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Abstract

This work addresses the problem of stabilizing feedback design for strongly nonlinear systems, i.e.

systems whose linearization about their equilibria is uncontrollable and for which there does not exist

a smooth or even continuous stabilizer. The construction of stabilizing controls for these systems is

often further complicated by the presence of a drift term in the differential equation describing their

dynamics. The development of stabilizing laws for bilinear systems is also considered in this research.

The relevance of bilinear systems stems from the fact that they result from the linearization of certain

nonlinear control systems with respect to the state only. The proposed methodologies yield time-varying

control laws whose construction is based on Lie algebraic techniques.

Two systematic approaches to the construction of time-varying feedback laws for nonlinear systems

with drift are proposed: (1) a continuous time-varying control strategy, partially drawing on the ideas

by Coron and Pomet for driftless systems, and (2) a discontinuous time-varying feedback based on

computationally feasible Lie algebraic techniques.

The continuous time-varying control law is a combination of a periodic time-varying control pro-

viding for critical stabilization with an asymptotically stabilizing feedback “correction” term. The

periodic control is obtained through the solution of an open loop, finite horizon, control problem on

the associated Lie group which is posed as a trajectory interception problem in the Philip Hall coordi-

nates of flows for the system and its Lie bracket extension. The correction term is calculated to be a

control which decreases a Lyapunov function whose level sets contain the periodic orbits of the system

stabilized by the time-periodic feedback.

The second method constitutes the first attempt to provide a systematic methodology for the syn-

thesis of discontinuous time-varying feedback, and thus overcomes some of the practical implementation

difficulties presented by the first method. The control law comprises two modes. In one mode the con-

trol is a smooth state feedback that guarantees an instantaneous decrease of a chosen control Lyapunov

function. This mode is applied whenever there exists a smooth control. The other mode considers

an open loop piece-wise constant control which decreases the control Lyapunov function on average,

after a finite period of time. The synthesis of the smooth state feedback is based on the standard

Lyapunov approach, thus the emphasis is put on the construction of the time-varying discontinuous

control. The Lie algebraic control is composed of a sequence of constant controls whose values are

calculated as the solution to a non-linear programming problem. Two approaches to the formulation

of the non-linear programming problem are presented. In the first approach the formulation of the

non-linear programming problem results from the direct application of the Campbell-Baker-Hausdorff

formula for composition of flows, while in the second approach, the non-linear programming problem

is formulated by posing the original control problem in terms of a relaxed control problem in the

associated logarithmic coordinates.
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These approaches are general and applicable to a large class of nilpotent systems which do not

lend themselves to successful linearization (be it through state-feedback transformations, or else simply

around some operating points).

Two strategies for the stabilization of homogeneous bilinear systems with unstable drift are pro-

posed. The first method considers the construction of a time-invariant feedback for the Lie bracket

extension of the original system. The original system controls are then obtained as a solution to an

open loop, finite horizon, control problem posed in terms of a finite horizon interception problem of

the logarithmic coordinates for flows. Under such controls the trajectories of the open loop system

and the extended system intersect after a finite time, independently of their common initial condition.

Thus, the “average motion” of the original system corresponds to the motion of the controlled extended

system. The speed of convergence of the system trajectory to the desired terminal point is dictated by

the static feedback for the extended system.

The second approach to the stabilization of bilinear systems comprises two phases: the reaching

phase and the sliding phase. In the reaching phase the state of the system is steered to a selected

stable manifold by employing a suitably designed control Lyapunov function in conjunction with the

discontinuous time-varying Lie algebraic control proposed for general nonlinear systems with drift. The

latter is necessary when there do not exist controls which generate instantaneous velocities decreasing

the Lyapunov function. Once the set of stable manifolds is reached the control is switched to its sliding

phase whose task is to confine the motion of the closed loop system to the latter set, making it invariant

under limited external disturbances.

The computationally feasible approaches proposed in this research necessitated the development of

a set of software tools for symbolic manipulation of expressions with Lie brackets. The novel software

package constitutes a contribution towards the automated construction of Philip Hall bases, simplifi-

cation of any Lie bracket expression, composition of flows via the Campbell-Baker-Hausdorff formula

and other Lie algebraic manipulations.

Conditions under which the constructed feedback laws render the corresponding systems asymptot-

ically stable are analyzed. The applicability and effectiveness of the proposed approaches is demon-

strated through computer simulations of several nonlinear systems, including well known nonholonomic

systems without drift, such as the kinematic models of a unicycle and a front-wheel drive car, and

systems with drift like the challenging angular velocity stabilization of a satellite in actuator failure

condition.
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1 Research Area and Motivation

This work addresses the problem of stabilizing feedback design for systems whose dynamics on Rn is
modeled by nonlinear ordinary differential equations of the form:

Σ : ẋ = f0(x) +
m∑

i=1

fi(x)ui (1.1)

where the fi : Rn → Rn, i = 0, . . . ,m, are smooth vector fields and ui, i = 1, 2, . . . ,m, with m < n, are
the control inputs.

This research is also relevant to the development of stabilizing control laws for bilinear systems for which
fi(x) = Aix, with Ai ∈ Rn×n, are linear vector fields. Bilinear systems are of interest since they correspond
to the linearization of (1.1) with respect to the state only.

Systems described by (1.1) often occur in practice, typical examples being the nonholonomic systems and
systems that become underactuated due to the failure of some of its physical components [1].

The motivation to the proposed research is provided by observing the following:

• The existence of relatively few general methods for stabilization of nonlinear systems with drift.

• The fact that strongly nonlinear systems often result in uncontrollable linearizations about their
equilibria and do not satisfy the necessary conditions for smooth [3, 4] or even continuous [5] stabi-
lization.

• The lack of computationally feasible methods for the construction of discontinuous feedback and
the computational complexity of the feedback laws based on Lie algebraic approaches developed so
far.

• The lack of constructive approaches to stabilization of general (higher order n > 2) multi-input
bilinear systems for which the matrix A0 +

∑m
i=1 uiAi is unstable for all choices of constants ui.

2 Research Objective

The main objective of this research is the development of:

1. Algorithms for the construction of time-varying stabilizing controls for a wide class of systems with
drift based on Coron’s [6, 7] approach of critical orbits for driftless systems.

2. Computationally feasible algorithms for the construction of time-varying discontinuous feedback
controls for systems with drift.

3. Algorithms for the stabilization of bilinear systems with unstable drift.

3 Previous Approaches Pertaining to the Research Objective

The stabilization problem for systems described by (1.1) has found considerable interest. Most methods
begin by finding a Lyapunov function for some type of linearization of (1.1) [2, 9], or else assume the
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existence of a suitable control Lyapunov function which can be decreased to zero by an adequate choice
of controls in (1.1), cf. [10] and references therein.

Lie algebraic methods have already been applied with great success to general systems without drift [8].
However, relatively few attempts exist which utilize Lie algebraic approaches for the stabilization of
systems with drift [11, 12, 13]. These methods are computationally complex, thus not very attractive for
practical implementation purposes.

Some methods are based on physical considerations of the problem and particular characteristics of the
system’s vector fields [14, 15, 16, 17], hence these results are of limited scope and cannot be generalized.

Regarding the stabilization of bilinear systems, numerous approaches have been proposed [18, 19, 20, 21,
23, 24, 25, 26], see also the survey by Elliott [27]. However there is no universal solution proposed yet.
Several methods assume that the drift term is stable, [18, 26], i.e. A0 has no eigenvalues in the open
right-half of the complex plane.

Stabilization of homogeneous bilinear systems in the plane has been fully analyzed. Bacciotti and
Boieri [22], have used constant, linear, and quadratic feedbacks, and Chabour et al. [23], have used
feedbacks differentiable except at zero, to give complete stabilizability conditions for single input bilinear
systems on R2 − {0}. The methods of analysis in these papers again involve Lyapunov functions, center
manifolds, and properties of curves in the plane.

For higher dimensional systems relatively few methods for feedback stabilization are available. In [24],
Wang gives a sufficient condition for stabilizability of systems in Rn by piece-wise constant controls,
however, no general procedure for their construction is provided.

4 Research Progress

In relation to the above objective, the following progress is reported:
1. Time-varying stabilization of systems with drift [P2]:

The proposed feedback law is a composition of a periodic time-varying control which provides
for critical stabilization, and an asymptotically stabilizing feedback “correction” term. The method
partially draws on the ideas of Coron and Pomet, see [6, 7], who constructed time-periodic stabilizing
controls for systems without drift.

The periodic control is obtained through the solution of an open loop, finite horizon, control problem
on the associated Lie group which is posed as a trajectory interception problem in the Philip Hall
coordinates of flows for (1.1) and its Lie bracket extension [8]. The correction term is calculated
to be a control which decreases a Lyapunov function whose level sets contain the periodic orbits of
the system stabilized by the time-periodic feedback. This approach an its successful application to
a strongly nonlinear nilpotent system has been reported in [P2].

2. Computationally feasible algorithms for discontinuous time-varying feedback stabilization
of systems with drift [P4, P5]:
The proposed control law comprises two modes. In one mode the control is a smooth state feedback
u(x) that guarantees an instantaneous decrease of a chosen control Lyapunov function V (x). This
mode is applied whenever there exists a control u(x) such that V̇ (x, u(x)) < 0. In the other mode,
an open loop piece-wise constant control ū(x, t) which decreases the control Lyapunov function on
average, after a finite period of time T , is applied. The synthesis of u(x) is based on the standard
Lyapunov approach, thus the emphasis is put on the construction of ū(x, t) by means of Lie algebraic
techniques.
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Two approaches to the synthesis of the Lie algebraic control ū have been proposed. In both ap-
proaches the control is composed of a sequence of constant controls whose values are calculated as
the solution to a non-linear programming problem. In the first approach the formulation of the non-
linear programming problem results from the direct application of the Campbell-Baker-Hausdorff
formula for composition of flows, while in the second approach, the non-linear programming problem
is formulated by posing the original control problem in terms of a relaxed control problem in the
associated logarithmic coordinates.

The theoretical background for this approach is discussed in [P5]. The method has been successfully
applied to the control of nonholonomic systems: the unicycle and the front-wheel drive car [P5],
as well systems with drift: angular velocity stabilization of a satellite in actuator failure mode [P4,
P5].

3. Stabilization of bilinear systems with unstable drift [P1, P3, P6]:
Two approaches to the stabilization problem have been investigated. Both methods make use of the
Lie bracket extension of the system.

The first method, [P1], considers the construction of a time-invariant feedback for the extended
system, which is a relatively simple task under reasonable assumptions. The original system controls
are then obtained as a solution to an open loop, finite horizon, control problem posed in terms of
a finite horizon interception problem of the logarithmic coordinates for flows [8]. The open loop
controls so generated are such that the trajectories of the open loop system intersect those of the
controlled extended system after a finite time T , independent of their common initial condition.
Thus, the “average motion” of the original system corresponds to the motion of the controlled
extended system. The speed of convergence of the system trajectory to the desired terminal point
is dictated by the static feedback for the extended system.

The second approach comprises two phases: the reaching phase and the sliding phase. In the reaching
phase the state of the system is steered to a selected stable manifold by employing a suitably designed
control Lyapunov function in conjunction with a Lie algebraic control. The latter is necessary when
there do not exist controls which generate instantaneous velocities decreasing the Lyapunov function.
The Lie algebraic control is constructed using the first method proposed in [P5]. Conditions are
given under which the constructed feedback control renders the stable manifold globally attractive
and attainable in finite time. Once the set of stable manifolds is reached the control is switched
to its sliding phase whose task is to confine the motion of the closed loop system to the latter set,
making it invariant under limited external disturbances. Two examples corresponding to different
dimension of the stable manifolds are presented in [P3, P6] to demonstrate the effectiveness of the
approach.

4. A software package for symbolic manipulation of elements in Lie algebraic theory [28]:
The computationally feasible approaches proposed in this research necessitated the development of
a set of software tools for symbolic manipulation of expressions with Lie brackets.

To this end, a software package has been implemented in Maple. The module is called Lie Tools
Package (LTP) [28], and among other functions it enables the following automated Lie algebraic
manipulations:

• Construction of Philip Hall bases.
• Simplification of any Lie bracket expression.
• Composition of flows via the Campbell-Baker-Hausdorff formula.
• Set up of the logarithmic-coordinates equation.
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5 Originality of the Proposed Research

The proposed approaches constitute an original contribution to the stabilization of (1.1) in that:

• The novel synthesis method for time-varying stabilizing controls [P2] is general and applicable to
a large class of nilpotent systems which do not lend themselves to successful linearization (be it
through state-feedback transformations, or else simply around some operating points).

• The approach in [P6] constitutes the first attempt to provide a systematic methodology for the
synthesis of discontinuous time-varying feedback based on computationally feasible Lie algebraic
techniques.

• The Lie algebraic approaches to the synthesis of stabilizing feedback control for homogeneous bilinear
systems are completely new. Unlike existing methods, the proposed approaches consider systems
with unstable drift which cannot be stabilized by any constant control. Sufficient conditions for the
existence of the proposed control law are given.

• The symbolic manipulation procedures developed in LTP also constitute a novel tool. The exist-
ing software for Lie algebraic manipulations are very specialized, e.g. [29], and Maple’s liesymm
package [30], and do not provide any of the functionality listed above (Waterloo Maple Inc. was
contacted without any positive response, and other major computer algebra systems: Reduce, Mac-
syma, Mathematica were evaluated less favorably).
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[12] S. Čelikovský and E. Aranda-Bricaire, Constructive nonsmooth stabilization for a class of nonlinear
single-input systems, Proceeding of the 36th Conference of Decision & Control. San Diego, California,
U.S.A, December 1997, pp. 1734-1735.

[13] H. Michalska and F. U. Rehman, Time varying feedback synthesis for a class of nonhomogeneous
systems, Proceeding of the 36th Conference of Decision & Control. San Diego, California, U.S.A,
December 1997, pp. 4018-4021.

[14] H.J. Sussmann, Local controllability and motion planning for some classes of systems with drift.
Systems and Control Letters, v. 12, 1989, pp. 213-217.

[15] J.-M. Godhavn, A. Balluchi, L.S. Crawford and S.S. Sastry, Control of nonholonomic systems with
drift terms. 1997 IEEE American Control Conference, pp. 0-42.



9

[16] A. Bacciotti, Local Stabilizability of Nonlinear Control Systems, World Scientific Publishing Co.,
Singapore, 1992.

[17] D.O. Popa and J.T. Wen, Feedback stabilization of nonlinear affine systems. Proceeding of the 38th

Conference of Decision & Control. Phoenix, Arizona, U.S.A, December 1999, pp. 1290-1295.

Bilinear Systems

[18] M. Slemrod, Stabilization of bilinear control systems with applications to nonconservative problems
in elasticity. SIAM J. Control and Optimization, Vol. 16, No. 1, 1978, pp. 131-141.

[19] R. Longchamp, Stable feedback control of bilinear systems, IEEE Transactions on Automatic Control,
Vol. AC-25, No. 2, pp. 302-306, April 1980.

[20] Per-Olof Gutman, Stabilizing controllers for bilinear systems, IEEE Transactions on Automatic Con-
trol, Vol. AC-26, No. 4, pp. 917-922, August 1981.
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