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Abstract

A method is presented for construction of time vary-
ing stabilising feedback control for homogeneous bilin-
ear systems. The method is universal in the sense that
it is independent of the vector fields determining the
motion of the system, and does not require a Lyapunov
function. The proposed feedback law is a composition
of a stabilising feedback control for a Lie bracket exten-
sion of the original system and a periodic continuation
of a specific solution to an open loop control problem
on the associated Lie group. The latter is posed as a
trajectory interception problem in the logarithmic co-
ordinates of flows.

Keywords: stabilising nonlinear feedback control,
bilinear systems.

1. Introduction

The problem of feedback stabilisation of bilinear con-
trol systems whose equation of motion is given by

ẋ(t) = A0x(t) +

m
∑

i=1

ui(t)Aix(t) (1.1)

is considered. Here, x(t) ∈ IRn, u(t) ∈ IRm, and
Ai ∈ IRn×n, i = 0, 1, ...,m. Systems of this type are of
practical interest as they can be considered to be ap-
proximations to other nonlinear systems (such as those
obtained by linearising nonlinear systems at a common
fixed point with respect to the state x only).

The stabilisation problem for the above class of sys-
tems has found much interest in the literature, see [1]
for a survey. Several methods for stabilising (1.1) start
by finding a suitable Lyapunov function for the free
system ẋ = A0x (assuming that A0 is stable), [2], [3].
The proposed feedback is either linear or quadratic or
piece-wise constant, and usually results in slower than
exponential asymptotic stability.
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Stabilisation of homogeneous bilinear systems in the
plane has been fully analysed. Bacciotti and Boieri,
[4], using constant, linear, and quadratic feedbacks,
and Chabour et al., [5], using feedbacks differentiable
except at zero, have given complete classifications of
the possibilities for stabilisability of ẋ = A0x + uA1x
on IR2 − {0}. The methods of analysis in these pa-
pers again involve Lyapunov functions, center mani-
folds, and properties of plane curves.

For higher dimensional systems, however, relatively
few methods for feedback stabilisation are available.
Although in [6], Wang gives a sufficient condition for
stabilisability of systems in IRn by piece-wise constant
controls, no general procedure for their construction is
provided. There seems to be a total lack of construc-
tive approaches to stabilisation of higher order systems
for which the matrix A0 +

∑m
i=1

uiAi is unstable for all
choices of constants ui.

With this motivation we follow the idea, already men-
tioned in [1], of stabilising (1.1) by employing time-
periodic feedback which brings into play the Lie brack-
ets of the system matrices A0, A1, ..., Am.

Our method is based on considering of what is known
as the Lie bracket extension of the original system
(1.1). Under reasonable assumptions, a stabilising
feedback control is easy to construct for the extended
system. The stabilising time-invariant feedback con-
trol for the extended system is then combined with a
periodic continuation of a specific solution of an open
loop, finite horizon control problem. This open loop
control problem is posed in terms of the logarithmic
coordinates for flows, [7], and its purpose is to gen-
erate open loop controls such that the trajectories of
the controlled extended system and the open loop sys-
tem intersect after a finite time T , independent of their
common initial condition. It is hence, a finite horizon
interception problem for the flows in the logarithmic
coordinates. While the time-invariant feedback for the
extended system dictates the speed of convergence of
the system trajectory to the desired terminal point,



the open loop solution serves the averaging purpose in
that it ensures that the “average motion” of the origi-
nal system is that of the controlled extended system.

The construction proposed here demonstrates that
synthesis of time varying feedback stabilisers for bilin-
ear systems is possible and can be viewed as a proce-
dure of combining static feedback laws for a Lie bracket
extension of the system with a solution of an open loop
control problem on the associated Lie group.

2. Problem definition and basic
assumptions

The objective is to construct controls ui(x, t) : IRn ×
IR+ → IR, i = 1, ...,m such that system (1.1) is Lya-
punov asymptotically stable. For our construction to
be valid, we need to impose the following hypotheses:

H1. System (1.1) is globally asymptotically control-
lable to zero using piece-wise continuous controls,
i.e. for each initial condition x0 ∈ IRn there ex-
ist piece-wise continuous controls ui : [0,∞) 7→
IR, i = 1, ...,m such that the corresponding state
trajectory converges to the origin.

H2. Let G def
= {A0, A1, ..., Am}LA denote the Lie al-

gebra of n-dimensional square and real matrices
generated by A0, A1, ..., Am. System (1.1) satis-
fies the Lie algebra rank condition for accessibil-
ity, namely that

dim{A0, ..., Am}LA(x) = n ∀x ∈ IRn − {0}

where n is the dimension of the state and

{A0, ..., Am}LA(x)
def
= span{Mx|M ∈ G}

H3. The Lie algebra {A0, A1, ..., Am}LA has finite di-
mension k.

3. The feedback law

3.1 Stabilisation of the Lie bracket extension of

the original system

We first consider the so called Lie bracket extension of
the original system (1.1):

ẋ(t) = A0x(t) +

r
∑

i=1

vi(t)Aix(t) (3.2)

where the additional matrices Ai, i = m + 1, ..., r, are
the Lie brackets of the original matrices A0, A1, ..., Am

such that dim span{A1x, ..., Arx} = n for all x ∈
B(0;R) − {0} , where B(0;R) denotes a sufficiently
large neighbourhood of the origin with R >> 0.

The stabilising feedback for the extended system is
next defined by

v(x)
def
= [v1(x), ..., vr(x)]T = G(x)†(Adx − A0x)

where G(x)
def
= [A1x, ..., Arx] (3.3)

and G(x)† denotes the Moore-Penrose pseudo-inverse
of the state dependent matrix G, and Ad is some stable
“reference system” matrix. Since G(x)G(x)T is invert-
ible for all x ∈ IRn − {0} (as it is in fact a Grammian
matrix for a set of linearly independent vectors - the
rows of G(x)), then the pseudo-inverse is calculated as
G(x)† = G(x)T [G(x)G(x)T ]−1 and is a right inverse of
G(x) in B(0;R) − {0}, so that G(x)G(x)† = I for all
x ∈ B(0;R) − {0}. It follows that the trajectories of
the extended system satisfy

ẋ(t) = A0x(t) + G(x(t))v(x(t)) = Adx(t) (3.4)

so that the extended system is stable, as desired.

3.2 The discretised extended control

Although the feedback given in (3.3) is exponentially
stabilising for the extended system, it is not stabil-
ising for the original system unless the action of the
r feedback controls in (3.3) is somehow “translated”
into a corresponding action of the m < r controls of
(1.1). To facilitate such a construction, we first con-
sider substituting the controlled extended system by
a system with “discretised” feedback control in which
the feedback controls vi(x) are “updated” only at dis-
crete moments of time nT, n = 0, 1, 2, ...:

ẋ = A0x(t) +

r
∑

i=1

vn
i (x)Aix(t) (3.5)

in which the functions vn
i , i = 1, ..., r are obtained from

vi, i = 1, ..., r by the formula

vn
i (x(t))

def
= vi(x(nT )) t ∈ [nT, (n + 1)T ),

n = 0, 1, 2, ... i = 1, ..., r (3.6)

Hence, vn
i is obtained from vi by the “sample and

hold” operation. It should be pointed out that such
a discretisation is only needed if the extended controls
are not constant, and is introduced in order to ensure
that the feedback controlled extended system (3.5) has
the same Lie algebraic structure as the original system
(1.1) within each time interval [nT, (n + 1)T ).

Intuitively, it is clear that sufficiently fine discretisa-
tion of the extended controls (reflected by a sufficiently
small T ) will preserve their stabilising properties; the
latter is confirmed by the following result, see [8].

Proposition 1 Suppose that hypotheses H1-H3 are
valid, so that the controlled extended system given by



(3.4) is globally exponentially stable. Under these con-
ditions, for any region B(0;R) there exists a constant
T > 0 such that the discretised controlled extended sys-
tem (3.5) is exponentially stable with region of attrac-
tion B(0;R).

3.3 An open loop control problem on a Lie

group

The task of the open loop control problem discussed
below is to generate open loop controls ui, i = 1, ...,m
for the original system such that its trajectories and
the trajectories of the discretised extended system (3.5)
intersect periodically with the given frequency of dis-
cretisation 1/T .

To this end, and for simplicity of notation, we define

ai
def
= vn

i (x(t)), i = 1, ..., r (3.7)

and a
def
= [a1, ..., ar]

T (3.8)

which are constant over each interval [nT, (n + 1)T ).

By virtue of hypothesis H3, without the loss of gener-
ality we also assume that

H4. The matrices A0, ..., Ar form a basis for the alge-
bra {A0, ..., Am}LA

In order to achieve a type of “point-wise equivalence”
of the trajectories of the extended and the original sys-
tem we pose the following open loop “trajectory inter-
ception problem” (TIP):

TIP: Find control functions wi(a, t) , i = 1, ...,m,
in the class of functions which are continu-
ous in a, and piece-wise continuous and locally
bounded in t , such that for any initial condition
x(0) = x 6= 0 and any constant “control vector” a
the trajectory xa(t;x, 0) of the extended system:

ẋ(t) = A0x(t) +

r
∑

i=1

aiAix(t), x(0) = x (3.9)

intersects the trajectory xw(t;x, 0) of the original
system with controls wi:

ẋ(t) = A0x(t) +

m
∑

i=1

wi(a, t)Aix(t), x(0) = x

(3.10)

precisely at time T , so that xa(T ;x, 0) =
xw(T ;x, 0).

Employing the powerful formalism of [9] is now es-
sential as it enables to find a solution of TIP while

abstracting from the actual form of the matrices
A0, ..., Am, any particular values of the initial condi-
tion x, as well as the extended system controls ai.

To this end, the open loop control problem TIP is
restated as a (FIP) - interception problem for the
flows (transition matrices) of the original and extended
equations. Writing the solution of (3.10) in the form
xw(t;x, 0) = Φ(t, 0)x we clearly have

Φ̇(t, 0) = [A0 +
m

∑

i=1

wi(a, t)Ai]Φ(t, 0)

with Φ(0, 0) = I

A similar equation obviously also holds for the flow of
system (3.9), so that (FIP) can be stated as follows:

FIP: Consider the two formal initial value problems:

S1 :

{

Ṡe(t) = [A0 +
∑r

i=1
aiAi]S

e(t)
Se(0) = I

(3.11)

S2 :

{

Ṡo(t) = [A0 +
∑m

i=1
wi(a, t)Ai]S

o(t)
So(0) = I

(3.12)

Find control functions wi(a, t) , i = 1, ...,m, in
the class of functions which are continuous in a,
and piece-wise continuous and locally bounded
in t , such that the above flows (of the extended
and original systems, respectively) intersect at
time T , i.e. Se(T ) = So(T ) , regardless of the
values of the extended controls ai, i = 1, ..., r.

3.4 Solution of the flow interception problem

It is now the result of [9] which implies that the solution
to both initial value problems S1 and S2 has the same
general form:

Se(t) = Πr
i=1exp(ge

i (t)Ai) (3.13)

So(t) = Πr
i=1exp(go

i (t)Ai) (3.14)

where the matrix exponentials are defined in the usual
way:

exp(g(t)A)
def
= I + g(t)A +

g(t)2

2!
A2 + ... (3.15)

and where A0, ..., Ar is a basis for the algebra
{A0, ..., Am}LA. The functions ge

i and go
i , i = 1, ..., r

will be dependent on the control values ai, i = 1, ..., r
and wi, i = 1, ...,m, respectively. The representations
(3.13)-(3.14) are generally only local (valid for suffi-
ciently small times t). The latter can be shown to be
global if the algebra has special properties (is solvable)
and, or else in the case of real 2 × 2 systems.

A procedure for the construction of the functions ge
i (or



go
i ), which are known under the name of “logarithmic

coordinates” of the corresponding flow, is also provided
in [9]. It relies on substituting of the expression (3.13)
into the equation (3.11) which it satisfies, and employ-
ing the well known Campbell-Baker-Hausdorff formula
for rearranging the equation in such a way as to be
able to equate the coefficients which correspond to the
same basis elements A0, ..., Ar on its both sides. The
result is a set of ordinary differential equations for the

ge def
= [ge

1, ..., g
e
r ]

T of the form:

M (ge(t)) ġe(t) = a (3.16)

where M is a real, analytic matrix function of the
ge

i , i = 1, ..., r. Generally, M is invertible only in the
neighbourhood of zero. If, however, M−1 exists for all
values of ge then the representation (3.13) is global and
the functions ge are calculated by explicitly solving

ġe(t) = M (ge(t))
−1

a with ge(0) = 0 (3.17)

The zero initial condition in (3.17) clearly follows from
the well known property of transition matrices by
which Se(0) = I.

A similar solution procedure can, of course, be applied
to the flow equation for the original system (3.14),
which yields the final statement of the (TIP) , now
with respect to the logarithmic coordinates of the cor-
responding flows:

LC: Consider the two formal “control systems”:

CS1 : ġe(t) = M (ge(t))
−1

a, ge(0) = 0 (3.18)

CS2 : ġo(t) = M (go(t))
−1

w(a, t), go(0) = 0 (3.19)

where w(a, t)
def
= [w1(a, t), ..., wm(a, t), 0, ..., 0]T .

Find control functions wi(a, t) , i = 1, ...,m, in
the class of functions which are continuous in a,
and piece-wise continuous and locally bounded in
t , such that the above logarithmic coordinates
of flows (of the extended and original systems,
respectively) intersect at time T , i.e. ge(T ) =
go(T ) , regardless of the values of the extended
controls ai, i = 1, ..., r.

Both (FIP) and (LC) are clearly independent of the
initial condition x(0) = x but the control functions
w(a, t) must be found in terms of the parameter a -
the value of the dicretised extended controls.

The existence of solutions to (LC) is not obvious. So-
lutions to (LC) will however always exist if motion in
the direction of any Lie bracket Ai, i = m+1, ..., r can
be realised by switching controls in the original system.
The solution to (LC) is not unique.

Using Proposition 1, it is now possible to show the fol-
lowing stabilisation result for the closed loop system
(1.1), [8].

Theorem 1 Let a solution to (LC) exist and let
ŵi(a, t), i = 1, ...,m denote its periodic continuation
with respect to the time variable. Under the hypotheses
H1-H4, and with vn

i (x), i = 1, ..., r defined in (3.7), for
any region B(0;R) , there exists a constant T > 0 such
that the time varying feedback controls

ui(x, t) = ŵi(v
n
1 (x), ..., vn

r (x), t), i = 1, ...,m (3.20)

are asymptotically stabilising for system (1.1), with re-
gion of attraction B(0;R) .

The proof is technical and is omitted here for the
sake of brevity but is based on the fact that the
controls v1(0), ..., vr(x) stabilise the the extended sys-
tem exponentially and hence such a system exhibits
some stability robustness margin. What is implied is
that any controls v1(x) + δ1(x), ..., vr(x) + δr(x) with
|δi(x)| ≤ ε||x||, i = 1, ..., r , for ε sufficiently small also
stabilise the extended system. Now, by virtue of the
previous discussion, the result of Proposition 1, and the
fact that ŵi(a, t), i = 1, ..., r solve the (TIP), the trajec-
tory of the original system intersects the trajectory of
the stabilised extended system with period T , and the
distance between the two trajectory decays to zero as
||x|| → 0. In a sense then, the controls ŵi(v(x), t) can
be considered to be close to the vi(x) and stabilisation
of the original system follows by virtue of robustness.

The above result can be further generalised to hold
for systems which fail to satisfy hypothesis H3, i.e. for
systems for which the Lie algebra {A0, ..., Am}LA is in-
finite dimensional, but which allow for sufficiently close
finite dimensional approximations. The calculation of
the parametrised periodic controls ŵ(a, t) could then
be carried out with respect to the approximate system
with a finite dimensional algebra. The resulting con-
trol would prove effective when applied to the original
system if a sufficiently large stability margin would be
provided for in the initial design. Rigorous error esti-
mates are very difficult to derive.

4. Example

For simplicity, the system to be stabilised is defined on
the plane:

ẋ(t) = A0x(t) + u(t)A1x(t) (4.21)

x(t)
def
= [x1(t), x2(t)]

T (4.22)

with the matrices A0, A1 given by:

A0 =

[

0 1
−1 4

]

; A1 =

[

0 0
−1 0

]

(4.23)



It is worth noticing that the above system has the prop-
erty that there exists no constant control u for which
the system matrix A0+uA1 becomes stable (in terms of
u, the eigenvalues of this matrix are λ1/2 = 2±

√
3 − u)

so stabilisation of (4.21) is non-trivial.

The Lie algebra {A0, A1}LA is indeed finite dimen-
sional (actually of dimension equal to four) as shown by
the following Lie bracket multiplication table in which
the product of any two matrices A and B is calculated

as their Lie bracket [A,B]
def
= BA − AB.

A0 A1 A2 A3

A0 0 A2 A3 12A3

A1 0 −2A1 −2A2

A2 0 24A1 − 2A3

A3 0

where the following shorthand notation was used:

A2

def
= [A0, A1] (4.24)

A3

def
= [A0, [A0, A1]] (4.25)

To facilitate further the derivation of the equations for
the logarithmic coordinates of flows we will truncate
the series expansions of the exponentials at Lie brack-
ets of order one whenever employing the Campbell-
Baker-Hausdorff formula:

exp(A)Bexp(−A) = B + [A,B] +
1

2!
[A, [A,B]]

+
1

3!
[A, [A, [A,B]]] + ...

∞
∑

k=0

(AdA)k

k!
B def

= exp(AdA)B (4.26)

for any A = g(t)A and B = h(t)B where, by the
bilinear nature of the Lie product, [g(t)A, h(t)B] =
g(t)h(t)[A,B], and where the operation Ad can be de-
fined recursively as follows

(AdA)kB = (AdA)k−1Ad(A)B (4.27)

(AdA)B def
= [A,B] (4.28)

The latter amounts to stating that all the higher order
Lie brackets of A0 and A1 can be assumed to be equal
to zero. Considering this simplifying assumption, the
extended system for (4.21) involves only the first order
Lie bracket:

ẋ(t) = A0x(t)+v1(t)A1x(t)+v2(t)[A0, A1]x(t) (4.29)

This simplification is possible due to the fact that

span {A1x, [A0, A1]x} = IR2 (4.30)

for all x ∈ S def
= {x ∈ IR2|x1 6= 0}. Thus the matrix

G(x)
def
= [A1x, [A0, A1]x] is invertible on S. The sin-

gularity of G(x) on the complement of S, SC , does not

incur problems as, in this case, the un-forced system
escapes SC .

The extended controls can thus be evaluated as

v(x) = G(x)−1[Adx − A0x] (4.31)

v(x)
def
= [v1(x), v2(x)] (4.32)

with a suitable choice for the reference system ẋ =
Adx.

The (FIP) now requires us to find a control w(a1, a2, t)
such that the flows Se(t) and So(t) , respectively sat-
isfying:

Ṡe(t) = (A0 + a1A1 + a2A2)S
e(t), Se(0) = I (4.33)

Ṡo(t) = (A0 + w(a1, a2, t)A1)S
o(t), So(0) = I (4.34)

intersect at T .

It remains to derive the equations describing the
evolution of the corresponding logarithmic coordi-
nates and to solve the associated (LC). Assuming
that the solution to (4.33) is of the form Se(t) =
exp(g0(t)A0) exp(g1(t)A1) exp(g2(t)A2), we calculate
its time derivative as:

Ṡe = [ġ0A0 + ġ1 exp(g0AdA0)A1

+ġ2 exp(g0AdA0) exp(g1AdA1)A2]S
e (4.35)

Using the Campbell-Baker-Hausdorff formula (4.26)
(with higher order brackets taken to be zero) yields:

exp(g0AdA0)A1 = A1 + g0A2 (4.36)

exp(g0AdA0) exp(g1AdA1)A2 = A2 (4.37)

Substituting (4.35)-(4.37) into (4.33) and equating co-
efficients of A0, ..., A2 gives the control system CS1 of
(LC):

CS1 :







ġe
0 = 1

ġe
1 = a1

ġe
2 = −ge

0a1 + a2

(4.38)

Similarly the control system CS2 is

CS2 :







ġo
0 = 1

ġo
1 = w

ġo
2 = −go

0w
(4.39)

It can be verified that one possible solution of the (LC)
is

w(a1, a2, t) = a1 +
2πa2

T
sin(

2π

T
t) (4.40)

defined for t ∈ [0, T ]. In terms of the continuous ex-
tended feedback controls the final stabilising control
law is thus

ŵ(v1(x), v2(x), t) = v1(x) +
2πv2(x)

T
sin(

2π

T
t) (4.41)



which is now defined for t ∈ [0,∞), due to the periodic
continuation of the sine.

One set of simulation results is presented and corre-
sponds to a reference system in which Ad = −αI,
with gain α = 8. The sampling period used was
T = 0.01sec. Figures 1 and 2 show the extended sys-
tem trajectory, and the corresponding extended con-
trols, respectively. Figures 3 and 4 show the original
system trajectory (in the phase plane) and the respec-
tive stabilising control ŵ(v1(x), v2(x), t) in which the
extended controls vi(x), i = 1, 2 have been updated ev-
ery T/10sec. Finally, Figure 5 displays the controlled
system state variables vs. time.

5. Conclusions

In this paper we have investigated the possibility of
constructing time-varying feedback stabilisers for ho-
mogeneous bilinear systems. The approach relies on
the solution of a flow interception problem in terms of a
set of parameters which represent the values of the sta-
bilising controls for the extended system. Essentially,
a closed form parametric solution of this problem is re-
quired. In some cases, such as the one presented in the
example, a solution to the flow interception problem
can be obtained analytically. Analytic solutions are
usually impossible when the system has more compli-
cated Lie algebraic structure since then the order and
complexity of the evolution of the logarithmic coordi-
nates of flows increases. No computationally practical
approaches to this problem have been developed yet.

However, an undeniable advantage of this approach is
that it applies to homogeneous bilinear systems of a
general form, without any specific assumptions con-
cerning the stability of the drift term nor the dimension
of the system. Regarding that no alternative meth-
ods of similar generality exist as yet, our study seems
worthwhile.
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Figure 1: Plot of the extended system trajectory in the
phase plane.
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Figure 4: Plot of the stabilising control u(x, t) =
ŵ(v1(x), v2(x), t).
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Figure 5: Plot of the original controlled system state
variables x1, x2 versus time.


