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Abstract— This paper addresses the problem of searching
multiple non-adversarial targets using a mobile searcher in
an obstacle-free environment. In practice, we are particularly
interested in marine applications where the targets drift on
the ocean surface. These targets can be surface sensors used
for marine environmental monitoring, drifting debris, or lost
divers in open water. Searching for a floating target requires
prior knowledge about the search region and an estimate
of the target’s motion. This task becomes challenging when
searching for multiple targets where persistent searching for
one of the targets can result in the loss of other targets.
Hence, the searcher needs to trade-off between guaranteed
and fast searches. We propose three classes of search strategies
for addressing the multi-target search problem. These include,
data-independent, probabilistic and hybrid search. The data-
independent search strategy follow a pre-defined search pattern
and schedule. The probabilistic search strategy is guided by
the estimated probability distribution of the search target.
The hybrid strategy combines data-independent search patterns
with a probabilistic search schedule. We evaluate these search
strategies in simulation and compare their performance char-
acteristics in the context of searching multiple drifting targets
using an Autonomous Surface Vehicle (ASV).

I. INTRODUCTION

This paper deals with the problem of search, specifically
robotic search in a natural environment for a set of targets of
interest whose position is represented only by an estimated
search region or probability distribution. This problem has
myriad applications, in fact search for compatible targets is
one of the single most critical task to be accomplished by
almost any living organism. In some applications the targets
being searched for can either actively participate in the search
process for a rendezvous, or can be actively seeking to evade
from the persuader. A complementary example to active
target search is search for passively drifting target where all
we know at the outset is a probability for the target’s location
and a motion model of the target. It is this latter case that we
refer to as passive non-adversarial search, which we address
in this paper.

Searching for lost non-adversarial targets in natural en-
vironments is a challenging task, given the absence of
landmarks to guide the search process. Some evocative
applications include, searching for lost hikers in the forest
and search for passengers, in a disaster scenario, who may
have escaped in lifeboats from a sinking ship. Our work
is aimed to a specific marine data collection application
whereby a robotic boat must find a set of drifting data-
collection beacons each of which has only a limited radio
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Fig. 1: Autonomous Surface Vehicle searching for passively
floating drifter.

transmission range (as illustrated in Fig. 1). The searcher
for these passively moving targets, can exploit a priori
information such as the expected target motion (at the least
a maximum speed) and an estimate of the initial probability
distribution. These two parameters define a (growing) region
within which the target can be found. This prior information
can be combined to define the parameters of either a time-
minimizing or a guaranteed search strategy (which are not
necessarily the same thing). The search strategy can be tuned
to account the importance of the target. For example, if the
target is a human, the search strategy needs to be fast and
guaranteed whereas searching for passively floating sensors
a different optimization criteria may be paramount.

This search problem becomes more complex when there
are multiple targets to be found. In such cases, different
algorithms can include the desire to maximize the chance of
finding at least one target, the chance of finding the maxi-
mum number of targets, or the desire to find as many targets
as possible within a given time or distance budget. While
some provable performance bounds are possible for several
idealized variants of the multi-target search problem, we
focus here on an experimental assessment of algorithms that
can operate in the face of almost-arbitrary initial probability
distributions for the targets, weak assumptions on the pos-
sible target motion, and reasonable (albeit idealized) model
of short-range radio detection. We thus propose three classes
of heuristic search strategies: data-independent, probabilistic
and hybrid searches. Each of these strategies along with
their algorithms are elaborated in Section IV. A performance
comparison between these strategies is presented in Section
V based on controlled simulations.



II. RELATED WORK

Search strategies for robotics applications are pre-
dominantly adapted from game theory where simple geomet-
ric environments such as straight lines and circles are studied
[1]. The search strategies for natural environments without
unique landmarks are inspired by biological process such as
animals foraging food [2]. The most efficient search pattern
reported in robotic search literature are spirals [3], [4] which
minimize the time to find a single stationary “lost” target
in several interesting idealized scenarios. In this paper, we
extend the deterministic spiral strategy for multiple targets
and compare it with probabilistic and hybrid strategies.

Gonzalez et al. [5] also proposed spiral patterns for
efficient coverage of a search region. They suggested that
structured patterns such as spiral are generally more effi-
cient and robust to initial location of the searcher when
compared to unstructured search patterns such as Brownian
motion. Meghjani et al. [6] implemented spiral patterns on an
Autonomous Underwater Vehicle (AUV) using the sawtooth
motion to find passively drifting targets. They also provided a
theoretical analysis for generating a spiral path for the AUV
such that it guarantees the capture of the target under a given
set of conditions. Bourgault et al. [7] and Furukawa et al. [8]
probabilistically represented the search region and proposed
an optimal controller for search. The result of their controller
emerged to be a spiral search pattern.

Hollinger et al. [9] studied the problem of finding a non-
adversarial target with multiple robots. They suggested a
finite-horizon planner in which a searcher would plan for a
finite number of cells and choose the best path to the horizon.
This is an iterative online process and the searcher could
incorporate the observations into the planner. For multi-robot
coordination, the robots sequential choose their paths and
centrally maintain a list of visited nodes. The nodes are
allowed to be revisited and updated by other robots. The
complexity of this sequential planning grows linearly with
the number of robots.

There are other search strategies which update the search
patterns based on online observations. One such example
search problem is addressed by Saigol et al. [10]. In this
work, the authors propose an automated planning algo-
rithm to deal with uncertainty in searching for hydrothermal
vents. They suggested an information lookahead and entropy
change planners. The information lookahead is based on
a Partially Observable Markov Decision Process (POMDP)
formulation which was reported to be computationally ex-
pensive. Whereas, the entropy change maximization method
requires a continuous feedback based on the probabilities of
the observing chemical traces. In our work, we do not have
such observations available to track and find the target.

Singh et al. in [11] have also looked at the problem of
environmental sensing with multiple robots. They address
the problem of maximizing the information gathered by all
the agents while constraining on the amount of resources
used. They use mutual information to analyze the quality of
the robot’s paths. A cost is associated with each path and is

defined as the sum of sensing and traveling costs. Their goal
is to find a set of paths (one for each robot), with minimum
cost and maximum mutual information. Such a method is
useful if the underlying target distribution is continuous and
can help in analyzing the quality of the paths. In our problem
formulation, the target distribution is discrete and we have a
single searcher.

Blum et al. studied orienteering and discounted-reward
Traveling Salesman Problem (TSP) graph problems in [12].
The graph in their work is represented by edges with lengths
and nodes with rewards. In the orienteering problem, the
goal is to find a path starting at a node that maximizes the
reward collected subjected to constraints on the total path
length. In the discounted reward TSP, the goal is to maximize
the total discounted reward collected. The latter method is
based on an approximation planning algorithm in Markov
Decision Process (MDP) with infinite horizon discounted
reward. The approximation algorithm is used for modeling
one-time events and non-repeatable rewards which is similar
to our Hybrid Search algorithm presented in this paper.

III. PROBLEM FORMULATION

We propose search strategies that can be executed by a
point-robot looking for arbitrary number of lost point-targets
which move in an unpredictable manner in an obstacle-
free environment and can be reliably detected if they are
within the searcher’s communication radius. The searcher’s
communication radius is hence, considered as the detection
radius for the target. The searcher actively executes a search
algorithm while the target is passively moving or station-
ary. In our problem formulation, we do not account for
dynamically emerging search patterns which would require
emergence of a helical search path from a spiral. Such a
search strategy is discussed in our previous work [6], where
an AUV is searching for a drifting target.

IV. SEARCH STRATEGIES

Our proposed strategies comprise, a search pattern and a
search schedule. The search pattern provides the search path
and the search schedule suggests the transitions between the
targets for searching. The search patterns are derived from
our previous work on search for single target [13], where we
evaluated the search patterns using an Autonomous Surface
Vehicle (ASV) (Fig. 1) to search for a single drifting target.
In this paper, we present simulation results for performance
comparison of the three proposed strategies in the context of
searching multiple targets using an ASV.

A. Data-independent Search

We define data-independent search strategy as the strategy
that have a pre-defined search pattern and search schedule to
shuttle between multiple targets. The search pattern that we
selected is spiral, as we have empirically and theoretically
illustrated it to be an energy efficient and minimum failure
rate search strategy for a single target search [13]. The
spiral pattern is generated taking into account the commu-
nication radius and speed of the searcher and the target,
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Fig. 2: Search path of the robot (green) for single target. Multiple instances of a single target with Brownian like motion
are illustrated by pink dots. The pink traces indicate the trajectories followed by the target over time. The probabilistic local

search strategy is stuck in the local maxima Fig. 2(c).

as represented in Fig. 2(a) for a single target. The search
schedule for multi-target, data-independent, search strategy
has deterministic transition times between targets such that
the searcher switches between the target search regions at
regular intervals.

B. Probabilistic Search

The probabilistic search strategy is guided by the underly-
ing estimate of the probability distribution of the target. We
propose three algorithms for covering the target probability.
These include global-maxima, local-maxima and greedy de-
cision maker.

1) Global-Maxima: Given an initial target probability dis-
tribution, the global-maxima search strategy aims at clearing
parts of the search region with highest probabilities. The
search region is discretized into grids and each grid-cell is
assigned with a value equal to the integral of the probability
under that grid-cell. Global-maxima search strategy generates
a trajectory that visits the grid-cell with highest value and
clears that grid-cell once visited, then continues to visit the
next maxima until the target is found or the search region
is covered. This strategy provides a trajectory with multiple
overlapping segments as the global-maxima shifts across the
search region as shown in Fig. 2(b) for a single target. The
target transitions happen naturally by following the global-
maxima of the distribution. This strategy is prone to frequent
transitions between the targets and hence results in longer
capture times.

2) Local-Maxima: The local-maxima strategy, sequen-
tially clears the grid-cells with maximum values within a
local maxima-search radius. This search strategy is depen-
dent on the initial location of the robot and is prone to
getting stuck in the local maxima, not being able to transition
between targets as illustrated in Fig. 2(c) for single target.
As a consequence, this strategy does not allow transition
between the targets. The success rate with this strategy is
observed to be extremely low in our simulated trials for a
single target.

3) Greedy Decision Maker: The aforementioned proba-
bilistic search strategies have their respective shortcomings
such as delayed capture times for global maxima and getting

stuck in local maxima. We overcome these drawbacks by
implementing a greedy decision maker similar to one-step
MDP [12].

A MDP consists of a state space S, a set of actions A,
a probabilistic transition function P, and a reward function
R. In our formulation, we discretize the search region into
50X50 grid cells representing the state space S and each
of these cells is considered as a state (s C S). The action
space A consists of four actions: North, South, West, East.
We assume a truncated Gaussian prior distribution for the
search region. The cumulative probability under each cell is
considered as the reward for visiting that cell. The transition
probability from state s to state s’ given action a C A is
assumed to be P(s’|s,a) = 1 because of the use of Global
Positioning System (GPS) to localize the agent and achieve a
guaranteed state transition with the help of a precisely tuned
controller. To avoid re-visiting the same cell, we clear the
reward of the state once it is visited. The standard MDP
formulation does not allow the reward function to change
over time. Hence to accommodate these dynamic reward
updates, we re-initialize the world at each iteration and model
it as one-step MDP. In each iteration of our algorithm, we
use Value Iteration algorithm to generate a policy. Once the
searcher takes an action according to this policy, the reward
in its current cell is cleared. The updated world is used as
an initial state space for the next iteration. This is repeated
until the target is found or the search probability goes below
a pre-defined threshold.

We use the Value Iteration algorithm to compute the best
action to be taken at a given state. Value iteration is a method
of computing an optimal MDP policy. It computes the
optimal value of a state V*(s), i.e., the expected discounted
sum of rewards that the agent will achieve if it starts at that
state and executes the optimal policy 7*(s). Vs € S, the
optimal value function V*(s) is defined by the following
Bellman equation,

V*(s) = max (R(s, a) + Z P(s’|s7a)V*(s')> , (D

s'eS
where v is a discount factor. Thus according to Eq. 1, the



value of a state s is the sum of instantaneous reward and the
expected discounted value of the next state, when the best
available action is used. Optimal policy defines an action for
every state that achieves the optimal value. Given the optimal
value function for all states, optimal policy is defined by,

7*(s) = arg max (R(s, a) +y Z P(s'|s,a)V*(s")
¢ s'eS
2
In our algorithm we use a one step MDP approach, where
we model every state transition of the agent as MDP in a
new world and compute the value function over the updated
rewards of the world. Thus the convergence of the value
iteration technique still holds good for every state transition.
The overview of our approach is presented in Algorithm 1.
An extension of this algorithm was applied for creating a
Bathymetric map of the underwater environment in [14].

Algorithm 1 Greedy Decision Maker

Input: Set of states .S
Set of actions A
State transition probability P(s’|s, a)

V(s,s') € S and Va € A

Reward R(s,a) for each state s € S
Discount factor
Starting state s
Convergence threshold Ryt
Convergence threshold ¢

Output: Path W= (s1,82,....-8n), a sequence of states.

1: Vs e S,

2 Initialize V*(s), 7*(s), and current state sc,, = $1
3: Repeat
4: W= Append(VT/7 Scur)

5: Vs e S,

6 (V*(s), 7*(s)) = Valuelteration(S, A, P, R, v, €)
7 Current Action, eyr = T (Seur)

8 ApplyAction a.,, on s, to obtain S,cq¢

9 R(Scur) = 0, Clearing the reward at s

10: Scur = Snext
11: until (Y R(s) < Ryimat) or the region is fully covered.
ses

12: Return W

C. Hybrid Search

Though the data-independent search has fixed transition
times between the targets it is computationally efficient and
has fast execution time. The probabilistic greedy decision
maker can be computationally expensive given the size of the
state space however it has the natural capability of deciding
on transitioning between the targets. Since the targets are
drifting over time, there is a need to switch the searching
between targets before all the targets escape the search
region. Hence, we propose to combine the data-independent
strategy with the greedy decision maker to get the best

of two methods. We integrate the data-independent search
pattern with the probabilistic greedy decision maker’s search
schedule to obtain a hybrid search strategy.

Each time data-independent search pattern completes one
standard deviation of the target distribution it triggers the
greedy decision maker. We adapt the one-step MDP from
the greedy decision maker to decide on the next target to
visit. In this strategy, each target represents a state. The
transition between these states can be achieved using 9
actions: North, South, West, East, North-West, North-East,
South-West, South-East and same-state. This 9-action space
is generic and thus makes the model independent of the
number of targets. The transition probability from state s to
state s’ given action a C A is assumed to be P(s|s’,a) = 1.
We define the reward as the cumulative probability under the
target distribution of the state divided by normalized distance
to reach the state. This penalizes frequent hopping between
multiple targets and thus minimizes the distance traveled by
the searcher. We use Value Iteration method as described
for Greedy Decision Maker to calculate the policy to switch
between the targets.

V. CONTROLLED SIMULATION

We validated our analytical results using a real-time simu-
lator that we developed to asses the search strategies. We pre-
selected a search region of 100 meters radius, in Okanagan
lake (Canada) for our simulations. The maximum speed of
the searcher was set to 1.2 m/s which is also the top speed
of the boat used during the field trials for single target search.
The drifter’s speed was simulated to be 0.2 m/s based on
the actual drifter data collected during our field trials. The
motion of the targets was modeled using beta distribution
for the speed and uniform distribution for the direction,
leading to a variant of Brownian motion. The maximum
communication range between the robot and the drifters was
considered to be 5 meters in radius to simulate degraded
WiFi range.

The initial location of the drifter was simulated within
the search region based on triangular distribution which
samples target locations that are biased towards the center of
the search region. In our previous work, we explored other
representative target distributions such as |z| and uniform
for single target search [15]. The initial location of the
searcher is preset to a fixed point within the search region
for an unbiased comparison of all the search strategies. For
the probabilistic search strategies, an underlying probability
distribution is required to represent the searcher’s belief
about the target. In our experiments, a Gaussian distribution
is chosen to represent the belief about each target, centered
around their respective last known locations. Similarly, the
deterministic spiral search path is also generated around the
last known location of the target, based on the theoretical
analysis from our previous work [6]. The spiral pattern is
generated using the target speed, searcher speed and the
communication radius between the searcher and the target.
An instance of each of the four strategies using our real-time
simulator is illustrated in Fig. 3.
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Fig. 3: Search paths of the robot (green) and the target (pink) for 4 targets.

VI. EXPERIMENTAL RESULTS

The experiments presented in this section were run on
the real-time simulator with a given initial target distribution
and communication range. We present and discuss the results
from four different search strategies. We compare the search
strategies based on the performance factors such as failure
rate, average distance traveled, and computation time. For
each search strategy, 1000 simulations were run and the
average over these trials is presented here. These simulations
were executed on a computer using an Intel core i7 archi-
tecture with 6 cores (12 threads), 24 GB RAM operating at
a clock speed at 3.20 GHz.

A. Fuailure Rate

In our experiments we consider four targets that need to be
found. Finding all four targets is considered as success. The
trials in which a target was missed is considered as a failed
trial. The plot in Fig. 4 shows that the pure-probabilistic
approaches, i.e., global-maxima search and greedy search,
fail to find all the targets more frequently.
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Greedy Decision
& Spiral

O Hybrid

Search Strategies

Fig. 4: Failure rate for different search strategies.

This behavior can be due to approximation of the prior
distribution or due to the fact that these strategies do not

cover the entire search region. They stop after their belief
reaches a threshold. Whereas, the data-independent spiral
search and the hybrid-spiral search strategies cover the search
region fully before stopping their attempt.

B. Average Distance Traveled

If we have infinite resources and time, we can consider
only the success rate as a performance measurement quality
of a search strategy. However in practice, this is not true.
Humans or robots, both have limited energy and time. Hence,
we consider the distance traveled by the searcher using
different search strategies as a performance measure for
comparison. The plot in Fig. 5 illustrates the average distance
traveled by all the four search strategies while searching for
the targets.

5000

= Global Maxima
Greedy Decision
B Spiral

O Hybrid

—

m

4000

=

u
=3
<3
)

Distance Traveled
[ ]
g
8

1000

X

Search Strategies

Fig. 5: Mean distance traveled to find the target using
difference search strategies. The error bars represent two-
sided standard deviation.

Global-maxima search on average travels the most to
achieve its goal. This can be attributed to its nature of
hopping between multiple targets to search the areas with
highest cumulative probability. Whereas, MDP-based greedy
decision maker travels the least as it weighs the local rewards



higher, and jumps to next target only when local rewards are
cleared. Both spiral search and hybrid search have similar
behaviors as we selected the target transition times for
the spiral search based on the hybrid search strategy. In
absence of the target transition time information from the
hybrid search strategy, the deterministic spiral search strategy
would either have higher failure rate due to insufficient
target transitions or larger distance traveled due to frequent
transitions.

C. Computation Time and Complexity

The results of average distance traveled imply that the
greedy decision search strategy is the best with the least
distance traveled. However, the average computation times
plotted in Fig. 6 shows that the greedy decision strategy is
computationally very expensive and is not feasible to run
on any real-time system for any real-time search operation.
On the contrary, the hybrid-search strategy performs very
effectively even though it has similar decision making mech-
anism as greedy decision strategy. This is due to the reduced
size of the state space. The state space for greedy decision
strategy is as big as the search region, but the state space for
hybrid strategy is equal to the number of targets. In this plot,
we truncate the bar plot for greedy strategy because of its
large computation time compared to other strategies. Their
numerical values are presented in Table 1.
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Fig. 6: Computation time for different search strategies. The
error bars represent two-sided standard deviation.

Computational Complexity
Global-Maxima  Greedy-Decision  Spiral ~ Hybrid
o(n?) o(n?) O(m) 0@
Computational Time (secs)
Global-Maxima  Greedy-Decision ~ Spiral ~ Hybrid
5.1 5500 2.95 2.8

TABLE I: Computational complexity and computational time
for search strategies.

Table I also presents the computational complexity for all
the four search strategies, where n represents the size of
the world. The Hybrid strategy has a constant computational
complexity because it covers the whole search region in
terms of standard deviations of the underlying Gaussian
distribution. The proposed hybrid algorithm searches for only
first three standard deviations of the Gaussian distribution as
it covers 99% of the distribution and thus the search region.

VII. CONCLUSION

In this paper, we present three classes of search strategies
for multiple targets, namely data-independent, probabilistic
and hybrid strategies. We compared their performance in
terms of their success rate, mean distance traveled and
computation time. We found the data-independent and hybrid
search strategies to have the best overall performance. The
data-independent strategy however has the inherent draw-
back of fixed transition schedule to visit the search targets.
Whereas, the hybrid strategy is capable of deciding on the
transition schedule in real-time based on expected rewards.

For future work, we would like to test hybrid strategy with
different priors on target distributions, drifter initial location
distribution and target transition time conditions. In addition,
we would like to study the emerging search patterns for
dynamic targets which do not follow Brownian motion.

REFERENCES
[

—

Steve Alpern and Shmuel Gal. The theory of search games and
rendezvous, volume 55. Springer Science & Business Media, 2006.
[2] E. Gelenbe, N. Schmajuk, J. Staddon, and J. Reif. Autonomous search
by robots and animals: A survey. Robotics and Autonomous Systems,
22(1):23-34, 1997.

S. Burlington and G. Dudek. Spiral search as an efficient mobile

robotic search technique. In Proceedings of the 16th National Conf.

on Al, Orlando FI. Citeseer, 1999.

Ricardo A Baezayates, Joseph C Culberson, and Gregory JE Rawlins.

Searching in the plane. Information and computation, 106(2):234-252,

1993.

[5] E Gonzélez, P Aristizabal, and M Alarcén. Backtracking spiral

algorithm: a mobile robot region filling strategy. In Proceeding of the

2002 international symposium on robotics and automation, Toluca,

Mexico, pages 261-266, 2002.

Malika Meghjani, Florian Shkurti, Juan Camilo Gamboa Higuera,

Arnold Kalmbach, David Whitney, and Gregory Dudek. Asymmetric

rendezvous search at sea. In CRV ’14: Proceedings of the 2014

Canadian Conference on Computer and Robot Vision, pages 175-180.

IEEE, 2014.

Frédéric Bourgault, Tomonari Furukawa, and Hugh F Durrant-Whyte.

Optimal search for a lost target in a bayesian world. In Field and

service robotics, pages 209-222. Springer, 2006.

Tomonari Furukawa, Frederic Bourgault, Benjamin Lavis, and Hugh F

Durrant-Whyte. Recursive bayesian search-and-tracking using coordi-

nated uavs for lost targets. In Robotics and Automation, 2006. ICRA

2006. Proceedings 2006 IEEE International Conference on, pages

2521-2526. IEEE, 2006.

Geoffrey Hollinger and Sanjiv Singh. Proofs and experiments in

scalable, near-optimal search by multiple robots. Proceedings of

Robotics: Science and Systems 1V, Zurich, Switzerland, 1, 2008.

[10] Zeyn A Saigol. Automated planning for hydrothermal vent prospecting
using AUVs. PhD thesis, University of Birmingham, 2011.

[11] Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J Kaiser,
and Maxim A Batalin. Efficient planning of informative paths for
multiple robots. In IJCAI, volume 7, pages 2204-2211, 2007.

[12] Avrim Blum, Shuchi Chawla, David R Karger, Terran Lane, Adam
Meyerson, and Maria Minkoff. Approximation algorithms for ori-
enteering and discounted-reward tsp. In Foundations of Computer
Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages
46-55. IEEE, 2003.

[13] Malika Meghjani, Sandeep Manjanna, and Gregory Dudek. Multi-
target rendezvous search. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016.

[14] Sandeep Manjanna, Kakodkar Nikhil, M. Meghjani, and G. Dudek.
Efficient terrain driven coral coverage using gaussian processes for
mosaic synthesis. In CRV ’16: Proceedings of the 2016 Canadian
Conference on Computer and Robot Vision. IEEE, May 2016.

[15] Malika Meghjani and Gregory Dudek. Search for a rendezvous with

lost target at sea. In ICRA Workshop on Persistent Autonomy for

Aquatic Robotics, 2015. 1EEE, 2015.

[3

=

[4

=

[6

=

[7

[8

[t

—
X2



