
1 The Role of Algorithms in Computing

What are algorithms? Why is the study of algorithms worthwhile? What is the role
of algorithms relative to other technologies used in computers? In this chapter, we
will answer these questions.

1.1 Algorithms

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values, as
output. An algorithm is thus a sequence of computational steps that transform the
input into the output.

We can also view an algorithm as a tool for solving a well-specified computa-
tional problem. The statement of the problem specifies in general terms the desired
input/output relationship. The algorithm describes a specific computational proce-
dure for achieving that input/output relationship.

For example, one might need to sort a sequence of numbers into nondecreasing
order. This problem arises frequently in practice and provides fertile ground for
introducing many standard design techniques and analysis tools. Here is how we
formally define the sorting problem:

Input: A sequence of n numbers 〈a1, a2, . . . , an〉.
Output: A permutation (reordering) 〈a′1, a′2, . . . , a′n〉 of the input sequence such

that a′1 ≤ a′2 ≤ · · · ≤ a′n .

For example, given the input sequence 〈31, 41, 59, 26, 41, 58〉, a sorting algorithm
returns as output the sequence 〈26, 31, 41, 41, 58, 59〉. Such an input sequence is
called an instance of the sorting problem. In general, an instance of a problem
consists of the input (satisfying whatever constraints are imposed in the problem
statement) needed to compute a solution to the problem.

Sorting is a fundamental operation in computer science (many programs use it
as an intermediate step), and as a result a large number of good sorting algorithms



6 Chapter 1 The Role of Algorithms in Computing

have been developed. Which algorithm is best for a given application depends
on—among other factors—the number of items to be sorted, the extent to which
the items are already somewhat sorted, possible restrictions on the item values, and
the kind of storage device to be used: main memory, disks, or tapes.

An algorithm is said to be correct if, for every input instance, it halts with the
correct output. We say that a correct algorithm solves the given computational
problem. An incorrect algorithm might not halt at all on some input instances, or it
might halt with an answer other than the desired one. Contrary to what one might
expect, incorrect algorithms can sometimes be useful, if their error rate can be
controlled. We shall see an example of this in Chapter 31 when we study algorithms
for finding large prime numbers. Ordinarily, however, we shall be concerned only
with correct algorithms.

An algorithm can be specified in English, as a computer program, or even as
a hardware design. The only requirement is that the specification must provide a
precise description of the computational procedure to be followed.

What kinds of problems are solved by algorithms?

Sorting is by no means the only computational problem for which algorithms have
been developed. (You probably suspected as much when you saw the size of this
book.) Practical applications of algorithms are ubiquitous and include the follow-
ing examples:

• The Human Genome Project has the goals of identifying all the 100,000 genes
in human DNA, determining the sequences of the 3 billion chemical base pairs
that make up human DNA, storing this information in databases, and devel-
oping tools for data analysis. Each of these steps requires sophisticated algo-
rithms. While the solutions to the various problems involved are beyond the
scope of this book, ideas from many of the chapters in this book are used in the
solution of these biological problems, thereby enabling scientists to accomplish
tasks while using resources efficiently. The savings are in time, both human and
machine, and in money, as more information can be extracted from laboratory
techniques.

• The Internet enables people all around the world to quickly access and retrieve
large amounts of information. In order to do so, clever algorithms are employed
to manage and manipulate this large volume of data. Examples of problems
which must be solved include finding good routes on which the data will travel
(techniques for solving such problems appear in Chapter 24), and using a search
engine to quickly find pages on which particular information resides (related
techniques are in Chapters 11 and 32).



1.1 Algorithms 7

• Electronic commerce enables goods and services to be negotiated and ex-
changed electronically. The ability to keep information such as credit card num-
bers, passwords, and bank statements private is essential if electronic commerce
is to be used widely. Public-key cryptography and digital signatures (covered in
Chapter 31) are among the core technologies used and are based on numerical
algorithms and number theory.

• In manufacturing and other commercial settings, it is often important to allo-
cate scarce resources in the most beneficial way. An oil company may wish
to know where to place its wells in order to maximize its expected profit. A
candidate for the presidency of the United States may want to determine where
to spend money buying campaign advertising in order to maximize the chances
of winning an election. An airline may wish to assign crews to flights in the
least expensive way possible, making sure that each flight is covered and that
government regulations regarding crew scheduling are met. An Internet service
provider may wish to determine where to place additional resources in order to
serve its customers more effectively. All of these are examples of problems that
can be solved using linear programming, which we shall study in Chapter 29.

While some of the details of these examples are beyond the scope of this book,
we do give underlying techniques that apply to these problems and problem areas.
We also show how to solve many concrete problems in this book, including the
following:

• We are given a road map on which the distance between each pair of adjacent
intersections is marked, and our goal is to determine the shortest route from
one intersection to another. The number of possible routes can be huge, even if
we disallow routes that cross over themselves. How do we choose which of all
possible routes is the shortest? Here, we model the road map (which is itself a
model of the actual roads) as a graph (which we will meet in Chapter 10 and
Appendix B), and we wish to find the shortest path from one vertex to another
in the graph. We shall see how to solve this problem efficiently in Chapter 24.

• We are given a sequence 〈A1, A2, . . . , An〉 of n matrices, and we wish to deter-
mine their product A1 A2 · · · An . Because matrix multiplication is associative,
there are several legal multiplication orders. For example, if n = 4, we could
perform the matrix multiplications as if the product were parenthesized in any
of the following orders: (A1(A2(A3 A4))), (A1((A2 A3)A4)), ((A1 A2)(A3 A4)),
((A1(A2 A3))A4), or (((A1 A2)A3)A4). If these matrices are all square (and
hence the same size), the multiplication order will not affect how long the ma-
trix multiplications take. If, however, these matrices are of differing sizes (yet
their sizes are compatible for matrix multiplication), then the multiplication
order can make a very big difference. The number of possible multiplication



8 Chapter 1 The Role of Algorithms in Computing

orders is exponential in n, and so trying all possible orders may take a very
long time. We shall see in Chapter 15 how to use a general technique known as
dynamic programming to solve this problem much more efficiently.

• We are given an equation ax ≡ b (mod n), where a, b, and n are integers,
and we wish to find all the integers x , modulo n, that satisfy the equation.
There may be zero, one, or more than one such solution. We can simply try
x = 0, 1, . . . , n − 1 in order, but Chapter 31 shows a more efficient method.

• We are given n points in the plane, and we wish to find the convex hull of
these points. The convex hull is the smallest convex polygon containing the
points. Intuitively, we can think of each point as being represented by a nail
sticking out from a board. The convex hull would be represented by a tight
rubber band that surrounds all the nails. Each nail around which the rubber
band makes a turn is a vertex of the convex hull. (See Figure 33.6 on page 948
for an example.) Any of the 2n subsets of the points might be the vertices
of the convex hull. Knowing which points are vertices of the convex hull is
not quite enough, either, since we also need to know the order in which they
appear. There are many choices, therefore, for the vertices of the convex hull.
Chapter 33 gives two good methods for finding the convex hull.

These lists are far from exhaustive (as you again have probably surmised from
this book’s heft), but exhibit two characteristics that are common to many interest-
ing algorithms.

1. There are many candidate solutions, most of which are not what we want. Find-
ing one that we do want can present quite a challenge.

2. There are practical applications. Of the problems in the above list, shortest
paths provides the easiest examples. A transportation firm, such as a trucking
or railroad company, has a financial interest in finding shortest paths through
a road or rail network because taking shorter paths results in lower labor and
fuel costs. Or a routing node on the Internet may need to find the shortest path
through the network in order to route a message quickly.

Data structures

This book also contains several data structures. A data structure is a way to store
and organize data in order to facilitate access and modifications. No single data
structure works well for all purposes, and so it is important to know the strengths
and limitations of several of them.



1.1 Algorithms 9

Technique

Although you can use this book as a “cookbook” for algorithms, you may someday
encounter a problem for which you cannot readily find a published algorithm (many
of the exercises and problems in this book, for example!). This book will teach you
techniques of algorithm design and analysis so that you can develop algorithms on
your own, show that they give the correct answer, and understand their efficiency.

Hard problems

Most of this book is about efficient algorithms. Our usual measure of efficiency
is speed, i.e., how long an algorithm takes to produce its result. There are some
problems, however, for which no efficient solution is known. Chapter 34 studies
an interesting subset of these problems, which are known as NP-complete.

Why are NP-complete problems interesting? First, although no efficient algo-
rithm for an NP-complete problem has ever been found, nobody has ever proven
that an efficient algorithm for one cannot exist. In other words, it is unknown
whether or not efficient algorithms exist for NP-complete problems. Second, the
set of NP-complete problems has the remarkable property that if an efficient al-
gorithm exists for any one of them, then efficient algorithms exist for all of them.
This relationship among the NP-complete problems makes the lack of efficient so-
lutions all the more tantalizing. Third, several NP-complete problems are similar,
but not identical, to problems for which we do know of efficient algorithms. A
small change to the problem statement can cause a big change to the efficiency of
the best known algorithm.

It is valuable to know about NP-complete problems because some of them arise
surprisingly often in real applications. If you are called upon to produce an efficient
algorithm for an NP-complete problem, you are likely to spend a lot of time in a
fruitless search. If you can show that the problem is NP-complete, you can instead
spend your time developing an efficient algorithm that gives a good, but not the
best possible, solution.

As a concrete example, consider a trucking company with a central warehouse.
Each day, it loads up the truck at the warehouse and sends it around to several lo-
cations to make deliveries. At the end of the day, the truck must end up back at
the warehouse so that it is ready to be loaded for the next day. To reduce costs, the
company wants to select an order of delivery stops that yields the lowest overall
distance traveled by the truck. This problem is the well-known “traveling-salesman
problem,” and it is NP-complete. It has no known efficient algorithm. Under cer-
tain assumptions, however, there are efficient algorithms that give an overall dis-
tance that is not too far above the smallest possible. Chapter 35 discusses such
“approximation algorithms.”



10 Chapter 1 The Role of Algorithms in Computing

Exercises

1.1-1
Give a real-world example in which one of the following computational problems
appears: sorting, determining the best order for multiplying matrices, or finding
the convex hull.

1.1-2
Other than speed, what other measures of efficiency might one use in a real-world
setting?

1.1-3
Select a data structure that you have seen previously, and discuss its strengths and
limitations.

1.1-4
How are the shortest-path and traveling-salesman problems given above similar?
How are they different?

1.1-5
Come up with a real-world problem in which only the best solution will do. Then
come up with one in which a solution that is “approximately” the best is good
enough.

1.2 Algorithms as a technology

Suppose computers were infinitely fast and computer memory was free. Would
you have any reason to study algorithms? The answer is yes, if for no other reason
than that you would still like to demonstrate that your solution method terminates
and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a problem
would do. You would probably want your implementation to be within the bounds
of good software engineering practice (i.e., well designed and documented), but
you would most often use whichever method was the easiest to implement.

Of course, computers may be fast, but they are not infinitely fast. And memory
may be cheap, but it is not free. Computing time is therefore a bounded resource,
and so is space in memory. These resources should be used wisely, and algorithms
that are efficient in terms of time or space will help you do so.



1.2 Algorithms as a technology 11

Efficiency

Algorithms devised to solve the same problem often differ dramatically in their
efficiency. These differences can be much more significant than differences due to
hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to c1n2 to sort n items, where c1

is a constant that does not depend on n. That is, it takes time roughly proportional
to n2. The second, merge sort, takes time roughly equal to c2n lg n, where lg n
stands for log2 n and c2 is another constant that also does not depend on n. Insertion
sort usually has a smaller constant factor than merge sort, so that c1 < c2. We shall
see that the constant factors can be far less significant in the running time than the
dependence on the input size n. Where merge sort has a factor of lg n in its running
time, insertion sort has a factor of n, which is much larger. Although insertion sort
is usually faster than merge sort for small input sizes, once the input size n becomes
large enough, merge sort’s advantage of lg n vs. n will more than compensate for
the difference in constant factors. No matter how much smaller c1 is than c2, there
will always be a crossover point beyond which merge sort is faster.

For a concrete example, let us pit a faster computer (computer A) running inser-
tion sort against a slower computer (computer B) running merge sort. They each
must sort an array of one million numbers. Suppose that computer A executes one
billion instructions per second and computer B executes only ten million instruc-
tions per second, so that computer A is 100 times faster than computer B in raw
computing power. To make the difference even more dramatic, suppose that the
world’s craftiest programmer codes insertion sort in machine language for com-
puter A, and the resulting code requires 2n2 instructions to sort n numbers. (Here,
c1 = 2.) Merge sort, on the other hand, is programmed for computer B by an aver-
age programmer using a high-level language with an inefficient compiler, with the
resulting code taking 50n lg n instructions (so that c2 = 50). To sort one million
numbers, computer A takes

2 · (106)2 instructions

109 instructions/second
= 2000 seconds ,

while computer B takes

50 · 106 lg 106 instructions

107 instructions/second
≈ 100 seconds .

By using an algorithm whose running time grows more slowly, even with a poor
compiler, computer B runs 20 times faster than computer A! The advantage of
merge sort is even more pronounced when we sort ten million numbers: where
insertion sort takes approximately 2.3 days, merge sort takes under 20 minutes. In
general, as the problem size increases, so does the relative advantage of merge sort.



12 Chapter 1 The Role of Algorithms in Computing

Algorithms and other technologies

The example above shows that algorithms, like computer hardware, are a technol-
ogy. Total system performance depends on choosing efficient algorithms as much
as on choosing fast hardware. Just as rapid advances are being made in other com-
puter technologies, they are being made in algorithms as well.

You might wonder whether algorithms are truly that important on contemporary
computers in light of other advanced technologies, such as

• hardware with high clock rates, pipelining, and superscalar architectures,

• easy-to-use, intuitive graphical user interfaces (GUIs),

• object-oriented systems, and

• local-area and wide-area networking.

The answer is yes. Although there are some applications that do not explicitly
require algorithmic content at the application level (e.g., some simple web-based
applications), most also require a degree of algorithmic content on their own. For
example, consider a web-based service that determines how to travel from one
location to another. (Several such services existed at the time of this writing.) Its
implementation would rely on fast hardware, a graphical user interface, wide-area
networking, and also possibly on object orientation. However, it would also require
algorithms for certain operations, such as finding routes (probably using a shortest-
path algorithm), rendering maps, and interpolating addresses.

Moreover, even an application that does not require algorithmic content at the
application level relies heavily upon algorithms. Does the application rely on fast
hardware? The hardware design used algorithms. Does the application rely on
graphical user interfaces? The design of any GUI relies on algorithms. Does the
application rely on networking? Routing in networks relies heavily on algorithms.
Was the application written in a language other than machine code? Then it was
processed by a compiler, interpreter, or assembler, all of which make extensive use
of algorithms. Algorithms are at the core of most technologies used in contempo-
rary computers.

Furthermore, with the ever-increasing capacities of computers, we use them to
solve larger problems than ever before. As we saw in the above comparison be-
tween insertion sort and merge sort, it is at larger problem sizes that the differences
in efficiencies between algorithms become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one characteristic
that separates the truly skilled programmers from the novices. With modern com-
puting technology, you can accomplish some tasks without knowing much about
algorithms, but with a good background in algorithms, you can do much, much
more.



Problems for Chapter 1 13

Exercises

1.2-1
Give an example of an application that requires algorithmic content at the applica-
tion level, and discuss the function of the algorithms involved.

1.2-2
Suppose we are comparing implementations of insertion sort and merge sort on the
same machine. For inputs of size n, insertion sort runs in 8n2 steps, while merge
sort runs in 64n lg n steps. For which values of n does insertion sort beat merge
sort?

1.2-3
What is the smallest value of n such that an algorithm whose running time is 100n2

runs faster than an algorithm whose running time is 2n on the same machine?

Problems

1-1 Comparison of running times
For each function f (n) and time t in the following table, determine the largest size
n of a problem that can be solved in time t , assuming that the algorithm to solve
the problem takes f (n) microseconds.

1 1 1 1 1 1 1
second minute hour day month year century

lg n√
n

n

n lg n

n2

n3

2n

n!



14 Chapter 1 The Role of Algorithms in Computing

Chapter notes

There are many excellent texts on the general topic of algorithms, including those
by Aho, Hopcroft, and Ullman [5, 6], Baase and Van Gelder [26], Brassard
and Bratley [46, 47], Goodrich and Tamassia [128], Horowitz, Sahni, and Ra-
jasekaran [158], Kingston [179], Knuth [182, 183, 185], Kozen [193], Manber
[210], Mehlhorn [217, 218, 219], Purdom and Brown [252], Reingold, Nievergelt,
and Deo [257], Sedgewick [269], Skiena [280], and Wilf [315]. Some of the more
practical aspects of algorithm design are discussed by Bentley [39, 40] and Gonnet
[126]. Surveys of the field of algorithms can also be found in the Handbook of
Theoretical Computer Science, Volume A [302] and the CRC Handbook on Al-
gorithms and Theory of Computation [24]. Overviews of the algorithms used in
computational biology can be found in textbooks by Gusfield [136], Pevzner [240],
Setubal and Meidanis [272], and Waterman [309].


