

createLBobjects

Declares the generators X̄m of the Lie algebra Lk(X̄m). If needed, it also permits to declare

any number of linear combinations of these generators
∑m

i=1 aiXi with symbolic coefficients

ai. The LTP assigns a name to each linear combination allowing it to be used by other LTP

functions.

phb
Declares the generators X̄m of the free nilpotent Lie algebra Lk(X̄m) of degree k and constructs

a Hall basis for Lk(X̄m).

phbize Expresses any pure Lie product X ∈ Lk(X̄m) in the Hall basis.

reduceLB
Reduces a general Lie polynomial S ∈ Lk(X̄m) with symbolic coefficients to its simplest form

in a given HB.

reduceLBT
Given a list of dependencies between the elements of the HB, reduces a general Lie polynomial

S ∈ Lk(X̄m) with symbolic coefficients to its simplest form.

regroupLB
Applies the distributivity properties (over addition and scalar multiplication) of the Lie product

to an arbitrary Lie polynomial in S ∈ L(X̄m) and collects its terms.

simpLB
Applies the distributivity over scalar multiplication property to a given Lie product X ∈ L(X̄m)
and returns the simplified product αY = X, together with its scalar symbolic component α,
and the pure Lie bracket Y ∈ L(X̄m).

wner
Computes the right-hand side of equation (6.10a) and expresses it in the HB, treating γ̇i and
γi, i = 1, . . . , r, as symbolic scalars.

wnde
Constructs the differential equation for the logarithmic coordinates γi given by the Wei-Norman
equation (6.11).

Table 6.1. Main functions in LTP.

The examples presented in the next two sections consider a set of Lie algebra generators X̄3 =

(X1, X2, X3) and a HB, denoted by B, for a nilpotent Lie algebra L4(X̄3) with degree of nilpotency

k = 4. The generators X̄3 and the basis B are easily obtained by executing the package function

phb(3,4); the resulting basis B is shown in Section 6.4.2.

6.4.1. Simplification of Lie algebraic Expressions

To explain some of the capabilities of the package we consider a few examples.

To simplify the following expression x := [αX2, [αX1, (α + β2)X0]]), in which α and β are consid-

ered to be symbolic scalars, the function y:=simpLB(x) is invoked and returns the result: (α3 +

α2β2)[X2, [X1, X0]], as well as, but separately, the scalar part of it, (α3 + α2β2), and the pure Lie

product [X2, [X1, X0]]. Such an answer form facilitates further calculations; for example when the

expression needs to be re-written in terms of elements of the basis B. The latter can be accom-

plished by subsequently invoking the function phbize(y[3]), which acts on the third argument of

the result.
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Function Purpose

ad Calculates (adn
X)Y for X, Y ∈ L(X̄m).

bracketlen Returns the length l(G) of a Lie product G ∈ L(X̄m).

calcLB
Given the symbolic expressions for two vector fields in the canonical coordinate system, calcu-

lates their Lie product.

codeCBHcf
Generates code in either Fortran or C for the evaluation of the scalar symbolic coefficients in

a given Lie polynomial S ∈ L(X̄m).

createSubsRel

Creates Maple substitution relations for the the symbolic evaluation of controls ui, i = 0, . . . , m,

in the dynamic system (6.14). These substitution relations can then be used to permit cal-

culations involving systems with drift and to accommodate for piece-wise constant controls of

arbitrary symbolic magnitude, as well as to allow the controls to switch at arbitrary symbolic

moments in time, see [174] for details.

ead
Computes the series expansion of (eX)Y (e−X) = (eadX )Y . for X, Y ∈ L(X̄m) including

brackets up to a given order.

eadr
Computes the series expansion of (eX)Y (e−X) = (eadX )Y . for X, Y ∈ Lk(X̄m); re-expresses

the result in the HB and further simplifies it according to a given list of dependencies involving
the elements of the HB.

evalLB2expr
Returns a symbolic Maple expression for later evaluation of a Lie product of two vector fields,
possibly containing symbolic scalars.

pead Computes the product of exponentials
∏n

i=1 e
adXi Xn+1 for X, Y ∈ L(X̄m) including brackets

up to a given order.

peadr
Computes the product of exponentials

∏n
i=1 e

adXi Xn+1 for X, Y ∈ Lk(X̄m); re-expresses the
result in the HB and further simplifies it according to a given list of dependencies involving
the elements of the HB.

posxinphb Returns the position index i of a Lie product Bi in the HB.

selectLB
Extract, as a Maple symbolic expression for later use, the part of a given Lie polynomial

S ∈ L(X̄m) which contains brackets up to, greater than, or equal to a given order.

Table 6.2. Auxiliary functions in LTP.

Another example, where skillful simplification is essential, is provided by the composition of expo-

nential mappings eZ1eZ2 , with Z1 and Z2 declared as two simple Lie polynomials: Z1 = a1X1 +

a2X2 + a3X3, Z2 = b1X1 + b2X2 + b3X3, and with ai, bi, i = 1, 2, 3, declared as symbolic scalars.

To obtain Z3 which satisfies the CBH formula (6.3) the function cbhexp(Z1,Z2,n) is invoked to

produce a truncation of Z3 which includes brackets up to order n ≤ k. In terms of Lie products

of indeterminates such a formula for Z3, with n = 4, would involve 231 terms, but is simplified by

executing the function reduceLB(Z3,B). The latter reduces Z3 into its expression in the Hall basis

B which, in this particular case, counts only 29 components and are given by:

Z3 := (a1 + b1)X1 + (a2 + b2)X2 + (a3 + b3)X3 +
1

2
(a1b2 − a2b1][X1, X2] +

1

2
(a1b3 − a3b1)[X1, X3]

+
1

2
(a2b3 − a3b2)[X2, X3] +

1

12
(a2

1b2 − b1a1b2 + b21a2 − a1a2b1)[X1, [X1, X2]]

+
1

12
(b21a3 − a1a3b1 − b3a1b1 + a2

1b3)[X1, [X1, X3]]

+
1

12
(a1a2b2 − b22a1 + b1a2b2 − a2

2b1)[X2, [X1, X2]]
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+
1

12
(b2a3b1 − a3a2b1 − b3a1b2 + a1a2b3)[X2, [X1, X3]]

+
1

12
(b22a3 − a3a2b2 − b2a2b3 + a2

2b3)[X2, [X2, X3]]

+
1

12
(a1a3b2 − b3a1b2 − a3a2b1 + b1a2b3)[X3, [X1, X2]]

+
1

12
(b1a3b3 − a2

3b1 + a3a1b3 − b23a1)[X3, [X1, X3]]

+
1

12
(a3a2b3 − b23a2 − a2

3b2 + b2a3b3)[X3, [X2, X3]]

+
1

24
(b21a1a2 − b1a

2
1b2)[X1, [X1, [X1, X2]]]

+
1

24
(b21a

2
2 − b22a

2
1)[X2, [X1, [X1, X2]]]

+
1

48
(b21a3a2 − a3b1a1b2 − b2a

2
1b3 + b1a2a1b3)[X3, [X1, [X1, X2]]]

+
1

24
(a3b

2
1a1 − b1a

2
1b3)[X1, [X1, [X1, X3]]]

+
1

48
(b21a3a2 + a3b1a1b2 − b1a2a1b3 − b2a

2
1b3)[X2, [X1, [X1, X3]]]

+
1

24
(b21a

2
3 − b23a

2
1)[X3, [X1, [X1, X3]]]

+
1

24
(b1a

2
2b2 − b22a2a1)[X2, [X2, [X1, X2]]]

+
1

48
(a3b1a2b2 + b1a

2
2b3 − b22a3a1 − b2a2a1b3)[X3, [X2, [X1, X2]]]

+
1

24
(a3b1a2b2 − b2a2a1b3)[X2, [X2, [X1, X3]]]

+
1

48
(b1a

2
3b2 − a3b3a1b2 − a2b

2
3a1 + a3b1a2b3)[X3, [X2, [X1, X3]]]

+
1

24
(b22a3a2 − b2a

2
2b3)[X2, [X2, [X2, X3]]]

+
1

24
(b22a

2
3 − a2

2b
2
3)[X3, [X2, [X2, X3]]]

+
1

24
(a3b1a2b3 − a3b3a1b2)[X3, [X3, [X1, X2]]]

+
1

24
(b1a

2
3b3 − a1b

2
3a3)[X3, [X3, [X1, X3]]]

+
1

24
(a2

3b2b3 − b23a3a2)[X3, [X3, [X2, X3]]]

Fundamental to the simplification of any Lie polynomial is the ability to express complicated nested

Lie products as linear combinations of elements of the HB. To make this procedure computationally

efficient the package employs an algorithm similar to that for the construction of the HB itself. The

algorithm is summarized below.
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Let l(X) denote the length of a Lie product X, as explained by Definition 6.1. Define the following

operations for any Lie product X, such that l(X) ≥ 2, and any Hall basis B:

lo : X → lo(X); where lo(X) is the left-operand of X.

ro : X → ro(X); where ro(X) is the right-operand of X.

pos : (X,B) → pos(X,B); where pos(X,B) is the position index

of a Lie product X ∈ B.

For example, let X := [G,H] and B := {G,H, [G,H], [G, [G,H]], [H, [G,H]]}, then lo(X) = G,

ro(X) = H, and pos(X,B) = 3.

Denote by X a pure Lie product to be converted into an expression in terms of the elements in B.

Notice that if l(X) ≥ 2 then X can be expressed as X = [lo(X), ro(X)]. The steps of the algorithm

can now be stated in terms of the following pseudo-code:

Procedure Z := phbize(X,B)

{
1. If X ∈ B or l(X) = 1 then return Z := X.

2. If lo(X) = ro(X) or X = 0 then return Z := 0.

3. lx := lo(X);

rx := ro(X);

If lx /∈ B then lx := phbize(lx,B);

If rx /∈ B then rx := phbize(rx,B);

If pos(lx,B) > pos(rx,B) then

{ commute lx and rx:

aux := lx;

lx := −rx;

rx := aux;

}

If pos(lx,B) < pos(lo(rx), B) and l(x) > 2 then

return Z := −[ro(rx), [lx, lo(rx)] + [lo(rx), [lx, ro(rx)].

else

return Z := [lx, rx].

}
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It is worth mentioning that an arbitrary Lie product, which is not necessarily a pure Lie product,

can also be expressed in terms of the elements in B by applying the above procedure to its pure

Lie bracket component which is extracted using the function simpLB. The final result is obtained by

multiplying back by the scalar component of the original bracket, also delivered by simpLB.

6.4.2. Wei-Norman Equations of an Underactuated Rigid Body in Space

The usefulness of LTP for practical applications in control of dynamical systems is illustrated by

an example of an underactuated rigid body in space for which, after the application of a suitable

feedback transformation, the model equations are (cf. Example 4.5.2, p. 92):

ẋ = f0(x) + f1(x)u1 + f2(x)u2 (6.23)

where, f0(x) = (sin(x3) sec(x2)x5 + cos(x3) sec(x2)x6)
∂

∂x1

+ (cos(x3)x5 − sin(x3)x6)
∂

∂x2

+ (x4 + sin(x3) tan(x2)x5 + cos(x3) tan(x2)x6)
∂

∂x3
+ a x4x5

∂

∂x6
,

f1(x) =
∂

∂x4
, f2(x) =

∂

∂x5
, and ẋ = [ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6]

T

Here u1 and u2 are the actuating controls, a is a scalar constant, f0 is the drift vector field, and f1

and f2 are the input vector fields.

The analysis of the motion of this system and the construction of stabilizing feedback controllers

requires the knowledge of the flow of the system. Since the Lie algebra of vector fields L(f0, f1, f2)

is not nilpotent, this flow can be computed only approximately by working with some nilpotent

approximation of L(f0, f1, f2), see [69]. Given such approximation, which is determined by an

imposed degree of nilpotency, the LTP package allows to set up the Wei-Norman equations for the

computation of the γ-coordinates of the approximating system’s flow for general symbolic inputs u1

and u2. The following steps are involved.
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Step 1: Construction of the Hall basis for the Lie algebra of indeterminates

L4(X1, X2, X3) and the basis for the Lie algebra of vector fields L4(f0, f1, f2).

Assuming that the controllability Lie algebra for the system (6.23), L(f0, f1, f2), can be approxi-

mated with sufficient accuracy by its nilpotent truncation ∼L4(f0, f1, f2), with degree of nilpotency

k = 4, a Hall basis is first constructed for L4(X̄3). This is done by invoking B:=phb(3,4), which

yields B as a list of 32 elements. The latter are then mapped using the Lie algebra homomorphism

into the corresponding Lie products of vector fields. The basis B̃ for the nilpotent Lie algebra

∼L4(f0, f1, f2), which approximates L(f0, f1, f2), is obtained by identifying the linear dependencies

between all the evaluated products of vector fields, constructing a corresponding list of symbolic

dependencies between the elements of B, and by assuming that adequately selected brackets are

zero.

To evaluate the homomorphic images gi
def
= ν(Bi), i = 1, . . . , 32, of the elements in the Hall basis B

the vector fields f0, f1, f2 are declared as symbolic expressions in Maple, and the function calcLB is

invoked, remembering that each Bi corresponds to fi−1, i = 1, 2, 3.

The 29 brackets computed in this way are:

g4(x) = [f0, f1] = [0, 0,−1, 0, 0,−a x5]
T

g5(x) = [f0, f2] = [− sin(x3)/ cos(x2),− cos(x3),− sin(x3) tan(x2), 0, 0,−a x4]
T

g6(x) = [f1, f2] = [0, 0, 0, 0, 0, 0]T

g7(x) = [f0, [f0, f1]] =

=




















(cos(x3)x5 − sin(x3)x6 + cos(x3) a x5)/ cos(x2)

− sin(x3)x5 − cos(x3)x6 − sin(x3) a x5

sin(x2) (cos(x3)x5 − sin(x3)x6 + cos(x3) a x5)/ cos(x2)

0

0

0




















g8(x) = [f0, [f0, f2]] =
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=




















cos(x3)x4/ cos(x2) (−1 + a)

− sin(x3)x4 (−1 + a)

(cos(x2)x6 − cos(x3) sin(x2)x4 + cos(x3) sin(x2) a x4)/ cos(x2)

0

0

0




















g9(x) = [f1, [f0, f1]] = [0, 0, 0, 0, 0, 0]T

g10(x) = [f1, [f0, f2]] = [0, 0, 0, 0, 0,−a]T

g11(x) = [f1, [f1, f2]] = [0, 0, 0, 0, 0, 0]T

g12(x) = [f2, [f0, f1]] = g10(x)

g13(x) = [f2, [f0, f2]] = [0, 0, 0, 0, 0, 0]T

g14(x) = [f2, [f1, f2]] = [0, 0, 0, 0, 0, 0]T

g15(x) = [[f0, f1], [f0, f2]] = [cos(x3)/ cos(x2),− sin(x3), cos(x3) sin(x2)/ cos(x2), 0, 0, 0]T

g16(x) = [[f0, f1], [f1, f2]] = [0, 0, 0, 0, 0, 0]T

g17(x) = [[f0, f2], [f1, f2]] = [0, 0, 0, 0, 0, 0]T

g18(x) = [f0, [f0, [f0, f1]]] =

=



























−x4/ cos(x2) (sin(x3)x5 + cos(x3)x6 + 2 sin(x3) a x5)

−x4 (cos(x3)x5 − sin(x3)x6 + 2 cos(x3) a x5)






(+ cos(x2)x5 x5 + cos(x2) a x5 x5 − sin(x2) sin(x3)x5 x4 . . .

. . .− sin(x2) cos(x3)x6 x4 − 2 sin(x3) sin(x2) a x4 x5 . . .

. . .+ cos(x2)x6 x6)/ cos(x2)







0

0

0



























g19(x) = [f0, [f0, [f0, f2]]] =
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=



























−(− sin(x3)x4 x4 + sin(x3)x4 x4 a+ cos(x3)x5 x6 − sin(x3)x6 x6)/ cos(x2)

cos(x3)x4 x4 − cos(x3)x4 x4 a+ sin(x3)x5 x6 + cos(x3)x6 x6







(− sin(x2) cos(x3)x5 x6 − sin(x2) sin(x3)x4 x4 a . . .

. . .+ sin(x2) sin(x3)x4 x4 − x4 x5 cos(x2) . . .

. . .+ sin(x2) sin(x3)x6 x6 + 2 cos(x2) a x4 x5)/ cos(x2)







0

0

0



























g20(x) = [f1, [f0, [f0, f1]]] = [0, 0, 0, 0, 0, 0]T

g21(x) = [f1, [f0, [f0, f2]]] = (−1 + a) ∗ g15(x)

g22(x) = [f1, [f1, [f0, f1]]] = [0, 0, 0, 0, 0, 0]T

g23(x) = [f1, [f1, [f0, f2]]] = [0, 0, 0, 0, 0, 0]T

g24(x) = [f1, [f1, [f1, f2]]] = [0, 0, 0, 0, 0, 0]T

g25(x) = [f2, [f0, [f0, f1]]] = (1 + a) ∗ g15(x)

g26(x) = [f2, [f0, [f0, f2]]] = [0, 0, 0, 0, 0, 0]T

g27(x) = [f2, [f1, [f0, f1]]] = [0, 0, 0, 0, 0, 0]T

g28(x) = [f2, [f1, [f0, f2]]] = [0, 0, 0, 0, 0, 0]T

g29(x) = [f2, [f1, [f1, f2]]] = [0, 0, 0, 0, 0, 0]T

g30(x) = [f2, [f2, [f0, f1]]] = [0, 0, 0, 0, 0, 0]T

g31(x) = [f2, [f2, [f0, f2]]] = [0, 0, 0, 0, 0, 0]T

g32(x) = [f2, [f2, [f1, f2]]] = [0, 0, 0, 0, 0, 0]T

The nilpotent approximation to L(f0, f1, f2) (in the neighborhood of the origin) is then derived here

by assuming that

g7 = g8 = g18 = g19 = [0, 0, 0, 0, 0, 0]T , (6.24)
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as indeed, the values of these brackets evaluated in the neighborhood of the origin are negligibly

small. Noting that

gi = [0, 0, 0, 0, 0, 0]T (6.25)

for i ∈ {6, 9, 11, 13, 14, 16, 17, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32}, and that the following dependen-

cies among the above Lie products hold:

g12 = g10, g21 = (−1 + a)g15, g25 = (1 + a)g15, (6.26)

the above dependencies translate into the following symbolic dependencies between the elements of

B:

Bi = 0, B12 = B10, B21 = (−1 + a)B15, B25 = (1 + a)B15, (6.27)

for i ∈ {6, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32}. The relations (6.27)

are passed as symbolic arguments to the LTP function and yield a basis for the nilpotent Lie algebra

of vector fields ∼L4(f0, f1, f2),

{B̃0, B̃1, B̃2, B̃3, B̃4, B̃5, B̃6} = {g1, g2, g3, g4, g5, g10, g15}

It is worth noticing that the ordering of the above basis preserves a condition corresponding to (6.12),

which guarantees that the Wei-Norman equation can be given in the explicit form (6.13).

Step 2: Calculation of the right-hand side of the Wei-Norman equation.

The derivation of the Wei-Norman equation is carried out in two steps. The product term in the

right-hand side of (6.10a) is first computed by invoking the LTP function wner, in which the basis

elements Bi+1 need to be replaced by B̃i, i = 0, . . . , 6. Next, the coefficients corresponding to the

basis elements B̃i on both sides of equation (6.10a)–(6.10) are equated using the LTP function wnde.

More precisely, the LTP function wner ought to be invoked with the following parameters:

rhwne:=wner(r,k− 1,B,B̃,lbdt), where r = 7 is the dimension of the basis B̃, k = 4 is the degree
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of nilpotency, and lbdt is the list of linear dependencies (6.27). The resulting expression is:

rhwne := γ̇0f0 + γ̇1f1 + γ̇2f2 + (γ̇1γ0 + γ̇3)[f0, f1] + (γ̇2γ0 + γ̇4)[f0, f2]

+(γ̇3γ2 + γ̇4γ1 + γ̇5)[f1, [f0, f2]] + (γ̇4γ3 + γ̇5γ0a+ γ̇6)[[f0, f1], [f0, f2]]

The function wnde(rhwne,r,B,lbdt) is applied to the above result returning the matrix Γ(γ) (see

equation (6.11)) and the set of equations :

u0 = γ̇0

u1 = γ̇1

u2 = γ̇2

u3 = γ̇1γ0 + γ̇3

u4 = γ̇2γ0 + γ̇4

u5 = γ̇3γ2 + γ̇4γ1 + γ̇5

u6 = γ̇4γ3 + γ̇5γ0a+ γ̇6

The inversion of Γ(γ) results in the following Wei-Norman equation:

















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
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γ̇2

γ̇3

γ̇4

γ̇5
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





















=
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


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

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 −γ0 0 1 0 0 0

0 0 −γ0 0 1 0 0

0 γ0γ2 γ0γ1 −γ2 −γ1 1 0

0 −aγ2
0γ2 γ0γ3 − aγ2

0γ1 aγ0γ2 aγ0γ1 − γ3 −aγ0 1










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

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




















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

















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with γi(0) = 0, i = 0, 1, . . . , 6.

The flows of the original system (6.23) in a neighborhood of the origin x = 0 can now be analyzed

in an approximate way using the above Wei-Norman equation. Such analysis is helpful for the
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construction of stabilizing control laws for (6.23), as shown in the previous chapters and in [76, 77,

78].
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CHAPTER 7

Conclusions and Future Research

The problem of stabilizing feedback synthesis for strongly nonlinear systems with drift was investi-

gated in this work, whose main contributions are summarized as follows:

• The development of a continuous time-varying stabilization approach.

• The derivation of two approaches to the design of time-varying discontinuous state feed-

back stabilizers.

• The implementation of a software package that simplifies symbolic Lie algebraic calcula-

tions, many of which are practically impossible to perform by hand.

The contributions of the preceding chapters are briefly reviewed in the following section of this

conclusion; some general remarks about each approach are also given. In the last two sections a

short qualitative comparison of the feedback strategies and some suggestions for future research are

given.

7.1. Review of the Results and General Remarks

7.1.1. Chapter 3: Continuous Time-Varying Stabilization Feedback Approach

This chapter presented a feasible approach to the synthesis of time-varying stabilizing feedback

controls for nilpotent nonlinear systems with drift. The synthesis method is general and is applicable

to a large class of nilpotent systems, however, it is computationally expensive. The latter is not

surprising, as stabilization of systems which do not lend themselves to successful linearization (be
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it through state-feedback transformations, or else simply around some operating points) is well

recognized to be difficult.

7.1.2. Chapter 4: Discontinuous Time-Varying Stabilization Feedback Approach

The approaches to the design of stabilizing feedback controls presented in Chapter 4 apply to gen-

eral systems with drift for which controllable linearizations, as well as continuous stabilizing state

feedback laws, may not exist.

The advantages and drawbacks of each approach are summarized as follows:

• Compared to other Lie algebraic approaches, the ones proposed here are simple to im-

plement1; for example, they do not require the often difficult solution of a trajectory

interception problem on the Lie group as in [75].

• Both approaches are computationally expensive2 as they require the solution of a non-

linear programming problem through numerical optimization algorithms, but less so as

compared with [77].

• As compared with the control procedure of [68], both methods provide a more systematic

tool for generation of complicated Lie bracket motions of the system which might be

necessary in the process of stabilization.

• The advantage of Method 2 (Sec. 4.3.2) over Method 1 (Sec. 4.3.1) is that it is simpler

to implement.

• The approaches do not deliver the feedback uniquely as they employ arbitrary solutions

to a satisficing nonlinear programming problem. This can be viewed as the strength of

the methods, as it leaves the designer much freedom to accommodate for other goals.

1The meaning of simple to implement is used here in a broad qualitative sense rather than in a quantitative sense.

By simple to implement it is meant that the mathematical expressions for the control law can be obtained after a
small number of steps. It is also meant that the mathematical expressions themselves are simple and involve few

terms, and therefore their actual implementation, in the form of a computer routine, is simple. It should be noted,
though, that the concept of simplicity of implementation is also relative to the existing tools, such as software tools

that automatize the mathematical derivations and the programming process.

2The terms computationally expensive or computationally complex are used here in a qualitative sense when referring
to a method or procedure that involves a large number of computations or a longer simulation time. Although

the concept of computational complexity can be given a precise quantitative definition in terms of the number of

arithmetic operations, the number of CPU cycles or the amount of computation time, a rigorous quantitative analysis

is impractical and is beyond the scope of this research because the feedback laws involve the solution of optimization

problems that require an indeterminate (variable) number of iterations and because, for practical purposes, it suffices

to notice that longer simulation times already imply an increased computational complexity.
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For example, it may be desired to solve SP1 or SP2 while simultaneously minimizing

the number of discontinuities in the open-loop control or else to construct a time-varying

continuous control.

7.1.3. Chapter 5: Stabilization of Bilinear Systems with Unstable Drift

7.1.3.1. TIP Approach

The construction of time-varying feedback stabilizers for homogeneous bilinear systems was investi-

gated in this chapter. The approach relies on the solution of a flow interception problem in terms

of a set of parameters which represent the values of the stabilizing controls for the extended sys-

tem. Essentially, a closed form parametric solution of this problem is required. In some cases, such

as the one presented in the example, a solution to the flow interception problem can be obtained

analytically. Analytic solutions are usually impossible when the system has a more complicated Lie

algebraic structure since then the order and complexity of the equations describing the evolution

of the γ-coordinates of flows increases. This fact motivated the development of the more compu-

tationally practical approaches presented in Chapter 4, and the software package for symbolic Lie

algebraic calculations described in Chapter 6.

However, an undeniable advantage of this approach is that it applies to homogeneous bilinear systems

of a general form, without any specific assumptions concerning the stability of the drift term or the

dimension of the system. Considering that no alternative methods of similar generality exist as yet,

this study has been worthwhile.

7.1.3.2. Steering to the Stable Manifold Approach

Switching stabilizing control of bilinear systems has previously been proposed only for non-homogeneous

bilinear systems [102], or for single input systems with a dyadic A1 matrix [104].

The contribution of this chapter is the novel approach to the synthesis of stabilizing feedback control

for homogeneous bilinear systems with an unstable drift. The method applies to systems in which

the drift cannot be stabilized by any constant control.

It is shown that the methods proposed in Chapter 4 are not limited to systems whose controllability

Lie algebra is nilpotent and that these methods offer some flexibility in the sense that they can
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be modified to serve for other purposes such as is steering to a manifold. The examples presented

confirm the effectiveness of the approach.

7.1.4. Chapter 6: A Software Package for Symbolic Lie Algebraic Computations

The development of LTP was motivated by computationally intense applications in nonlinear control

system design and nonlinear filter theory. The present version of the package is thus an effective

tool for:

(i) Performing general Lie algebraic calculations on Lie algebras of indeterminates, including

construction of bases and simplification of arbitrary Lie algebraic expressions involving

symbolic scalars.

(ii) The analysis of the structure of general dynamical systems and the structure of estimation

Lie algebras.

(iii) The solution of differential equations evolving on Lie groups.

The importance of the development of computational tools to assist in difficult symbolic and numer-

ical calculations has already been recognized, see [194, 173], and will hopefully encourage further

advances in mathematics.

7.2. Comparison of the Stabilization Strategies

The beauty of the proposed approaches is in that they apply to rather general systems. Moreover,

systems with the same Lie algebraic structure need the derivation of the feedback law only once.

However, it must also be acknowledged that the generality comes at the cost of an elevated com-

putational complexity of the feedback laws as compared to methods which exploit specific model

properties.

The continuous time-varying approach is conceptually interesting, however it has a severe practical

limitation due to the necessity of finding, at each integration step, the starting point x0(t) corre-

sponding to current state x(t) which is reached by the critical trajectory Φw(t, x0(t)) at time t.

The latter means that in practice the system equation must be repeatedly integrated to solve a

two-end-point constrained problem, for which limited numerical procedures currently exist.
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The discontinuous time-varying approaches are simple and, given enough computational power, they

perform reasonably well compared to the continuous time-varying approach. Again, a drawback is

in the severely oscillatory nature of the trajectory which might be undesirable in a number of

applications. This behaviour is in part due to the well recognized difficulty of steering underactuated

systems along directions of adequately chosen Lie bracket vector fields which would counteract the

system motion along an unstable or non-cyclical drift vector field.

7.3. Future Research Topics

7.3.1. Continuous Time-Varying Feedback Approach

As pointed out earlier and shown by Example 3.4, certain assumptions made in Chapter 3, such as

the following:

• the continuity with respect to time of the solution to the trajectory interception problem,

• the nilpotency of the Lie algebra generated by the vector fields in the system model,

• and the assumption about the origin being an isolated equilibrium of the unforced system

can possibly be relaxed, which is a topic for future research.

7.3.2. Discontinuous Time-Varying Feedback Approach

Future research is aimed at:

• Replacing the on-line computation of SP1 or SP2 by an a priori calculation of con-

trols (4.51), for each Cs ⊂ B(0, R), in the collection of compact non-overlapping subsets

covering B(0, R).

• Exploring possible simplifications which might originate from a particular structure of

the Wei-Norman equations describing the evolution of the flow of the system on the Lie

group.

7.3.3. Improvement of the LTP Package

Continuing work aiming at further development of the LTP package is concerned with:

173



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

(i) Investigating the possibility of introducing functions that employ the chronological alge-

bra formalism to simplify calculations leading to explicit evaluation and simplification of

the generalized Campbell-Baker-Hausdorff-Dynkin formula (the logarithm of the Chen-

Fliess series), see [144, 147].

(ii) Implementing a procedure for the construction of the Wei-Norman equations for flows

on arbitrary matrix Lie groups. The difficulty in obtaining a closed formula for the Wei-

Norman equation for finite dimensional, rather than nilpotent Lie algebras, resides in the

fact that the exponentials, eadBi , of the basis elements, adBi
, in the adjoint representation

of the Lie algebra, are generally given as infinite series. The new procedure will bypass this

difficulty by employing finite expressions for these exponentials in terms of the structure

constants of the Lie algebra, as suggested in [141].

7.3.4. Other Ideas for Further Developments

The following ideas are also worth considering and exploring in future developments.

• A more general extended system Σe given by:

Σe : ẋ =

r−1∑

i=0

gi(x)vi
def
= gv(x) (7.1)

could possibly be used instead of the extended system of equation (2.1). Notice that

the former drift term g0 in (2.1) is now treated as an input vector field and also

that it would only be required that dim Lx(F) = r = n, i.e. that the set of vector

fields {f0(x), . . . , fr−1(x)} span R
n for all x ∈ B(0, R) (or x ∈ R

n for global results).

Note, however, that now v0 would not be simply related to the period of integration

T as when the extended system is regarded as a system with drift for which v0 = 1.

• Development of an algorithm to solve the TIP off-line using smooth functions, possi-

bly based on the approach proposed in [62], which uses controls that are polynomials

in time, or the approach in [51, 52, 47] employing highly oscillatory sinusoidal con-

trols to generate Lie bracket motions.

• Although the differential geometric approach has been employed extensively in the

literature pertinent to the analysis and control of nonlinear systems, its inherent

weakness is its non-robustness to modelling errors and the presence of unmodelled

174



7.3. FUTURE RESEARCH TOPICS

dynamics. These errors can be viewed as perturbations to the true vector fields that

define the system and may significantly alter the structure of the Lie algebra L(F).

Hence, exploring the changes in the characteristics of L(F) and the sensitivity of the

stability properties of system Σ to modelling errors, as well as to disturbances in the

inputs, is a topic worth considering as these results should be useful to the researcher

looking to apply the proposed stabilization approaches to engineering applications.
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[114] S. Čelikovský. On the global linearization of nonhomegeneous bilinear systems. Systems

Control Lett., n. 18, 1992, pp. 397–402.

189



REFERENCES
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APPENDIX A

Notation and Mathematical Background

The work presented in this dissertation requires familiarity with some basic concepts which, for

convenience of the reader, are presented in this appendix. The notation employed in this thesis is

described in the first section. All definitions can be found in standard books, see for instance [152,

155, 157, 160, 162] for concepts of Lie theory, [153, 156] for concepts of group theory and

[183, 185, 186] for concepts of differential geometry, [181, 182] for notions in differential topology

or [187, 189] for the fundamentals of analysis. Most definitions employed here can also be found in

standard nonlinear control systems literature such as [2, 7, 6].

A.1. Notation

General

def
= Denotes definition.

| Denotes “such that”.

T Superscript T denotes transposition.

Sets

∅ Empty set.

A◦ Interior of set A.

Ā Closure of A.
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[(A) Boundary of A.

A \B Set A excluding those elements that belong to set B.

Algebra

N Set of strictly positive integers {1, 2, 3, . . .}.

Z Ring of integers {. . . ,−2,−1, 0, 1, 2, . . .}.

Z+ Set of non-negative integers, {0, 1, 2, . . .}, note that Z+ ≡ N ∪ {0}.

R Field of real numbers.

R+, (R−) Set [0,∞) of non-negative (non-positive) reals.

R
n n-dimensional Euclidean space.

C Field of complex numbers.

C+, (C−) Set of complex numbers in the right (left) half plane, including the imaginary

axis.

C
◦
+, (C◦

−) Interior of C+, i.e. C
◦
+

def
= {s ∈ C | Re(s) > 0}, (respectively, the interior of C−).

i The imaginary number
√
−1.

Analysis

‖x‖ Euclidean norm of x ∈ R
n.

B(x, r) Open ball of radius r centered at x:

B(x, r)
def
= {x ∈ R

n | ‖x‖ < r, r > 0}

eigi(A) i-th eigenvalue of A.

ḟ Time derivative df
dt of the scalar or vector function f .

200



A.1. NOTATION

∇x Gradient: Differential operator of first order partial derivatives with respect to

x defined as

[

∂
∂x1

∂
∂x2

. . . ∂
∂xn

]

.

Hx Hessian: Differential operator of second order partial derivatives with respect to

x.

C∞(Rn × R; Rn) The family of all C∞ vector fields f : R
n × R → R

n defined on R
n.

Lie Theory

Lf Lie derivative operator.

[·, ·] Lie product (or bracket).

L(G) Lie algebra associated with the Lie group G.

G(L) Lie group associated with the Lie algebra L.

Control and Dynamical Systems

Σ Original system with drift of equation (1.1).

fi Vector fields on R
n of Σ.

ui i-th control input of Σ.

fu Right-hand side of Σ defined by equation (1.1).

Σe Lie algebraic extension of Σ, see eq. (2.1).

gi Vector fields on R
n of Σe.

vi i-th control input of Σe.

gv Right-hand side of Σe defined by eq. (2.1).

F Family of vector fields {f0, . . . , fm} defined on R
n.

Pm Family of piece-wise constant functions, continuous from the left, and defined

on R
m.
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L(F) Lie algebra of vector fields generated by F .

Lx(F) Set {f(x) | f ∈ L(F)} ⊂ R
n, of vectors resulting from the evaluation of L(F)

at x.

G Basis {g0, . . . , gr−1} for L(F).

Ḡ(x) Span of f ∈ L(F) (or accessibility distribution) evaluated at x, i.e., Ḡ(x)
def
=

span{f(x) ∈ R
n|f ∈ L(F)}.

exp : L(G) → G Standard exponential mapping (cf. [162]) between elements of the Lie algebra

L(G) an the associated Lie group G.

exp(tf) One-parameter group of transformation generated by the vector field f , (the

flow of the differential equation ẋ = f(x)).

RF (T, x) Reachable set of states of system Σ at time T from x (by piece-wise constant

controls).

RG(T, x, Ue(x)) Reachable set of states of the extended system Σe at time T with controls in the

set of admissible controls U .

Rγ(T,U
e(x)) Reachable set of γ-coordinates attainable at time T with controls in the set of

admissible controls U .

diff(Rn) Group (under composition) of diffeomorphisms on R
n.

G Global group of diffeomorphisms under the composition of exp(tifi).

GT Subgroup of G, such that ti ≥ 0 and
∑j
i=1 ti = T .

H Analytic (connected), simply connected, Lie subgroup of diff(Rn), whose Lie

algebra L(H) is isomorphic to L(F).

φ Analytic mapping H × R
n 3 (h, p) → h(p) ∈ R

n which induces an isomorphism

between L(H) and L(F).

φ+
L Lie algebra isomorphism φ+

L : L(H) → L(F) (the infinitesimal generator of the

mapping φ, see Theorem 2.1).

φ+
G Group isomorphism between the groups H and G induced by the isomorphism

φ+
L .
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ΣH Dynamical system Σ on the Lie group H, see eq. (2.7).

ΣH Dynamical system Σe on the Lie group H, see eq. (2.9).

x(t, x0, u) Trajectory of a system ẋ = f(x, u) on R
n at time t starting from a state x0 at

time t0 and resulting from the application of control u.

x(·, x0, u) Trajectory through x0 and due to control u.

Φu(t, x0) equivalent to x(t, x0, u).

Φ(t), Φe(t) Flows of systems Σ and Σe, respectively. With the above notation Φ(t) =

exp(tfu), Φe(t) = exp(tgv).

A.2. Groups, Fields, Vector Spaces and Algebras

A.2.1. Group Related Notions

The notion of a Lie group relies on the definition of a topological or continuous group. A topological or

continuous group has two different kind of structures on it: a topological structure and an algebraic

structure.

Algebraically, a continuous group satisfies the axioms defining a group:

Definition A.1. - Group (G). A group G is a set with a binary operation (·): G×G→ G, such

that ∀ a, b, c ∈ G, the following properties hold:

i. Closure: a ∈ G, b ∈ G⇒ a · b ∈ G

ii. Associativity: (a · b) · c = a · (b · c)

iii. Identity e: ∃e : a · e = e · a = a

iv. Inverse a−1: ∃a−1 : a · a−1 = a−1 · a = e

A group G is called Abelian if a · b = b · a, ∀ a, b ∈ G.

Topologically, a continuous group is a manifold. The algebraic and topological properties are com-

bined by the following two additional axioms for any a, b ∈ G:
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A1. The mapping a× b→ a · b is continuous.

A2. The mapping a→ a−1 is continuous.

Definition A.2. - Topological Group or Continuous Group. A topological group or a

continuous group consists of:

(i) An underlying n-dimensional manifold M .

(ii) A operation φ mapping each pair of points (x, y) in the manifold into another point z in

the manifold.

(iii) In terms of coordinate systems around the points x, y, z, one writes

zk = φk(x1, . . . , xn; y1, . . . , yn) for k = 1, . . . , n

Definition A.3. - Homomorphism. A homomorphism between groups, φ : G → H, is a map

which preserves the group operation:

φ(a · b) = φ(a) · φ(b)

Definition A.4. - Isomorphism. An isomorphism is a homomorphism which is bijective.

A.2.2. Algebra Related Notions

The definition of a Lie algebra rests upon some other basic notions which are presented first: the

definition of a field, a vector space, and a linear algebra.

Definition A.5. - Field (K). A field K is a set with two binary operations: addition (+) and

multiplication (·), such that:

i. K is an Abelian group under (+), with identity 0.

ii. K − {0} is an (Abelian) group under (·), with identity 1.

iii. (·) distributes over (+) : a · (b+ c) = a · b+ a · c.

Some examples of fields are R and C.
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Definition A.6. - Vector Space (V ) over a field K. Given a field K, a vector space is a

non-empty set of elements, called vectors, with rules of addition and scalar multiplication defined on

it as:

i. Addition: u, v ∈ V , the sum u+ v ∈ V .

ii. Multiplication (by an element k of a field K): k ∈ K, v ∈ V , the product kv ∈ V .

A vector space is a commutative group under the addition operation (+) and the scalar multiplication

distributing over the addition, i.e. its elements satisfy the following set of addition and multiplication

axioms:

A1. Associativity: For any vectors u, v, w ∈ V, (u+ v) + w = u+ (v + w).

A2. Additive Identity: A vector denoted by 0, called the zero vector, for which v + 0 = v for

any v ∈ V .

A3. Additive Inverse: A vector denoted −v for each v ∈ V such that v + (−v) = 0.

A4. Commutativity: For any u, v ∈ V, u+ v = v + u.

M1. Distributivity over K: For any k ∈ K and any u, v ∈ V , k(u+ v) = ku+ kv.

M2. Distributivity over V : For any a, b ∈ K and any v ∈ V , (a+ b)v = av + bv.

M3. Associativity: For any scalars a, b ∈ K and any v ∈ V , (ab)v = a(bv).

M4. Scalar Identity: The element a ∈ K, such that for any v ∈ V , av = v. The scalar identity

a is denoted by 1.

Examples of vector spaces

n-tuple Space Kn: The set of n-tuples of elements in K, explicitly denoted by (k1, k2, . . . , kn) or

[k1, k2, . . . , kn].

Matrix Space Mm×n: The set of all m × n matrices over an arbitrary field K. Note that a linear

map ϕ : Kn → Kn, has a matrix representation Mn(K) ∈ Kn×n, and Mn(K) is also a vector space

over K.

Polynomial Space P (s): The set of polynomials a0 + a1s+ ...+ aks
k, k = 1, 2, ... with coefficients ai

in some field K.

Function Space F (X): The set of functions F (X) mapping elements of a non empty set X into K.
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Definition A.7. - Normed Vector Space. A vector space V over the field of reals is said to be

a normed vector space if it can be endowed with a norm, denoted by | · |, a function from V → R+

satisfying:

i. |x| ≥ 0, for all x ∈ V and |x| = 0 ⇔ x = 0.

ii. |αx| = |α||x| for all α ∈ R.

iii. |x+ y| ≤ |x| + |y|.

Definition A.8. - Induced Norm of an Operator. Let X, Y be normed linear spaces with

norms | · |X , | · |Y , respectively. The space T (X,Y ) of operators mapping X → Y has a norm induced

by the norms on X, Y as follows. Let P ∈ T (X,Y ), then

|P |i def
= sup

|x|X 6=0, x∈X

|Ax|Y
|x|X

(A.1)

If the P is a linear map in L(X,Y ), the space of linear maps, then the above norm is equivalent to:

|P |i def
= sup

|x|X=1, x∈X
|Ax|Y (A.2)

Definition A.9. - Linear Algebra (A). An algebra A over a field K is a vector space over K that,

in addition to the vector addition (+) and the scalar multiplication operations and the corresponding

axioms, it has a vector multiplication � such that the following distributivity and associativity laws

are satisfied for every F,G,H ∈ A and every k ∈ K:

i. Closure: F �G ∈ A

ii. Distributivity of � over addition in A: F � (G+H) = F �G+ F �H

iii. Distributivity of addition in A over �: (F +G) �H = F �H +G�H

iv. Distributivity of scalar multiplication: k(G� F ) = (kG) � F = G� (kF )

Properties ii. and iii. are also referred to as bilinearity. Different varieties of algebras may be

obtained depending on which additional postulates are satisfied. The algebra may be associative,

symmetric (sometimes called commutative), antisymmetric (sometimes called anti-commutative,

skew-commutative or skew-symmetric), non-commutative (if it is not symmetric), have an identity,

and/or satisfy the derivative property (or Jacobi identity). The following postulates describe these

properties:
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v. Associativity of �: (F �G) �H = F � (G�H)

vi. Commutativity: F �G = G� F

vii. Anti-commutativity: F �G = −G� F

viii. Existence of identity 1: F � 1 = F

ix. Derivative property: F � (G�H) = (F �G) �H +G� (F �G)

Jacobi Identity: F � (G�H) +G� (H � F ) +H � (F �G) = 0

Definition A.10. - Algebraic Ideal. Given an algebra (A,�), a subspace I ⊂ A is called an

algebraic ideal if x ∈ I, y ∈ A, implies that x� y, y � x ∈ I.

Definition A.11. - Lie Algebra. A linear space G over a field K (usually real or complex

numbers) with a multiplication G×G → G : {X,Y } → [X,Y ] ∈ G is called a Lie algebra if it satisfies

the properties:

i. [X,αY ] = α[X,Y ] = [αX, Y ], α ∈ K

ii. [X,Y + Z] = [X,Y ] + [X,Z]

iii. [X,Y ] = −[Y,X]

iv. [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 (Jacobi Identity)

Property (i.) corresponds to distributivity over scalar multiplication. Property (ii.) corresponds to

distributivity over the algebra generators. Properties (i.) and (ii.) are expressed by some authors as

a single property under the name of bilinearity: [αX, βY +γZ] = αβ[X,Y ]+αγ[Y,Z], for α, β, γ ∈ K

(i.e. the Lie product is linear in both operands separately, see for instance p. 430 in [2], or p. 12

and p. 40 in [151]). In the case of algebras of vector fields on R
n, if α and β are not in K, but

rather are C∞ functions such that α, β : R
n → R, then the distributivity over scalar multiplication

is normally expressed as the chain rule [6]:

[αf0, βf1] = αβ[f0, f1] + α(Lf0β)f1 − β(Lf1α)f0

where f0, f1 are some vector fields on R
n, and Lf0β = ∂β

∂xf0, Lf1α = ∂α
∂x f1 represent the Lie deriva-

tives of β and α along the vector fields f0 and f1, respectively. Property (iii.) receives different

names: skew-commutativity [2], anticommutativity [151], skew-symmetry [180], or antisymmetry
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(cf. operator theory texts). The Jacobi identity, Property (iv.), plays the same role the associative

law plays for associative algebras, for which the multiplication operation x · (y · z) = (x · y) · z. In

general, any vector space equipped with a bilinear vector multiplication is called a nonassociative

algebra (cf. p. 12 [151]), which is the case for Lie algebras, since [X, [Y,Z]] is not equal to [[X,Y ], Z],

except in the case [Y, [X,Z]] is zero as can be observed by direct application of the Jacobi identity.

The most familiar Lie algebra is the real 3-dimensional vector space with multiplication operation

defined as the vector cross product or outer product.

A.3. Matrix Groups

Matrix groups, denoted by Mn(K), is a class of groups whose elements are n×n matrices. Examples

of matrix groups are:

• General linear(GL(n,K)): GL(n,K)
def
= {M ∈ Mn(K) | det(M) 6= 0}, where 0 is the

additive identity of K.

• Special linear (SL(n,K)): SL(n,K)
def
= {M ∈ Mn(K) | det(M) = 1}. Note that

SL(n, k) ⊂ GL(n,K), i.e. the special linear group is a subgroup of the general linear

group.

• Orthogonal group (O(n,K)): O(n,K)
def
= {M ∈ Mn(K) | ĀT = A−1}, where ĀT is the

complex conjugate of A. O(n,K) is also a subgroup of GL(n,K). O(n)
def
= O(n,R) is

called the orthogonal group, and U(n) = O(n,C) is called the unitary group.

• Special Orthogonal (SO(n)): SO(n)
def
= O(n,R) ∩ SL(n,R) is the set of all orthogonal

matrices of determinant 1.

• Euclidean group (E(n)):

E(n)
def
= {M ∈ R

(n+1)×(n+1) | A =






R p

01×p 1




 , R ∈ GL(n), p ∈ R

n}

• Special Euclidean (SE(n)):

SE(n)
def
= {M ∈ R

(n+1)×(n+1) | A =






R p

01×p 1




 , R ∈ SO(n), p ∈ R

n}
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A.4. Elementary Notions of Topology

For further details regarding the definitions in this section the reader is refer to [183, 182, 186,

181, 185].

Definition A.12. - Topological Structure or Topology. Let S be a set. A topological

structure, or a topology, on S is a collection of subsets of S, called open sets, satisfying the axioms:

i. The union of any number of open sets is open.

ii. The intersection of any finite number of open sets is open.

iii. The set S and the empty set ∅ are open.

Definition A.13. - Topological Space. A set S with a topology is a topological space.

Definition A.14. - Basis for a Topology. A basis for a topology is a collection of open sets,

called basic open sets, with the following properties:

i. S is the union of basic open sets.

ii. A nonempty intersection of two basic open sets is an union of basic open sets.

Definition A.15. - Neighborhood. A neighborhood of a point p of a topological space is any

open set which contains p.

Definition A.16. - Closed Subset. A subset U of a topological space is said to be closed if its

complement Ū in S is open. The intersection of any number of closed sets is closed, the union of

any finite number of closed sets is closed, and both S and ∅ are closed.

Definition A.17. - Interior Subset. If S0 is a subset of a topological space S, there is a unique

open set, called the interior of S0 and denoted S◦
0 , which is contained in S0 and contains any other

open set contained in S0. Actually, S◦
0 is the union of all open sets contained in S0.

Definition A.18. - Closure Subset. If S0 is a subset of a topological space S, there is a unique

closed set, denoted by cl(S0) and called the closure of S0, which contains S0 and is contained in any

other closed set which contains S0. The intersection of all closed sets which contain S0 is in fact the

set cl(S0).
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Definition A.19. - Dense Subset. A subset of S is said to be dense in S if its closure coincides

with S.

A.4.1. Classes of Mappings of Topological Spaces

Different types of mappings may be defined according to the properties it exhibits. To this end, let

S1 and S2 be topological spaces and denote by F a mapping F : S1 → S2, the mapping F is said to

be a:

Definition A.20. - Continuous Mapping. A mapping F such that the inverse image of every

open set of S2 is an open set of S1.

Definition A.21. - Open Mapping. A mapping F such that the image of an open set of S1 is

an open set of S2.

Definition A.22. - Homeomorphism. A mapping F : S1 → S2 that is a bijection and both

continuous and open, i.e. for a metric space X and A,B ⊂ X an homeomorphism of A onto B is

a continuous one-to-one mapping of A onto B, F : A → B, such that F−1 : B → A is continuous.

The topological spaces S1 and S2 are said to be homeomorphic or topologically equivalent if there is

a homeomorphism of S1 onto S2. If F is an homeomorphism, the inverse mapping F−1 is also an

homeomorphism.

Definition A.23. - Smooth Mapping. Let U ⊂ R
k and V ⊂ R

l be open sets. A mapping

F : U → V is called smooth if all the partial derivatives ∂nF/∂xi1 , . . . , ∂
nF/∂xin exist and are

continuous. If X ⊂ R
k and Y ⊂ R

l are arbitrary subsets of Euclidean spaces (not necessarily open),

then F : X → Y is called smooth if there exists an open U ⊂ R
k containing X and a smooth map

F : U → R
l that coincides with F in U ∩ X. If f : X → Y and g : Y → Z are smooth, the the

composition g ◦ f : X → Z is also a smooth mapping.

Definition A.24. - Diffeomorphism. Let U ∈ R
n and V ∈ R

n be open sets. The map F : U → V

is a diffeomorphism if it is a homeomorphism (i.e. is bijective: one-to-one and onto), and if both F

and F−1 are smooth. Two sets X and Y are said to be diffeomorphic if there exists a diffeomorphism

of X onto Y .
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A closed interval is diffeomorphic to other smooth closed intervals, similarly a circle is diffeomorphic

to any closed curve and a sphere is diffeomorphic to any smooth simply connected surface (i.e.

which can be contracted to a point, unlike surfaces with holes, such as tori). Polygons and circles

are not diffeomorphic, since at the corners of the polygon there is no smooth neighborhood. The

same observations can be extended to higher dimensional structures, for example, a cone is not

diffeomorphic to a plane, neither polyhedra are diffeomorphic to spheres.

Definition A.25. - Product Topology S1×S2. The Cartesian product S1×S2 of two topological

spaces S1 and S2 can be given a topology taking as basis the collection of all small subsets of the

form U1 × U2, with U1 and U2 basic open sets of S1 and S2, respectively.

Definition A.26. - Subset Topology. A subset S1 of a topological space S can be given a

topology taking as open sets the subsets of the form S1 ∩ U with U any open subset in S. This is

sometimes called a subset topology.

Definition A.27. - Induced Topology. Let F : S1 → S2 be a continuous mapping, and let

the F (S1) denote the image of S1. Then, the mapping F ′ : S1 → F (S1) with F ′(p) = F (p) is also

continuous, but might fail to be open. However, the set F (S1) can be given another topology, called

induced topology, such that the open sets of F (S1) are the images of the open sets in S1. This new

topology contains the subset topology (i.e. any subset which is open in the subset topology is also

open in the induced topology), and the mapping F ′ is now open. If F is an injection then S1 and

F (S1) provided with the induced topology are homeomorphic.

Definition A.28. - Hausdorff Space. A topological space S for which the neighborhoods of any

two points p1, p2 ∈ S are disjoint is said to satisfy the Hausdorff separation axion and is called a

Hausdorff space for short.

A.4.2. Smooth Manifolds

Definition A.29. - Locally Euclidean Space. A locally Euclidean space X of dimension n is

a topological space such that, for each p ∈ X, there exists a homeomorphism φ mapping some open

neighborhood of p onto an open set in in R
n.
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Definition A.30. - Manifold (M). A manifold M of dimension n is a topological space which

is locally Euclidean of dimension n, is Hausdorff and has a countable basis.

In this sense, a manifold may be any connected metric space with an open covering {Uα}, i.e.

M =
⋃

α Uα, such that for all α, {Uα} is homeomorphic to the open unit ball B(0, 1) ∈ R
n, that is

for all α there exists a homeomorphism of Uα onto B(0, 1) ∈ R
n, hα : Uα → B(0, 1).

Brouwer’s theorem of invariance of domain establishes that it is not possible that an open subset

U of R
n be homeomorphic to an open subset V of R

m if n 6= m. Thus, the dimension of a locally

Euclidean space is well defined with respect to the dimension of the manifold.

Definition A.31. - (Coordinate) Chart of a Manifold M . A coordinate chart on an n-

dimensional manifold M is a pair (U, h), where U is an open set of M and h is a homeomorphism

of U onto an open set of R
n.

If h is a diffeomorphism it is sometimes called system of coordinates on the neighborhood U of M ,

and its inverse h−1 is called parametrization. The coordinate chart may also receive the name of

coordinate map. The mapping h is sometimes represented as a set (h1, h2, . . . , hn) and hi : UR is

called the i-th coordinate function. A coordinate chart (U, h) is called a cubic coordinate chart if

h(U) is an open cube about the origin in R
n. If h(p) = 0 for p ∈ U , the the coordinate chart is said

to be centered at p. The set (h1(p), h2(p), . . . , hn(p)) for p ∈ U is called the set of local coordinated

of p in the coordinate chart (U, h).

Definition A.32. - Ck-compatible Charts. Two coordinate charts (Uα, hα) and (Uβ , hβ) on an

n-dimensional manifold M are Ck-compatible, if whenever Uα
⋂
Uβ 6= ∅, if the transformation

h = hα ◦ h−1
β : hβ(Uα

⋂

Uβ) → hα(Uα
⋂

Uβ)

is a diffeomorphism, i.e. is differentiable (or of class Ck) and for all x ∈ hβ(Uα
⋂
Uβ) the Jacobian

determinant detDh(x) 6= 0.
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Notice that hβ(Uα
⋂
Uβ) and hβ(Uα

⋂
Uβ) are subsets of R

n since Uα
⋂
Uβ 6= ∅. The mapping h

takes for every p ∈ Uα
⋂
Uβ , the set of local coordinates (hβ1(p), . . . , hβn(p)) into the set of lo-

cal coordinates (hα1(p), . . . , hαn(p)) and is called a coordinates transformation on Uα
⋂
Uβ . The

inverse mapping h−1 = hβ ◦ h−1
α allows to express the coordinates (hβ1(p), . . . , hβn(p)) in terms

of (hα1(p), . . . , hαn(p)). If the coordinates hβ and hα are represented by vectors x and y, re-

spectively. Then, the coordinates transformation h = hα ◦ h−1
β can be represented in the form

y = [y1(x) . . . yn(x)]
T = y(x) and similarly, the inverse coordinate transformation h−1 = hβ ◦ h−1

α

in the form x = x(y). Two Ck-compatible charts are sometimes called smoothly overlapping charts

or are said to have a smooth overlap.

Definition A.33. - Atlas of a Manifold M . The collection of all Ck-compatible charts for

a manifold M is called an atlas on the manifold M . In other words, an atlas is the set A =

{(Uα, hα), ∀ α} of pairwise Ck-compatible coordinate charts that completely cover M , i.e. M =

⋃

α Uα.

An atlas is complete if not properly contained in any other atlas. A complete atlas is also called a

maximal atlas.

Definition A.34. - Differentiable Manifold, [2]. A differentiable manifold is a manifold with

an associated complete atlas, (i.e. if for each x ∈M ⊂ R
n there is a neighborhood W

⋂
M , W ⊂ R

k,

which is diffeomorphic to an open subset U ⊂ R
n).

Note that this definition essentially means that M a differentiable manifold of dimension n is (i)

homeomorphic to R
n, since it is a manifold, and (ii) M is equipped with a differentiable coordinate

transformation which is invertible.

Definition A.35. - Analytic Manifold. A differentiable manifold M is said to be analytic if the

maps h = hα ◦h−1
β , associated with the pairwise Ck-compatible charts forming its atlas, are analytic.

Definition A.36. - Orientable Manifold. A differentiable manifold M is said to be orientable

if there is an atlas with detD(hα ◦ h−1
β )(x) > 0, ∀ α, β and x ∈ hβ(Uα

⋂
Uβ).
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An equivalent definition of differentiable manifold found in [146] is presented next since it encapsu-

lates all the previous concepts required by the above definition of differentiable manifold, including

the definitions of analytic and orientable manifolds. Thus the following form of the definition of a

differentiable manifold serves the purpose of presenting a summary that shows how all the bits and

pieces fit together.

Definition A.37. - Differentiable Manifold, [146]. An n-dimensional differentiable manifold M

(or a manifold of class Ck, is a connected metric space with an open covering {Uα}, i.e., M = ∪αUα,

such that

i. for all α, Uα is homeomorphic to the open unit ball in R
n, B = {x ∈ R

n | |x| < 1}, i.e.,

for all α there exists a homeomorphism of Uα onto B, hα : Uα → B, and

ii. if Uα ∩ Uβ 6= ∅ and hα : Uα → B, hβ : Uβ → B are homeomorphisms then hα(Uα ∩ Uβ)

and hβ(Uα ∩ Uβ) are subsets of R
n and the map

h = hα ◦ h−1
β : hβ(Uα ∩ Uβ) → hα(Uα ∩ Uβ)

is differentiable (or of class Ck and for all x ∈ hβ(Uα ∩ Uβ), the Jacobian determinant

detDh(x) 6= 0. The manifold M is said to be analytic if the maps h = hα ◦ h−1
β are

analytic.

The pair (Uα, hα) is called a chart for the manifold M and the set of all charts is called an atlas for

M . The differentiable manifold M is called orientable if there is an atlas with detDhα ◦h−1
β (x) > 0

for all α, β and x ∈ hβ(Uα ∩ Uβ).

Examples of manifolds are:

• The unit sphere S2 ⊂ R
3 defined by {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = 1} is a smooth

manifold of dimension 2, since S2 can be covered by the diffeomorphism (x1, x2) →

(x1, x2,
√

1 − x2
1 − x2

2), which parametrizes the the region S2
⋂{x3 > 0} and the reminder

may be covered by interchanging the roles of x1, x2, x3 and the sign of the radical.
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• The space of orthogonal matrices in R
2×2 with determinant 1, SO(2), is a manifold of

dimension 1, since every 2 × 2 matrix in SO(2) can be written as:






cos(θ) − sin(θ)

sin(θ) cos(θ)






A.5. Derivatives and Differentials

Some basic terminology related to differential operators is introduced in section. For further details

on differentiability notions of multivariable mappings see [187].

Definition A.38. - Derivative of a mapping f . Let f : U ⊂ R
n → V ⊂ R

m, be a mapping

between the open sets U and V . Then, the linear map Df : R
n → R

m satisfying:

Dfx(h) = lim
t→0

f(x+ th) − f(x)

t

for x ∈ U and h ∈ R
n. In fact, Dfx is the m × n matrix of partial derivatives ∂fi

∂xj
evaluated at x

and known as Jacobian of f (cf. definition below).

Definition A.39. - Gradient Operator. The gradient operator, ∇x, is defined as the row vec-

tor of partial derivatives ∇x
def
=

[

∂
∂x1

∂
∂x2

. . . ∂
∂xn

]

with respect to space coordinates x =

[x1, . . . , xn]
T .

Definition A.40. - Jacobian. The Jacobian Jx of a differentiable map f : U ⊆ R
n → V ⊆ R

m is

the matrix:

Jxf =









∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fm

∂x1
. . . ∂fm

∂xn









Note that the Jacobian can also be viewed as the matrix of componentwise gradients of f , that is:

Jxf =









∇xf1
...

∇xfm








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A.6. Tangent Vectors, Tangent Spaces

These definitions are mainly based on those found in [2]. Let M be a smooth manifold of dimension

n and let p be a point in M . The set of all smooth real-valued functions defined on a neighborhood

of p is denoted by C∞(p).

Definition A.41. - Tangent Vector or Derivation. A tangent vector or derivation Xp at p is

a map Xp : C∞(p) → R that satisfies the following properties for all α, β ∈ R and f, g ∈ C∞(p):

i. Linearity: Xp(αf + βg) = αXp(f) + β Xp(g).

ii. Leibniz Rule: Xp(fg) = Xp(f)g(p) + f(p)Xp(g).

Definition A.42. - Tangent Space. The tangent space to M at a point p, denoted TpM , is the

set of all tangent vectors or derivations Xp : C∞ → R at p.

Remark A.1. The set of all derivations Xp : C∞ → R, or tangent vectors TpM , forms a vector

space over the field R, with

(αXp + βYp)(f) = αXp(f) + βYp(f)

for α, β ∈ R, Xp : C∞ → R, Yp : C∞ → R and f ∈ C∞.

Let (U, φ) be a (fixed) coordinate chart on M around p, with local coordinates (x1, . . . , xn). Then,

the set of derivations
{

∂
∂x1

· · · ∂
∂xn

}

forms a basis for TpM and hence we can write

Xp =

n∑

i=1

Xi
∂

∂xi

The vector (X1, . . . , Xn) ∈ R
n is a local coordinate representation of Xp ∈ TpM . The above

representation is useful to emphasize that tangent vectors are operators.

Definition A.43. - Tangent Bundle. The tangent bundle of M , denoted TM , is the collection

of all tangent spaces TpM at all points p ∈ M together with the points of tangency; i.e. since TpM

is the set of all tangent vectors to M at p, the tangent bundle is the collection of all tangent vectors,
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along with the information of the point to which they are tangent:

TM
def
= {(p, v) | p ∈M, v ∈ TpM}

A.7. Vector Fields and Flows

Definition A.44. - Vector Field. A vector field on a manifold M of dimension n is a smooth

map, f : M → TM which assigns to each point p ∈ M a tangent vector f(p) ∈ TpM . Consider

the coordinate chart (U, φ) = (U, [x1, . . . , xn]), then a local representation of the vector field, f(p),

consistent with the coordinate chart may be given as

f̂(x) =

n∑

i=1

f̂i(x)
∂

∂xi
=









f̂1(q)

...

f̂n(q)









where f̂i(x) = (fi ◦ φ−1)(p) are the local representation of the unique set of functions fi given the

coordinate homeomorphism is x = φ(p).

For notational convenience, f̂i will simply be denoted as fi, unless the explicit distinction is necessary.

A vector field is smooth if each fi(p) is smooth.

Definition A.45. - Integral Curve. A smooth curve, σ : (t1, t2) →M , on a manifold M is called

an integral curve of the vector field f if:

σ̇(t) = f(σ(t))

Thus, vector fields characterize differential equations on manifolds. The curves obviously being

solutions to the differential equation on the manifold.

Definition A.46. - Flow Φ of a Vector Field f . Let f be a smooth vector field on a manifold

M . Then for each p ∈ M there exists an interval Ip = (t1(p), t2(p)) ⊂ R, such that 0 ∈ Ip and a

smooth mapping

Φ : W →M
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defined on W ⊂ R ×M , where

W = {(t, p) ∈ R ×M | t ∈ Ip}

with the following properties:

i. Φ(0, p) = p

ii. For each p the mapping σp : Ip →M defined by

σp(t) = Φ(t, p)

is an integral curve of f .

iii. If µ : (t1, t2) → M is another integral curve of f satisfying µ(0) = p, then (t1, t2) ⊂ Ip

and the restriction of σp to (t1, t2) coincides with µ.

iv. Φ(s,Φ(t, p)) = Φ(s+ t, p) whenever both sides are defined.

v. whenever Φ(t, p) is defined, there exists an open neighborhood U of p such that the mapping

Φt : U →M defined by

Φt(q) = Φ(t, q)

is a diffeomorphism onto its image, and

Φ−1
t = Φ−t

The family of diffeomorphisms Φt(p) : M →M corresponds to a parametrization in t of the integral

curves σ generated by f . The mapping Φ is called the flow of f . The flow Φt is sometimes written

as Φft to stress the dependence on f . The dependency on the initial condition p is emphasized with

the notation Φft (p).

Remark A.2. Properties [i.] and [ii.] say that σp is an integral curve of f passing through p at

time t = 0. Thus,

dΦft (p)

dt
= f(Φft (p)), p ∈M
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Property [iii.] says that this curve is unique and that the domain Ip on which σp is defined is

maximal. Property [iv.] and [v.] say that the family of mappings Φt is a one-parameter group of

local diffeomorphisms, under the operation of composition.

Definition A.47. - Complete Vector Field. A vector field f is said to be complete if, for all

p ∈ M , the interval Ip coincides with R, i.e. the domain of definition of the integral curves is

(−∞,∞). In other words, if the flow Φ of f is defined on the whole Cartesian product R×M . Since

integral curves of a complete vector field are defined for any initial point p, for all t ∈ R, it is said

that the integral curve does not have finite escape times.

A.8. Lie Theory Notions

Definition A.48. - Lie Derivative. The rate of change with respect to time of a smooth function

V : R
n → R along the flow of a vector field f is given by

V̇ =

n∑

i=1

∂V

∂qi

∂qi
∂t

= ∇qV q̇ (A.3)

=
n∑

i=1

∂V

∂qi
fi = ∇qV f (A.4)

(A.5)

The above time derivative of V along the flow of f is referred to as directional or Lie derivative of

V along f and is denoted LfV , LfV
def
= ∇qV f(q).

One may view the Lie derivative as the result of an operator Lf : R → R acting on smooth functions

V (q).

Two vector fields f, g ∈ V(O), where V(O) is the set of smooth vector fields defined on a open subset

O ⊂ R
n, are equal if and only if Lf = Lg. Because if LfV = LgV holds for every V , then it holds

in particular for each of the n coordinate functions φi(x) = xi, and hence the coordinates of f and

g coincide: fi(x) = Lfφi = Lgφi = gi(x). While Lf is a first order operator, it can be easily verified
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that the composition of Lie derivatives, denoted by LfLg, is a second order operator:

LfLgV = [(∇)LgV ]f (A.6)

= [(∇)∇V g]f (A.7)

= [gTHV + ∇V∇g]f (A.8)

where HV is the Hessian matrix of V of second order derivatives with entries ∂2V
∂xi∂xj

. Note that ∇g

is a Jacobian matrix, while ∇V is a gradient vector.

By symmetry of the Hessian,

LfLgV − LgLfV = L∇gf−∇fgV

Definition A.49. - Lie Product or Bracket. The Lie product or Lie bracket of f, g ∈ V(O) is

defined as:

[f, g]
def
= ∇gf −∇fg ∈ V(O)

From the section on Lie derivatives it follows that:

L[f,g] = LfLg − LgLf ∀ f, g

A.8.1. The ad Operator

It is convenient to write:

adXY
def
= [X,Y ] (A.9)

If we regard the the Lie algebra L(G) as a vector space (as is the case for Lie algebras of smooth

vector fields, i.e. X,Y ∈ V(O)). Then adX can be viewed as linear operator adX : L(G) → L(G) for

each fixed X ∈ L(G). As a matter of fact, adX is the linear space of maps, called endomorphisms

denoted by EndL(G) from L(G) into itself.
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In [162, §2.2] it is shown that adX corresponds to a derivation of the Lie algebra L for all X ∈ L,

and that the map ad : X → adX is a representation of L, the so-called adjoint representation of L,

written adL = {adX | X ∈ L}.

The adX operator can be composed, i.e. (adX)(adX)Y = (adX)[X,Y ] = [X, [X,Y ]]. The composi-

tion of the adX operator k times is simply denoted by

(adX)kg = [X, [X, [. . . , [X
︸ ︷︷ ︸

ktimes

, Y ] (A.10)

This operator is a differentiation operator with respect to the Lie bracket [7]:

adX [Y,Z] = [adXY,Z] + [Y, adXZ]

for all X,Y, Z. The above formula is known as the Jacobi identity, especially when written as

presented in the properties of a Lie algebra (see Definition A.11 in p. 207).

Definition A.50. - Lie Algebra L(F) of vector fields. A Lie algebra (of vector fields on

O ⊆ R
n) is a linear subspace S ⊆ V(O) that is closed under the Lie bracket operation, that is,

[f, g] ∈ S whenever f, g ∈ S.

For any subset F ⊆ V(O), one defines L(F), the Lie algebra generated by F , as the intersection of

all the Lie algebras of vector fields which contain F . This set is nonempty, since it includes V(O).

An intersection of a family of Lie algebras is also a Lie algebra, thus L(F) is the smallest Lie algebra

of vector fields which contains F .

Definition A.51. - Connected Lie Group G(L) associated with L(A). The connected Lie

group G(L) associated with the Lie algebra L(A) is defined as the set

G(L)
def
=
{
Φ ∈ R

n×n = eΛ1eΛ2 · · · eΛr , Λi ∈ L, i = 1, 2, . . . ,m; m = 1, 2, . . .
}

Examples of connected Lie groups are:

Gn: The group of nonsingular matrices in R
n×n.
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G+
n : The subgroup of nonsingular matrices in Gn with positive determinant.

Gn(L): The connected subgroup of G+
n associated with L(A) = L({Ai ∈ R

n×n}).

A.8.2. The Exponential Map

The exponential map for a general Lie group G is the function:

e : X ∈ TeG→ eX ∈ G

mapping elements in of the Lie algebra L(G) into G. Where TeG denotes the tangent space of G

about the identity e element associated with G. The connection between a Lie algebra and its Lie

group established via the exponential map will be a useful tool, for example, by allowing to reduce

the study of Lie algebras to their corresponding Lie groups.

By the inverse function theorem, (see Theorem C.2 on p. 251), the exponential mapping is a local

diffeomorphism, e : L(G) → G, from a neighborhood of zero in L(G) onto a neighborhood of the

identity e ∈ G. Then, denoting by {X1, X2, . . . , Xn} a basis for the Lie algebra L(G), the mapping

σ : R
n → G defined by

g
def
= e

∑n
i=1 σiXi

is a local diffeomorphism between σ ∈ R
n and g ∈ G, for g in a neighborhood of the identity e of G.

The σi are called the Lie-Cartan coordinates of the first kind relative to the basis {X1, X2, . . . , Xn}.

Another way of writing the coordinates on a Lie group using the same basis is to define θ : R
n → G

by:

g
def
=

n∏

i=1

eθiXi

for g in a neighborhood of e. The functions θi are known as Lie-Cartan coordinates of the second

kind or logarithmic coordinates. If the basis {Xi, i = 1, . . . , n} is a Philip Hall basis, then the θi are

referred to as Philip Hall coordinates.

A.8.3. The Baker-Campbell-Hausdorff Formula

The notions of conjugation and adjoint maps will be described before introducing the Baker-

Campbell-Hausdorff or Campbell-Baker-Hausdorff (CBH) formula.
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If M is a differentiable manifold and G is a Lie group, a left action of G on M is defined as smooth

map Φ : G×M →M such that [161], [160, p. LG 4.11], [162, p. 74] or [152, p. 217]:

(i) Φ(e, x) = x for all x ∈M .

(ii) For every g, h ∈ G and x ∈M , Φ(g,Φ(h, x)) = Φ(gh, x).

where e is the identity element in G.

The left action of G on itself defined by Cg : G→ G:

Cg(h) : ghg−1 = Rg−1Lgh

is called the conjugation map associated with g.

Definition A.52. - The Ad operator. The derivative of the conjugation map at e is called the

adjoint map, defined as Adg : L(G) → L(G) such that, for ξ ∈ L(G), g ∈ G,

Adg(ξ) = (Te(Cg))(ξ) = Te(Rg−1Lg)(ξ).

If G ⊂ GL(n,C), then

Adg(ξ) = gξg−1. (A.11)

Once again, viewing Lie algebra L(G) as a vector space, the map Adg for g ∈ G is an element of

the Lie group of bijective linear maps from L(G) into itself, called automorphisms and denoted by

AutL(G). The map Ad : g → Adg is called the adjoint representation of G.

The differential, or the Lie algebra, of the Lie group AutL(G), is the space EndL(G), the space of

linear maps (endomorphisms), from L(G) into itself.

The facts showing the relation between the Ad operator and the ad operator in (A.9) may be found

in [7] (lemmas 4.4.2 and 4.4.3). As stated in [6], the ad operator may be regarded as the differential

of Ad in the following sense. Denote by γ(t) ∈ G a curve in G with γ(0) = I and dγ
dt

∣
∣
∣
t=0

= ξ, then:

d

dt
Adγ(t)(η) = adξ(η)

More formally, this basic result concerning the adjoint representation of G is the following.
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Lemma A.1. - Exponential Formula. Let G be a Lie group and L its associated Lie algebra.

Then the differential of the adjoint representation of G is the adjoint representation of L. Moreover,

considering X,Y ∈ L, then AdeXY ∈ L and is given by

AdeXY = eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + . . .

= Y + adXY +
1

2!
ad2
XY +

1

3!
ad3
XY + . . . (A.12)

= eadXY

Proof. See Magnus [145], Varadarajan [162, Thm. 2.13.2, p. 104]. A sketch of the proof is

found in [6, Lemma 8.29, p. 372]. �

The above result may be regarded as a measure of how much X and Y fail to commute over the

exponential, since if [X,Y ] = 0, then AdeXY = Y .

Theorem A.1. - Campbell-Baker-Hausdorff (CBH) Formula for the Composition of

Exponential Mappings. Let G be a Lie group and L its Lie algebra, then for X,Y ∈ L, and for

all sufficiently small t:

etXetY = eF (t,X,Y )

= etX+tY+ t2

2 [X,Y ]+ t3

12 ([[X,Y ],Y ]−[[X,Y ],X])− t4

48 ([Y,[X,[X,Y ]]]+[X,[Y,[X,Y ]]])+... (A.13)

Proof. See Varadarajan [162]. �

Remark A.3.

• The above CBH formula is given for exponential maps acting on the right (i.e. xetXetY =

xeF (t,X,Y ) with the above definition of F (t,X, Y ) for some x ∈ M , where M is the

manifold on which L is defined).

• For Lie algebras of vector fields, the exponential maps correspond to the flows generated

by the vector fields.
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The CBH formula provides another measure of the commutativity of X and Y over their exponential.

If X and Y commute, then [X,Y ] = 0 and eXeY is simply eX+Y . However, in general X and Y fail

to commute and eXeY must be calculated through the CBH formula.

As pointed out by Varadarajan [162], the calculation of the terms in the CBH expression of equa-

tion (A.13) becomes complicated very rapidly, unfortunately.

Dynkin form of the CBH.

Consider a neighborhood U of the identity element I of a Lie group G, such that every g ∈ G can

be represented as exp(X) for some X ∈ L(G). Then for any two elements exp(X) and exp(Y )

in U there exists an element Z ∈ L(G) such that exp(Z) = exp(X) exp(Y ). Formally denoting

Z = log(exp(X) exp(Y )). The element Z can be expressed in a more explicit form of the CBH,

known as the Dynkin form [154, 147, 160].

Z =
∞∑

m=1

∑ (−1)m−1adqm

Y adpm

X · · · adq1Y ad
p1
X

m (
∑m
i=1(pi + qi)

∏m
i=1(pi!qi!))

(A.14)

where the inner sum is over all m-tuples of pairs of nonnegative integers (pi, qi) such that pi+qi > 0,

and in order to simplify the notation, the terms adX = X and adY = Y .

Power form of the CBH.

The CBH can also be expressed in terms of powers in X or Y as:

Z = Y +
adY

exp(adY ) − 1
X + . . . ,

Z = X +
adX

exp(adX) − 1
Y + . . . ,

Structure Constants of a Lie Algebra and Multiplication Table.

If B
def
= {X1, X2, . . . , Xn} is a basis for the Lie algebra L(G), the structure of constants with respect

B are the values ckij ∈ R defined by:

[Xi, Xj ] =

n∑

k=1

ckijXk

for i, j = 1, 2, . . . , n. The above expression constitutes the (i, j)− th entry of the multiplication table

for the products of elements of B.
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Lemma A.2. - Wei-Norman Lemma. Consider L(G) with basis B
def
= {X1, X2, . . . , Xn} and

structure constants ckij with respect to B. Then





r∏

j=1

egjXj



Xi





1∏

j=r

e−gjXj



 =
n∑

k=1

ξkiXk (A.15)

r = 1, 2, . . . , n

(A.16)

where each ξki = ξki(g1, g2, . . . , gr) ∈ R is an analytic function of g1, g2, . . . , gr ∈ R.

Proof. Repeated application of lemma A.1 shows that the left-hand side of (A.16) is in L(G),

and hence can be written as a linear combination of X1 to Xn as asserted. It remains to show

that ξki are analytic. It is sufficient to prove the lemma for r = 1, since an analytic function of an

analytic function is again analytic. From (A.12) we have for r = 1 that:

eg1X1Xie
−g1X1 = eg1adX1Xi

= Xi +

∞∑

k=1

gk1
k!

(adX1
)kXi (A.17)

The terms (adX1
)kXi are calculated using the structure constants:

adX1
Xi =

n∑

n1=1

cn1
1i Xn1

(adX1
)2Xi =

n∑

n1=1

n∑

n2=1

cn1
1i c

n2
1n1

Xn2

... (A.18)

(adX1
)kXi =

n∑

n1=1

n∑

n2=1

· · ·
n∑

nk=1

cn1
1i c

n2
1n1

· · · cnk

1nk−1
Xnk

(A.19)

Substituting (adX1
)kXi into (A.17) and noting that the ckij are finite and letting M be the maximum

of |ckij |, i, j, k = 1, 2, . . . , n. Estimating each cns

1ns−1
in (A.19) by M we obtain

∣
∣
∣

∑

· · ·
∑

cn1
1i · · · cnk

1nk−1

∣
∣
∣ ≤ (nM)k
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Since (nM)k/k! is the general term of a convergent series the ξki are bounded and are functions of

ckij , k! and gk1 , consequently the lemma is proven. �

A.8.4. Wei-Norman Equation and the Logarithmic-Coordinates

Following [44, 39], we introduce some relevant notation, before presenting the main results by

Wei and Norman [149]. Let A(X1, . . . , Xm) denote the algebra of noncommutative polynomials in

(X1, . . . , Xm), which are purely formal noncommuting indeterminates. Defining the Lie product as

[X,Y ] = Y X−XY , then A(X1, . . . , Xm) is also a Lie algebra. We denote by L(X1, . . . , Xm) the Lie

subalgebra of A(X1, . . . , Xm) generated by (X1, . . . , Xm). The elements of L(X1, . . . , Xm) are known

as Lie polynomials in (X1, . . . , Xm). We denote by Â(X1, . . . , Xm) and L̂(X1, . . . , Xm), respectively,

the set of noncommutative formal power series and the set of Lie series in the Xi. The free nilpotent

associative algebra of order k and the free nilpotent Lie algebra denoted by Ak(X1, . . . , Xm) and

Lk(X1, . . . , Xm), respectively, are subsets of the corresponding algebras in which all the monomials

in k + 1 or more indeterminates are zero.

If Z ∈ Â(X1, . . . , Xm) or Z ∈ Ak(X1, . . . , Xm) then the exponential eZ is well defined by means of

the usual power series. We also define

Gk(X1, . . . , Xm)
def
=
{
eZ : Z ∈ Lk(X1, . . . , Xm)

}
(A.20)

Note that exp(·) = e(·) is the exponential mapping taking elements in the Lie algebra L into elements

of the Lie group G. With this definition, Gmk ≡ Gk(X1, . . . , Xm) is the analytic simply connected

Lie group with Lie algebra Lk(X1, . . . , Xm). The Lie group Gmk is called the free nilpotent Lie group

of order k with m infinitesimal generators.

Wei and Norman provided in [149] a very useful result concerning the solution of linear differential

equations of the form:

Ṡ(t) =

(
m∑

i=1

Xiui(t)

)

S(t) (A.21)

S(0) = I ∈ Gk(X1, . . . , Xm)
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where m < ∞ (finite), Xi are indeterminate operators independent of t that generate a finite

dimensional Lie algebra L under the commutator product [Xi, Xj ] = XjXi −XiXj . The ui(t) are

scalar functions of t, G(X1, . . . , Xm) is the Lie group associated with L, and S is a linear operator in,

Â(X1, . . . , Xm), the formal power series of noncommuting indeterminatesXi, i.e. S may be expressed

in terms of elements in the set of all sums
∑

I aIXI , where I is the multi-index I = (i1, . . . , ij), with

ij ∈ {0, . . . ,m} for j = 1, . . . , k, and where aI are real numbers and XI = Xi1 · · ·Xik , see [39], p.

164 for further details.

Notice that here S(t) is an action on the right. Even if this is not the usual representation employed

in the study of control systems, it will be kept for consistency with the majority of the mathematical

results found in the literature, and which will be employed next. Some further comments on the

considerations that must be made when applying the next results to left-invariant representations

(the usual representation for control systems) will be made at the end of this subsection.

It is well known that solutions to (A.21) exist and are unique for all times [44], and that the

trajectories t→ S(t) remain in Gk(X1, . . . , Xm) for all times, since I ∈ Gk(X1, . . . , Xm).

The main result states that the solutions to (A.21) may be represented as a product of exponentials

in the form:

S(t) = eγ1(t)X1eγ2(t)X2 · · · eγr(t)Xr =

r∏

i=1

eγi(t)Xi (A.22)

where X1, X2, . . . , Xr are the elements forming a basis for the Lie algebra of finite dimension r

generated by X1, X2, . . . , Xm of (A.21), and the γi(t) are scalar functions of time. The γi(t) are

formally Lie-Cartan coordinates of the second kind, and are also called γ-coordinates or logarithmic

coordinates. Furthermore, it is shown that the γi(t) satisfy a set of differential equations which only

depend on the Lie algebra and the ui(t).

The result is local, in the sense that the representation (A.22) is valid only for a neighborhood of

t = 0, unless the Lie algebra is solvable. This representation is thus more advantageous than the

one proposed by Magnus [145], of the form S(t) = e
∑r

i=1 γi(t)Xi , which is only local. Note in the

latter, the γi(t) correspond to Lie-Cartan coordinates of the first kind.
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The maps S : γ ∈ R
r → Gmk constitute global coordinate charts on Gmk , and establish global

diffeomorphisms between R
r and Gmk .

Defining an evaluation homomorphism for the Lie algebra (a Lie algebra homomorphism) as a map-

ping ν : L(X1, . . . , Xm) → L(f1, . . . , fm) which assigns to each element of L(X1, . . . , Xm) a vector

field obtained by substituting the Xi by the corresponding fi, i = 1, . . . ,m in L(X1, . . . , Xm), the

above equations may be regarded as the equations of a control system with right-invariant vector

fields on a (matrix) Lie group G = ν(Gmk ), with state ν(S(t)) ∈ G. In fact, the trajectory t→ x(t),

defined by x(t)
def
= x(0)ν(S(t)) is a unique trajectory of the control system

ẋ =

r∑

i=1

fi(x)ui(t) (A.23)

where fi = ν(Xi). Note that for i = 1, 2, . . . ,m the fi correspond to the generators (X1, . . . , Xm)

of the Lie algebra Lk(X1, . . . , Xm), while for i = m+ 1, . . . , r, the fi correspond to the ν-evaluated

Lie brackets of Xi’s.

The fact that a set of explicit equations relating the Lie-Cartan coordinates of the second kind, γi(t),

and the inputs ui(t) can be derived makes of these results highly valuable tool to the synthesis of

stabilizers for a wide class of control systems in the form of (A.23).

Using the previous results regarding the exponential map and the CBH, the relations between the

γ-coordinates and the ui may be obtained as follows.

Let S(t) be of the form (A.22) then,

Ṡ(t) =
r∑

i=1

γ̇i(t)
i−1∏

j=1

eγjXjXi

r∏

j=i

eγjXj (A.24)
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Substitution of (A.24) into (A.21) and post-multiplication by S−1(t), yields:

r∑

k=1

Xkuk(t) = Ṡ(t)S−1(t) (A.25)

=
r∑

i=1

γ̇i(t)
i−1∏

j=1

eγjXjXi

r∏

j=i

eγjXj

1∏

j=r

e−γjXj (A.26)

=

r∑

i=1

γ̇i(t)

i−1∏

j=1

eγjXjXi

1∏

j=i−1

e−γjXj (A.27)

=

r∑

i=1

γ̇i(t)

i−1∏

j=1

eγj adXjXi (A.28)

=
r∑

i=1

r∑

k=1

γ̇i(t)ξkiXk (A.29)

where the last two equations are obtained by application of Lemma A.1 and Lemma A.2, respectively.

Note that the summation in the first equation has been written from 1 to r instead of 1 to m, since,

without loss of generality, the uk’s may be assumed to be zero for k > m. Finally, since the

indeterminates Xk are linearly independent, equating the coefficients of Xk in the first of the above

equations to those in the last equation, one obtains the following linear relation between the uk(t)

and the γ̇i(t):













u1(t)

u2(t)

...

ur(t)













︸ ︷︷ ︸

u

=













ξ11(γ) · · · ξ1r(γ)

...
. . .

...

ξr1(γ) · · · ξrr(γ)













︸ ︷︷ ︸

ξ(γ)













γ̇1(t)

γ̇2(t)

...

γ̇r(t)













︸ ︷︷ ︸

γ̇

, γ(0) = 0 (A.30)

where the ξij(γ) are analytic functions of the γi’s. Clearly, γ(0) = 0 since S(0) = I. Inverting

the matrix of ξij ’s one obtains the Wei-Norman equation or logarithmic-coordinates equation, γ̇ =

f(u, γ) = ξ−1(γ)u, which may be written as the set of equations:

γ̇1(t) = f1(γ(t), u)

...

γ̇r(t) = fr(γ(t), u)

γ(0) = 0, t ∈ N0 (A.31)
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where γ(t)
def
= (γ1(t), . . . , γr(t)) and u = (u1, . . . , ur). These equations allow to convert the problem

of steering from an initial configuration S(0) to a final configuration S(t) into a problem of steering

vectors in R
r from γ(0) to γ(t).

The existence and uniqueness of a solution to (A.31) is ensured by the fact that ξ−1 is analytic in a

neighborhood N0 of t = 0. The above results hold globally for a particular ordering of the basis if

the Lie algebra L is solvable (i.e. if there is a chain of ideals 0 ⊂ Lr ⊂ Lr−1 ⊂ . . . ⊂ L1 = L, where

each Lp is of dimension r − p+ 1).

A.8.4.1. Comments on the application of the above results to control systems and

practical implementation aspects

The results presented so far require little modification in order to be applied to control systems in

the standard representation as left-invariant systems on Lie groups, rather than as right-invariant

systems. For left-invariant systems, (A.21) has now the form

Ṡ(t) = S(t)

(
m∑

i=1

Xiui(t)

)

(A.32)

S(0) = I ∈ Gk(X1, . . . , Xm)

In this case, equations (A.25)-(A.29) are obtained in a similar way, by substituting (A.24) into (A.32)

and pre-multiplication by S−1(t) as:

r∑

k=1

Xkuk(t) = S−1(t)Ṡ(t)

=
r∑

i=1

γ̇i(t)
1∏

j=r

e−γjXj

i−1∏

j=1

eγjXjXi

r∏

j=i

eγjXj

=

r∑

i=1

γ̇i(t)

1∏

j=r

e−γjXj

i−1∏

j=1

eγjXjXi

i−1∏

j=r

e−γjXj

r∏

j=1

eγjXj

=
r∑

i=1

γ̇i(t)
1∏

j=r

e−γjXj







i−1∏

j=1

eγj adXjXi







r∏

j=1

eγjXj

=

r∑

i=1

γ̇i(t)

1∏

j=r

e−γj adXj

i−1∏

j=1

eγj adXjXi
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=

r∑

i=1

γ̇i(t)

i∏

j=r

e−γj adXjXi

=
r∑

i=1

r∑

k=1

γ̇(t)ξkiXk

Once again, the last two equations have been obtained by the application of Lemma A.1 and

Lemma A.2, respectively. However, the coefficients ξki do not correspond to those in (A.29) unless

a special selection of the basis and its ordering are assumed.

From a practical consideration, it is enough to obtain the logarithmic equations by following the

steps of equations (A.25) through (A.29). Equation (A.28) is in particular relevant because it will

allow, together with (A.12), the calculation of the actual coefficients ξki.

It is worth to mention that when using the above exponential formula and the CBH for the com-

position of flows, these have been stated for flows acting on the right. Thus, in the practical im-

plementation or simulation of a given system trajectory, say x0e
a1f1ea2f2 , this must be interpreted

as the trajectory starting from x0 generated by the flow ea1f1ea2f2 , resulting from the application

of a vector field f1 with control magnitude a1, followed by the application of a vector field f2 with

control magnitude a2.

A.9. Basic Notions in Systems and Control

The following standard definitions concerning accessibility, controllability and stabilizability prop-

erties of a control system are taken or based on the definitions found in the indicated references.

Some preliminary definitions are presented first, for details see [7, pp. 25-28].

Definition A.53. - Time set T . A time set T is a subgroup of R+.

Definition A.54. - System or Machine Σ. A system or machine Σ
def
= (T ,X ,U ,Φ) consists of:

• A time set T .

• A nonempty set X called the state space of Σ.

• A nonempty set U called the control-value or input-value space of Σ.
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• A map Φ : DΦ → X the transition map of Σ, which is defined on a subset Dφ of

{

(τ, σ, x, ω) | σ, τ ∈ T , σ ≤ τ, x ∈ X , ω ∈ U [σ,τ)
}

,

such that the properties of nontriviality (i.e. admissibility of ω ∈ U [σ,τ)), restriction,

semigroup and identity hold (see details in [7]).

Denote by d(a, b) the distance between two elements of X and let d∞ be the uniform distance

between two time functions into X ; that is if γ1, γ2 : I → X , for some interval I ⊆ T , then

d∞
def
= sup {d(γ1(t), γ2(t)), t ∈ I}

(essential supremum when dealing with measurable functions and T = R).

Definition A.55. - Topological System Σ. A topological system Σ is an object (T ,X ,U ,Φ)

such that X is a metric space; Σ is a system when X is thought of just a set and for each σ < τ in

T and each ω ∈ U [σ,τ),

Φ(τ, σ, ·, ω)

has an open domain and is continuous there as a map into X [σ,τ ] (with metric d∞).

The property of a state being reachable or attainable by some trajectory of the system starting at

an initial state x is now defined as follows; see [1].

Definition A.56. - Reachability or Attainability, [1]. Consider the system ẋ = f(x, u) with

state space M and an admissible control class U , a state y ∈ M is reachable (or attainable) from

an initial state x ∈M at time t ≥ 0 if there is a control u(·) ∈ U such that y = Φ(t, x, u(·)).

It is now possible to define the set of reachable states at time t from a given point x for each x ∈M

as the set (see [1]):

R(t, x)
def
= {y | y is reachable from x in time t}
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and the following reachable sets

R([0, t], x)
def
=

⋃

s≤t

R(s, x)

R(x)
def
=

⋃

t≥0

R([0, t], x)

A.9.1. Accessibility

Another property which is important in the study of controllability is that of accessibility - in simple

terms this means the ability of the system to reach a full neighbourhood (a set of full dimension)

from some point.

Definition A.57. - Accessibility Property. A system ẋ = f(x, u) has the accessibility property

from x, if interior(R(x)) 6= ∅, and has the complete accessibility property if it has the accessibility

property from any x ∈M .

Definition A.58. - Strong Accessibility Property. The system is said to have the strong

accessibility property (SAP) from x if interior interior(R(x)) 6= ∅ for some t > 0 and the complete

SAP if it has the SAP from any x ∈M .

The accessibility property is sometimes referred to as weak controllability, [7].

A.9.2. Controllability

Definition A.59. - Controllability, [1].

A system ẋ = f(x, u) is controllable from x ∈ M if R(x) = M and is completely controllable if it

is controllable from any x ∈M . The system is locally controllable at x ∈M if there exists an ε > 0

such that R(x) contains the ε-neighborhood Nε(x).

Unlike the accessibility property which can be fully established by the LARC (see Theorem B.1 on

p. 244), the controllability property for nonlinear continuous-time systems is not easy to characterize

completely. However, for some classes of systems, results on complete controllability are available,

see Appendix B, p. 239.
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A.9.3. Asymptotic Controllability

This section presents a definition of the notion of asymptotic controllability, see [7, p. 211].

Definition A.60. - Asymptotic Controllability to a State. Let y, z ∈ X , and assume V is a

subset of X containing both y and z. Then, z can be asymptotically controlled to y without leaving

V if there exists some control v ∈ U [0,∞) admissible for z so that:

• For the path ζ(t)
def
= Φ(z, v), limt→∞ ζ(t) = y

• ζ(t) ∈ V for all t ∈ T+.

When V = X , one just says that z can be asymptotically controlled to y.

Definition A.61. - Asymptotic Controllability to an Equilibrium State x0. Let Σ be a

topological system and x0 an equilibrium state. Then Σ is:

• Locally asymptotically controllable to x0 if for each neighborhood V of x0 there is some

neighborhood W of x0 such that each x ∈ W can be asymptotically controllable to x0

without leaving V.

• Globally asymptotically controllable to x0 if it locally asymptotically controllable and also

every x ∈ X can be asymptotically controlled to x0.

For systems with no control, the standard terminology is to say that the system Σ is (locally or

globally) asymptotically stable with respect to x0, or that x0 is asymptotically stable for that system.

A.9.4. Stability

Definition A.62. - Ultimate Boundedness, [24]. An autonomous system ẋ = f(x), x ∈ R
n is

said to be ultimately bounded provided there is a positive constant b such that for any initial state

x(0) there is a T > 0 such that

‖x(t)‖ ≤ b for all t ∈ [T,∞)

Definition A.63. - Practical Stabilization, [24]. A control system ẋ = f(x, u), x ∈ R
n is said

to be practically stabilizable if there exists a control input u such that the system has the ultimate

boundedness property.
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A.9.5. Remark on Stabilizability and Controllability

Stabilizability does not require controllability, an example of this fact is provided in [11], where the

scalar system:

ẋ = ax+ bxu, a ≥ 0

is shown to be stabilizable for b 6= 0. However no points are attainable from the origin regardless

the value of b.

A.9.6. Remark on the Stabilizability of Affine Systems Whose Drift Term Does

Not Vanish at the Equilibrium Point

Consider the affine system

ẋ = f0(x) +
m∑

i=1

fi(x)ui(x) (A.33)

and assume that the origin is an equilibrium point with a nominal ū = [ū1, . . . , ūm] ∈ R
m, so that

the equality

f0(0) +

m∑

i=1

fi(0)ūi = 0 (A.34)

holds. Them, for each stabilizing u(x), the control value ū = u(0), must satisfy(A.34). Note that

if (A.33) has a stabilizing control law u(x), such that u(0) = ū, then the system

ẋ =

(

f0(x) +
m∑

i=1

fi(x)ūi

)

+
m∑

i=1

fi(x)vi(x) (A.35)

can be stabilized setting v(x) = u(x) − ū. Certainly, v(0) = 0 and thus we can limit our attention

to affine systems whose drift term vanishes at the origin as well as any admissible feedback law. An

objection to this reasoning, at least from a practical point of view, is that (A.33) may have many

solutions ū and the existence of a stabilizing feedback for (A.35) may depend on the right choice of

ū.

The previous arguments can be extended to the stabilization of the system to points different from

the origin. In particular, for linear or bilinear systems, the drift term does not in general vanish at

points other than the origin. However, the system may still be stabilized around a point x∗ 6= 0, if
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there exists a u∗ such that equation (A.33) evaluated at x∗, instead of the origin, is satisfied. Then

a simple coordinate translation z = x−x∗ and the arguments above would allow to handle this case

as one of stabilization around the origin (now of the coordinate system z) with non vanishing drift

at z = 0.

A.10. Some Notions from the Theory of Linear Systems

Definition A.64. - The stable, unstable and center subspaces, Es, Eu and Ec respectively,

of a linear system, [146]. Let wi = ui + ivi be a generalized eigenvector corresponding to the

eigenvalue λi = ai + ibi of a real matrix A ∈ R
n×n of a linear system

ẋ = Ax (A.36)

And let

B = {u1, . . . , uk, uk+1, vk+1, . . . , um, vm} (A.37)

be a basis of R
n (with n = 2m− k), where k eigenvectors correspond to purely real eigenvalues and

2(m− k) correspond to m− k pairs of complex conjugate eigenvalues.

Then

Es = span{ui, vi | ai < 0}

Ec = span{ui, vi | ai = 0}

Eu = span{ui, vi | ai > 0}

i.e., Es, Eu and Ec are the subspaces of R
n spanned by the real and imaginary parts of the general-

ized eigenvectors wi corresponding to the eigenvalues λi with negative, zero and positive real parts,

respectively.

A.11. Some Notions from Lyapunov Theory

A function V : x ∈ R
n → V (x) ∈ R is said to be a Lyapunov function for a given system of ordinary

differential equations, ẋ = f(x), f(0) = 0, (where the vector field f is at least of class C1), if there
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exists a neighborhood of the origin such that

V (0) = 0 and V (x) > 0 for x ∈ R
n, x 6= 0 (A.38)

V̇ (x) = ∇xV f(x) < 0 for x ∈ R
n, x 6= 0 (A.39)

Furthermore if it satisfies

infu[∇xV f(x, u)] < 0 for each x ∈ R
n, x 6= 0 (A.40)

then it is called a control Lyapunov function, see [11].

A.12. Some Definitions from Dynamics of Mechanical Systems

For further details see [177, 178, 179].

Definition A.65. - Holonomic System, [179]. A system whose particles are constrained to

move on some smooth surface of the form

h(x) = 0 (A.41)

or

h(x, t) = 0 (A.42)

where x = [p1x, p1y, p1z, . . . , pnx, pny, pnz] is the configuration vector of n particles ∈ R
3, is called

holonomic system (from the Greek, meaning “altogether lawful”). If the system can not be written in

either of the previous forms, then it is called nonholonomic. Among holonomic constraints one can

distinguish between those that do not depend explicitly on time and those that do; these holonomic

constraints are called scleronomic (meaning “rigid”) and rheonomic (meaning “flowing”), respec-

tively. This definition also applies to rigid-body systems, but instead of referring to the particles, it

refers to a set of coordinates q in the configuration space Q of the system.
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Controllability of Systems with Drift

This section explains some of the existing results on the controllability of nonlinear systems and

presents a brief overview of the relevant literature, thus complementing the mathematical background

presented in Chapter 1 and Chapter 2. This section is intended to serve as an introductory exposition

to some basic concepts, facts and tools from the differential geometric approach for the analysis of

nonlinear control systems.

It is convenient to first introduce some basic results and notions, most of which concern drift-free

systems, that will be required later in the discussion of results regarding systems with drift and the

pertinent literature.

B.1. Basic Controllability Results

There are many types of controllability notions, see for example [19, 39] and the clear exposition

in [5]. The most natural form of controllability which is probably also the most relevant from a

practical perspective is the one that characterizes the system with drift Σ as being controllable if

for any choice of x0 and xf in R
n, there exists a finite time T and an input u : [0, T ] → Pm such

that x(T, x0, u) = xf , i.e. such that there exists a trajectory of Σ that joins the starting point x0 to

xf in finite time.

All controllability notions1 answer some form of the following general question: where can the system

be made to move by modifying its inputs. For example, one might wish to know:

1Some formal definitions of the standard types of controllability found in the literature are included for the reader’s

convenience in sections A.9.2, p. 234 and A.9.3, p. 235 of Appendix A; see definitions A.59, A.60 and A.61.
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• To which points can one drive the system from some starting point, i.e. which points can

be reached or accessed from an initial point x0 by steering the trajectories of Σ.

• From which states can one steer the system to a final given state.

These questions are certainly of geometric nature and related to a perhaps even more basic question

which is: if the solutions to Σ exist, where do they exist? The latter question was answered by the

Frobenius theorem [2, 14, 19, 6], which can be regarded as a generalization of the Cauchy-Lipschitz

existence theorem for unforced ordinary differential equations ẋ = f(x), x0 = x(0) ∈ R
n. Although

Frobenius’ results only indicate the existence of some manifold containing the solutions to (1.1)

without giving a more explicit characterization of the sets on which the solutions evolve, it involves

realizing that the solutions of Σ are not only defined by the span of vector fields fi ∈ F , but also by

Lie products [fi, fj ]
def
=

∂fj

∂x fi −
∂fi

∂x fj of the vector fields fi, fj ∈ F . To see this, consider a control

system of the form

ẋ = f1(x)u1 + f2(x)u2, x(0) = x0 (B.1)

and apply a control u = [u1, u2] defined as

u =







[ 1, 0], 0 ≤ t< ε

[ 0, 1], ε ≤ t< 2ε

[ −1, 0], 2ε ≤ t< 3ε

[ 0,−1], 3ε ≤ t< 4ε

, ε > 0 (B.2)

The above control generates a system trajectory corresponding to the integration of (B.1) for ε units

of time, first along f1, then f2, followed by −f1 and finally −f2. For small ε, the approximated

trajectory can be calculated by evaluating the Taylor series expansion in ε of x(t) =
∫ 4ε

0
ẋdt as

follows.

For t ∈ [0, ε] and denoting by o(εk) the terms of order εk,

x(t) = x0 +

∫ t

0

f1(x(s))ds

= x(0) + ẋ(0)(t− t0) +
1

2
ẍ(0)(t− t0)

2 + o((t− t0)
3)
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which evaluated at t = ε with t0 = 0 yields,

x(ε) = x0 + εf1(x0) +
ε2

2

∂f1
∂x

(x0)f1(x0) + o(ε3)

Similarly, for t ∈ [ε, 2ε],

x(t) = x(ε) +

∫ t+ε

ε

f2(x(s))ds

= x(ε) + f2(x(ε))(t− ε) +
1

2

∂f2
∂x

(x(ε))f2(x(ε))(t− ε)2 + o(ε3)

yields at time t = 2ε,

x(2ε) = x0 + εf1(x0) +
1

2
ε2
∂f1
∂x

(x0)f1(x0) + εf2(x(ε)) +
ε2

2

∂f2
∂x

(x0)f2(x0) + o(ε3)

= x0 + ε [f1(x0) + f2(x0)] +
ε2

2

[
∂f1
∂x

(x0)f1(x0) + 2
∂f2
∂x

(x0)f1(x0) +
∂f2
∂x

(x0)f2(x0)

]

+ o(ε3)

where f2(x(ε)) was approximated by the Taylor series expansion2:

f2(x(ε)) = f2(x0 + εf1(x0)) = f2(x0) + ε
∂f2
∂x

(x0)f1(x0) + o(ε2)

Repeated use of the second-order Taylor series expansion yields respectively for t ∈ [2ε, 3ε] and

t ∈ [3ε, 4ε]:

x(t) = x(2ε) +

∫ t+2ε

2ε

−f1(x(s))ds

= x(2ε) − f1(x(2ε))(t− 2ε) − 1

2

∂f1
∂x

(x(2ε))f1(x(2ε))(t− 2ε)2 + o(ε3)

x(3ε) = x0 + εf2(x0) +
ε2

2

[

2
∂f2
∂x

(x0)f1(x0) +
∂f2
∂x

(x0)f2(x0) − 2
∂f1
∂x

(x0)f2(x0)

]

+ o(ε3)

and

x(t) = x(3ε) +

∫ t+3ε

3ε

−f2(x(s))ds

= x(3ε) − f2(x(3ε))(t− 3ε) − 1

2

∂f2
∂x

(x(3ε))f2(x(3ε))(t− 3ε)2 + o(ε3)

x(4ε) = x0 +
ε2

2

[

2
∂f2
∂x

(x0)f1(x0) − 2
∂f1
∂x

(x0)f2(x0)

]

+ o(ε3)

2One might regard the approximation of f2(x(ε)) either as: (a) the Taylor series expansion of f2(x) about x = x0

and evaluated at x = x(ε) = x0 + εf1(x0), or (b) the Taylor series expansion of f2(x(ε)) about ε = 0.
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Thus showing that the resulting system motion

x(4ε) − x(0) = exp(−εf2) ◦ exp(−εf1) ◦ exp(εf2) ◦ exp(εf1)x0 − x0

≈ ε2[f1, f2]

is in the direction of [f1, f2] which in not in the linear span of fi ∈ F . This type of motion along

a Lie product is known as a Lie bracket motion. As similar result can be derived for systems with

drift, however, involving lengthier and more tedious calculations.

The geometric interpretation of the Lie product as the trajectory of the system ẋ = [f, g](x) and

the non-commutativity of vector fields f1, f2, i.e. [f1, f2] 6= 0 is illustrated in Fig. B.1.

x1

f1
εf1

x(ε) −f1
εf2

x(2ε)

−εf2
−f2

x2

x3

x(4ε) ≈ ε2[f1, f2]

f2

−εf1

x(3ε)

Figure B.1. Geometric interpretation of the Lie product as a Lie bracket motion.

The relevance of the Lie bracket and the Lie algebra generated by forming repeated Lie products of

the vector fields in F , (see definition in Appendix A, p. 207), to the study of controllability should

be clear from the above calculation which strongly suggests that not only exp(εf1)x0 and exp(εf2)x0

are points in the reachable set from x0 but also exp(ε[f1, f2])x0. Iterating on this idea, but with

a more complicated input sequence than (B.2), it is possible to obtain motion in the direction of

higher order brackets, such as [f1, [f1, f2]], see [184]. This suggests that the set of maps {exp(tf)}

acting on x0 defines the reachable set if f can be expressed as a bracketed combination of the fi ∈ F .

In fact, the Lie algebra L(F) plays an important role in the characterization of the reachable set of

states from a given x0 in a fundamental result known as Chow’s Theorem (see Theorem B.1, p. 244).
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Denote by fF and fL(F) any vector field f ∈ F and f ∈ L(F), respectively. Let diff(M) denote set

of all C∞ one-to-one and onto mappings of a C∞-manifold M onto itself. The set of such mappings

is closed under inversion and composition, and therefore they form a group called the group of

diffeomorphisms of M . Since the system Σ is defined on R
n, for simplicity of exposition, it will be

assumed from now on that M = R
n.

Under the assumption that the vector fields in L(F) are complete, there exits a group of mappings

of R
n into itself, denoted by G(F) ⊂ diff(Rn), which is closely related to L(F) and which is obtained

by “exponentiating” all the vector fields fF . The exponentiation operation relating elements of the

Lie algebra L(F) to those of the group G(F) is defined by the operator exp : L(F) → G(F), which

is called exponential map. The map exp is an analytic diffeomorphism of L(F) onto G(F) if G(F)

is simply connected, see [162, Thm. 3.6.2, p. 196]. A rigorous definition of the exponential map is

found in [162, p. 84], but for the sake of clarity, this concept is informally explained as follows, see

for instance [14].

Given f , for each t, exp(tf) defines a map of R
n into itself, which is just the mapping produced by

the flow on R
n defined by the differential equation ẋ = f(x). In other words, exp(tf) is the mapping

parametrizing the solutions of ẋ = f(x). This mapping is called the the flow3 generated by f .

Denoting by {exp(fF )}G the smallest subgroup of diff(Rn) which contains exp(tf) for all f ∈ F , it

is clear that for a drift-free version of system Σ, any point x ∈ R
n of the form x = {exp(fF )}Gx0

can be reached from x0 along solution curves of system because x can be expressed as:

x =

m∏

i=1

exp(tifI(i))x0

for some indices I(i) ∈ {1, 2, . . . ,m} by setting all but one of the inputs to zero while setting the

input associated with the index I(i) to one.

For drift-free systems, Chow’s theorem establishes that {exp(fF )}G and {exp(fL(F))}G are in fact

equal under rather weak assumptions. As there are many versions of the existence theorem for

3Recall in linear systems theory the flow is defined by the state transition matrix which parametrizes the solutions

of the uncontrolled system ẋ = Ax and is calculated as the matrix exponential eAt, where A is an n × n matrix. In

differential geometry, exp(tf) is used instead of the standard notation Φf (t) from the theory of differential equations

to denote the flow of the differential equation defined by f .
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ordinary differential equations, there are several versions of Chow’s theorem. Here, three versions

which are common in the control systems literature are given below.

Theorem B.1. - Chow’s Theorem [14, 6].

Let F be a collection of vector fields such that L(F) is:

Version 1. analytic on an analytic manifold M . Then given any point x0 ∈M , there exists a maxi-

mal submanifold N ⊂M containing x0 such that {exp(fF )}Gx0 = {exp(fL(F))}Gx0 = N .

Version 2. C∞ on a C∞ manifold M with dim spanL(F) constant on M . Then given any point x0 ∈

M , there exists a maximal submanifold N ⊂M containing x0 such that {exp(fF )}Gx0 =

{exp(fL(F))}Gx0 = N .

Version 3. is analytic and the vector fields in F are complete. Then the drift-free system Σ (i.e.

system (1.1) with f0(x) = 0) is controllable on an open neighborhood of the origin, N ⊂

M = R
n, if the Lie algebra rank condition, (LARC):

spanLx(F) = R
n, for all x ∈ N (B.3)

is satisfied.

Chow’s theorem gives a conclusive answer about the controllability of driftless systems, but it does

not for systems with drift. The main limitation of Chow’s theorem is that it does not distinguish

between positive and negative time, since the submanifold whose existence is guaranteed by The-

orem B.1 may include points which can only be reached by passing backwards along the vector

field f(x), i.e. by going forward along −f(x) (see discussion in Section 1.4, p. 10, concerning the

difficulties in steering Σ). This means that while the reachable set RF (x0)
def
= {exp(fF )}Gx0 will

be always contained in the manifold N = {exp(fL(F))}Gx0 defined by Chow’s theorem, it will be a

proper subset of this manifold, i.e. RF (x0) ⊂ N , see [36, 19].

In the light of this discussion, it is worth pointing out that the strong controllability hypothe-

sis assumed here, imposes that the reachable set RF (T, x) = GT x = {exp(TfF )}Gx is equal to

Gx
def
= {exp(fL(F))}Gx, which in fact demands that backward trajectories in Gx are realizable by

combinations of forward trajectories in GT x, see [20, 22].
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A situation in which the drift term causes no difficulty is when it defines critically stable trajectories

for the unforced system Σ. This result is stated in the following theorem, see [14]:

Theorem B.2. - Reachable Set of a System with Critically Stable Drift.

Suppose the vector fields in F satisfy the conditions of Chow’s theorem and suppose that for each

initial condition x0 the solution of ẋ = f0(x) is periodic with smallest period T (x0). Then the

reachable set from x0 is {exp(fL(F))}Gx0.

Proof. The sketch of the proof is found [14]. It based on the fact that if one would require to

pass backwards along the drift vector filed f0(x), one simply needs to set ui = 0, i = 1, . . . ,m, and

let the free periodic motion bring x0 nearly back to x0 along the integral curve of ẋ = f0(x). If the

least period of the periodic motion through x0 is T , then by following ẋ = f(x) for T − ε units of

time, one achieves the same effect as following ẋ = −f(x) for ε units of time. Thus, given enough

time, any point which is reachable by the driftless system ẋ =
∑m
i=0 fi(x)ui can also be reached by

the system with drift Σ of equation (1.1). �

Due to the lack of general criteria to establish the natural form of controllability for systems with

drift, stated at the beginning of this section, all the existing structural characterizations of Σ have

as yet only been expressed in terms of simple accessibility notions and only go as far as providing

sufficient conditions for the verification of the small-time local controllability (STLC) property.

The properties of local accessibility and small-time locally controllability are stated in terms of the

following reachable set of Σ defined by

RN
F (x0)

def
=
⋃

t≤T

RN
F (t, x0)

where N is a neighbourhood of x0 and

RN
F (t, x0)

def
= {y ∈ R

n : x(t, x0, u) = y and x(s, x0, u) ∈ N, for s ∈ [0, t], x0 ∈ R
n, u : [0, t] → Pm}

i.e. RN
F (t, x0) is the set of states reachable at time t from x0 by trajectories which do not leave the

neighbourhood N .

The control system Σ is thus said to be:
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(i) locally accessible from x0 if for all neighbourhoods N of x0 and all T , the reachable set

RN
F (x0) contains a non-empty open set.

(ii) small-time locally controllable from x0 if for all neighbourhoods N of x0 and all T , the

reachable set RN
F (x0) contains a non-empty neighbourhood of x0.

The Lie algebra rank controllability condition (B.3) of Chow’s theorem provides a computable criteria

to establish the accessibility property (i) for system Σ. For analytic vector fields the LARC is in

fact a necessary and sufficient condition for accessibility (controllability in the driftless case).

As far as small-time local controllability is concerned, only a sufficient verifiable condition exists,

see [39, Thm. 7.3]. This condition is given by the following theorem:

Theorem B.3 (Sussmann, [39], p. 185). Consider L(F), the smallest subset formed by all the Lie

brackets of fi ∈ F that contains F , and for any Lie bracket b ∈ L(F), let δi(b), i = 0, 1, . . . ,m, be

the number of times the generator fi occurs in b. Then, under the assumptions that:

• the vector fields F satisfy the LARC at x, namely dim spanLx(F) = n, and

• whenever b ∈ L(F) is a bracket for which δ0(b) is odd and δ1(b), . . . , δm(b) are even, b

can be written as a linear combination of brackets in L(F) of lower degree.

the system Σ is STLC from x.

B.2. Overview of the Literature on the Controllability of Systems with

Drift

There have been many attempts to improve the meager state of knowledge regarding the reachable

set of points for systems with drift and their controllability properties. Although the first significant

results pertaining the controllability of nonlinear systems reported in [18, 27] consider only driftless

systems, these contributions have played a fundamental role in later studies of controllability of

systems with drift. The studies in [18, 27] make systematic use Lie theory and differential geometry.

The work in [36] applies to systems with drift unlike [18, 27], which essentially deal only with

symmetric systems, i.e. systems with the property that f(x,−u) = −f(x, u). Symmetric systems

form a very specific class and do not offer major control difficulties since reversing the sign of the
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control allows to generate backward motions with respect to those generated using the opposite

control.

The result by Palais, Theorem 2.1 presented earlier in this chapter (p. 28), is fundamental since it

allows to reformulate system Σ (under the condition that L(F) is finite dimensional), as a system on

a Lie group G for which the vector fields corresponding to constant controls are right-invariant. This

is because Palais’ theorem allows to give the group G = {exp(fF )}G the structure of a Lie group with

Lie algebra isomorphic to L(F), see [20]. The analysis of control systems as systems on Lie groups

was brought into attention most notably in [12, 13, 21], where issues concerning controllability,

observability and realization theory were studied. Another important reference is [20], where an

explicit characterization of the reachable set RF (T, x) = GT x = {exp(TfF )}G x is derived. The

result in [20, Thm. 3.3] states that the reachable set can be decomposed as the group action

defined by the drift vector field and the set of group actions defined by the remaining Lie brackets in

L(F), as RF (T, x) = {exp(TfF )}G x = {exp(TfL∗)}G exp(Tf0)x, where L∗ denotes the Lie algebra

L∗({fi, [f0, fi], [f0, [f0, fi]], . . . ; i = 1, 2, . . . ,m}).

These results are of significant importance to the development of the feedback laws proposed in [72,

45, 60, 57], which pose the original control problem on the manifold as a problem of steering

the corresponding system on the Lie group. In a less direct, but also successful way, these ideas

are applied in [44, 75] to the development of more general approaches for time-varying feedback

stabilization.

Results on (weak) local controllability for general nonlinear systems with drift were obtained in [19].

These results basically state that the well known Lie algebra rank condition, which ensures the

controllability of driftless systems (Chow’s Theorem), only guarantees weak local controllability in

a neighborhood of the equilibrium point of Σ. In [22], the controllability of scalar input systems is

guaranteed if the LARC in (B.3) holds for every state x in the manifold of solutions M , and if the

set of points reachable in positive times from every x in a dense subset of M is equal to M . In [8]

criteria for local and global controllability of systems with polynomial drift term are also formulated

in terms of properties of their Lie algebra.

247



APPENDIX B. CONTROLLABILITY OF SYSTEMS WITH DRIFT

More recently, sufficient conditions for small-time local controllability (STLC) of (1.1) were given

in [39]. Theorem B.3, presented in the previous section, is the main result in [39] and provides the

most computable criteria for STLC, but it is in general hard to check for non-nilpotent systems,

unless the original system is nilpotenized or one assumes some nilpotent approximation that preserves

the controllability properties of the original system. The results in [39] can also be used to establish

the local controllability of systems which have a drift term f0 that vanishes in a connected set E,

i.e. the uncontrolled system has multiple equilibrium points in a connected set E, if the system is

controllable to E.
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Useful Theorems and Other Results

Some useful theorems and techniques referred to, but not original to this dissertation, are gathered

in this appendix for the reader’s convenience. The proofs of the Inverse Function Theorem and

the Implicit Function Theorem can be found in any textbook of advanced calculus or mathematical

analysis, see for example [189].

C.1. Gronwall-Bellman Lemma

The present version of the Gronwall-Bellman Lemma is based on the version found in [4].

Lemma C.1. - Gronwall-Bellman Lemma. Let x : [a, b] → R be continuous and y : [a, b] → R

be continuous and nonnegative. Then if a continuous function z : [a, b] → R satisfies

z(t) ≤ x(t) +

∫ t

a

y(s)z(s)ds

for a ≤ t ≤ b, then on the same interval

z(t) ≤ x(t) +

∫ t

a

x(s)y(s)e
∫

t

s
y(τ)dτds

In particular, if x(t) is nondecreasing, then

z(t) ≤ x(t) e
∫

t

a
y(τ)dτ

or simply

z(t) ≤ α e
∫

t

a
y(τ)dτ
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for a constant x(t) ≡ α. If, in addition, y(t) ≡ β > 0 is a constant, then

z(t) ≤ α eβ(t−a)

Proof. Let

v(t) =

∫ t

a

y(s)z(s)ds

and

w(t) = x(t) + v(t) − z(t) ≥ 0

Then, v is differentiable and

v̇(t) = y(t)z(t) = y(t) (x(t) + v(t) − w(t))

This is a scalar linear state equation with the state transition function

φ(t, s) = e
∫

t

s
y(τ)dτ

Since v(a) = 0, we have

v(t) =

∫ t

a

φ(t, s) (x(s)y(s) − w(s)y(s)) ds

The term
∫ t

a
φ(t, s)w(s)y(s)ds is nonnegative, and therefore,

v(t) ≤
∫ t

a

x(s)y(s)e
∫

t

s
y(τ)dτds

Since z(t) ≤ x(t) + v(t), this completes the proof for the general case.

When x(t) is nondecreasing, x(s) ≤ x(t) for any s ≤ t, thus

v(t) ≤
∫ t

a

x(s)y(s)e
∫

t

s
y(τ)dτds ≤ x(t)

∫ t

a

y(s)e
∫

t

s
y(τ)dτds

and applying the Leibniz’s rule for the differentiation of an integral we have,

∫ t

a

y(s)e
∫

t

s
y(τ)dτds = −

∫ t

a

d

ds

{

e
∫

t

s
y(τ)dτ

}

ds

= −
{

e
∫

t

s
y(τ)dτ

}∣
∣
∣

s=t

s=a

= −1 + e
∫

t

a
y(τ)dτ
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which proves the lemma when x(t) is nondecreasing or simply a constant. The proof when also y(t)

is constant follows by integration. �

C.2. Inverse Function Theorem

Theorem C.1. - Inverse Function Theorem. Let A be an open subset of R
n and f : A → R

n

a continuous C1 mapping. If ∂f
∂x (x̄) is nonsingular for some x̄ ∈ A, then there exists an open

neighbourhood U ⊂ A of x̄ such that V = {y ∈ R
n | y = f(x), x ∈ U} is open in R

n and the

restriction of f to U is a diffeomorphism onto V .

Remark C.1. The map f does not need to be a global diffeomorphism on noncompact sets U even

if ∂f
∂x is nonsingular at any x. For example the map f : (x1, x2) → (ex1 cos(x2), e

x1 sin(x2)) is

nonsingular at every point. However, such f is not a global diffeomorphism, since it is periodic in

x2. The globality of the diffeomorphism is ensured by a theorem due to Palais, (see proof in [190]),

if f is a proper map; that is, the inverse image of compact sets is compact.

C.3. Implicit Function Theorem

Theorem C.2. - Implicit Function Theorem. Let A ⊂ R
m and B ⊂ R

n be open subsets. Let

f : A×B → R
n be a C1 mapping, i.e. f is continuously differentiable at each point (x, y) ∈ S ⊆ A×B.

Let (x̄, ȳ) be a point in S for which f(x̄, ȳ) = 0, and for which the Jacobian matrix

∂f

∂y
(x̄, ȳ)

is nonsingular. Then, there exist open neighbourhoods of A0 ⊂ A of x̄ and B0 ⊂ B of ȳ, and a

unique C1 mapping g : A0 → B0 such that for each x ∈ A0 the equation f(x, y) = 0 has a unique

solution y ∈ B0 satisfying y = g(x) such that

f(x, g(x)) = 0

for all x ∈ A0.
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C.4. The Stable Manifold Theorem

See [146] for a proof of the following theorem which is helpful in proving the stabilizing properties

of the feedback law proposed in Section 5.5.

Theorem C.3. -The Stable Manifold Theorem. Let E be an open subset of R
n containing the

origin, let f ∈ C1(E), and let φt be the flow of the nonlinear system

ẋ = f(x) (C.1)

Suppose that f(0) = 0 and that its Jacobian Df(0) = 0 has k eigenvalues with negative real part and

n − k eigenvalues with positive real part. Then there exists a k-dimensional differentiable manifold

S tangent to the stable subspace Es of the linear system

ẋ = Ax

with A = Df(0) such that for all t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S,

lim
t→∞

φt(x0) = 0

and there exists an n− k dimensional differentiable manifold U tangent to the unstable subspace Eu

of (C.3) at 0 such that for all t ≤ 0, φt(U) ⊂ U and x0 ∈ U ,

lim
t→−∞

φt(x0) = 0

S and U are referred to as the local stable and unstable manifolds of (C.1) at the origin.
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Ad, 223

γ-coordinates, 34, 149

equation, 34, 151

interception problem, 38, 49, 117

ad, 220

accessibility, 234

complete, 234

local, 246

adjoint representation

differential, 224

algebra

linear, 206

analytic simply connected, 227

atlas, 213, 214

complete, 213

maximal atlas, 213

attainability, see also reachability

automorphism, 223

Baker-Campbell-Hausdorff, 222

basis for a topology, 209

Brockett’s condition, 10

Campbell-Baker-Hausdorff, 224

CBH, see also Baker-Campbell-Hausdorff, 224

Dynkin form, 225

power form, 225

chart, 212, 214

Ck-compatible, 212

closed subset, 209

closure subset, 209

complete

vector field, 25, 219

composition of exponential mappings, 224

controllability, 234, 239

asymptotic, 235

complete, 234

local, 234

small-time local controllability, 246, 248

strong, 26

controllability Lie algebra, see also Lie algebra, rank

condition

coordinate chart, 212

coordinates transformation, 213

dense subset, 210

derivation, 216

derivative, 215

diffeomorphism, 210

differential equation on Lie groups, 31

Duncan-Mortensen-Zakai equation, 155

Dynkin, see also CBH, Dynkin form
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endomorphism, 220

estimation Lie algebra, 155

evaluation homomorphism, 229

exponential formula, 150, 224

exponential map, 222, 243

extended system, see also Lie algebraic extension

field, 204

FIP, see also flow interception problem

flow

S(t) of Σ on H, 29

Se(t) of Σe on H, 31

flow interception problem, 48, 116

flow of a vector field, 154, 217

Frobenius theorem, 240

gradient, 215

operator, 215

Gronwall-Bellman lemma, 249

group, 203

action, 223

continuous, 204

topological, 204

group of diffeomorphisms, 243

Hausdorff space, 211

Hessian, 220

holonomic system, 238

homeomorphism, 210

homomorphism, 204

ideal, 207

induced norm, 206

induced topology, 211

infinitesimal generator φ+

L of φ, 28

integral curve, 217

interior subset, 209

isomorphism, 204

φ, 28

between Lie algebras, φ+

L
, 28

between Lie groups, φ+

G
, 29

Jacobian, 215

LARC, see also Lie algebra, rank condition

LCIP, see also logarith.-coord., intercep. problem

left action, 223

Lie

derivative, 219

Lie algebra, 207

isomorphism φ+

L , 28

multiplication table, 225

of vector fields, 221

rank condition, 152, 244

solvable, 156, 231

structure constants, 225

Lie algebraic extension, 27

Lie bracket, see also Lie product

Lie group

connected, 221

isomorphism φ+

G, 29

Lie product, 207, 220, 240

anticommutativity, 207

antisymmetry, 207

axioms or properties, 207

bilinearity, 207

geometric interpretation, 242

Jacobi identity, 207

pure, 156

Lie-Cartan coordinates, 222, 227

linear algebra, 206

locally Euclidean subspace, 211
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logarithmic coordinates, 149, 222, 227

logarithmic-coordinates, 34

equation, 34, 151, 230

interception problem, 38, 49, 117

Lyapunov function, 237

manifold, 212

analytic, 213, 214

differentiable, 213, 214

orientable, 213, 214

mapping

continuous, 210

diffeomorphism, 210

homeomorphism, 210

open, 210

smooth, 210

matrix groups, 208

Mn(K), 208

neighborhood, 209

nonlinear filtering, 154

normed vector space, 206

operator

Ad, 223

ad, 220

periodic continuation, 47

Philip Hall coordinates, 222

product of exponentials, 34

product topology, 211

reachability, 233

reachable set, 233, 245

smooth mapping, 210

stability, 235

practical, 235

ultimate boundedness, 235

STLC, see also controllability, small-time local con-

trollability

subset topology, 211

subspace

center, 237

stable, 237

unstable, 237

symbols

Ad, 223

E(n), 208

G, 203

GL(n, K), 208

K, 204

L(F), 221

M , 212

Mn(K), 208

O(n, K), 208

S(t), 29

SE(n), 208

SL(n, K), 208

SO(n), 208

Se(t), 31

V , 205

Γ, 34

Φ, 217

Σ, 3

Σe, 27, 174

Σe
H , 31

ΣH , 29

γ, 34, 149, 227

A, 206

diff(M), 28, 243

∇x, see also gradient
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φ, 28

φ+

G, 29

φ+

L , 28

ad, 220

system

Σ, 3

Σe, 27, 174

Σe
H , 31

ΣH , 29

tangent bundle, 216

tangent space, 216

tangent vector, 216

TIP, see also trajectory interception problem

topological space, 209

topological structure, 209

topologically equivalent, 210

topology, 209

induced, 211

product, 211

subset, 211

trajectory interception problem, 37, 47

vector field, 217

complete, 25

vector space, 205

Wei-Norman, 150, 226

equation, 34, 150, 151, 230

lemma, 226
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