
COMP 558 lecture 7 Sept. 22, 2009

Introduction to Linear Systems

Today we begin the second part of the course, which addresses image analysis. We will start off
with the basic elements of linear system theory. The main application that we will start with is to
detect edges in the presence of image noise.

Example: local difference

One common image analysis operation involves taking a linear combination of the intensities of
nearby pixels. An example is to take the local difference of intensities. Let’s just look at the problem
in 1D, and consider the operation D which takes an image I(x) and computes an approximation of
a derivative

DI(x) =
1

2
I(x + 1) −

1

2
I(x − 1).

What is the effect of such a transformation? One key idea is that such a derivative would be
useful for marking positions where the intensity changes. Such a change is called an edge. It is
important to detect edges in images because they often mark locations at which object properties
change. These can include changes in illumination along a surface due to a shadow boundary, or a
material change. They also include changes in depth, as when one object ends and another begins.
(In this case, there is typically a material and illumination change.) The computational problem of
finding intensity edges in images is called edge detection.

We could then look for positions at which either DI(x) has a large negative or positive value.
Large positive values indicate an edge that goes from low to high intensity, and large negative values
indicate an edge that goes from high to low intensity. For example, suppose the image consists of
a single edge:

I(x) =







100, x > x0

70, x = x0

40, x < x0

Then,

DI(x) =























0, x > x0 + 1
15, x = x0 + 1
30, x = x0

15, x = x0 − 1
0, x < x0 − 1

Thus, DI takes large values at x = x0.
If we think of DI as the first derivative of the image, then we see that there is a maximum in the

absolute value of DI at the edge, that is, an edge produces a peak in the first derivative. Intuitively,
this is very easy to understand, since an edge gives a high slope from one intensity to the next.

A few notes:

• DI is not defined at the left and right boundary of the image. There are several ways to
handle this problem. I’ll mention two later.

• If we think of I(x) as an N-D vector, namely there are N pixels x, then DI is a linear transform,
represented by an N × N matrix. (Again, we need to handle the borders somehow.)

1

COMP 558 lecture 7 Sept. 22, 2009

(Discrete) Convolution

The discrete derivative is a linear transform of the image intensities. But it is a special kind
of linear transform in which the weights of linear combination depend only on the neighborhood
relations between the points. Such a linear transformation is called a convolution. Let’s first define
convolution formally for 1-D images, then afterwards we’ll define it for 2-D images.

If we have a function I(x) where x is integer valued, define the discrete convolution of I(x) with
another function f(x) to be

I ∗ f(x) ≡
∑

x′

I(x − x′) f(x′).

For the local difference operator above, we have

f(x) =







1

2
, x = −1

−1

2
, x = 1

0, otherwise

Local averaging is another example of a convolution. Consider a function

f(x) =















1/4, x = −1
1/2, x = 0
1/4, x = 1
0, otherwise

Local averaging is sometimes called smoothing.
Here is yet another example of a convolution.

I ∗ f(x) = − 3 I(x + 2) + 4 I(x + 1) + 2 I(x − 2)

Now the function f(x) is

f(x) =















−3, x = −2
4, x = −1
2, x = 2
0, otherwise

These functions f(x) which we convolve with images are often called filters. We say that we are
“filtering” the image with a filter f(x).

Boundary conditions

Let’s return briefly to the problem of handling image boundaries. One can either treat x as periodic
so that the index of x is x mod N . In this case, we define a circular convolution

(I ∗ f)(x) ≡

N−1
∑

x′=0

I((x − x′) mod N) f(x′ mod N).

Notice that in the examples above, f(x) was defined on values of x that were both positive and
negative. If you want to perform circular convolution, then you will need to define f(x) on values
in 0, . . . , N − 1, for example, −1modN = N − 1.

2

COMP 558 lecture 7 Sept. 22, 2009

Alternatively, one can treat the intensities I(x) as 0 “beyond” the image boundary i.e. beyond
the indices 0, . . . , N − 1. This is called pad with zeros, meaning that we treat f(x) and I(x) as if
they each have infinite domains x ∈ {. . . ,−1, 0, 1, . . . , N −1, N, . . . } but the values of I(x) are zero
outside of x = 0 to N − 1.

Algebraic properties of convolution

One surprising and useful property the convolution operation is that it commutative: one can switch
the order of the two functions I and f in the convolution without affecting the result. To prove
that convolution is commutative, we pad I(x) and f(x) with zeros. This allows us to take the
summation from −∞ to ∞. Using the substitution w = x − x′, we have

I(x) ∗ f(x) =
∞

∑

x′=−∞

I(x′) f(x − x′) =
∞

∑

w=−∞

I(x − w)f(w) = f(x) ∗ I(x)

In class, I proved this last result for circular convolution, using a similiar substitution. See if you
can do it for yourself.

A second surprising property of convolution is that it is associative:

I ∗ (f1 ∗ f2) = (I ∗ f1) ∗ f2

Again the proof is simple, and you should work it out for yourself.
Why are these properties useful? Often, in signal processing, we perform a sequence of operations

on a set of images. For example, you might average the pixels in a local neighborhood, then take
their derivative (or second derivative) in some direction. The algebraic properties just described
give us some flexibility in the order of operations.

One final property about convolution is that it is distributive:

(I1 + I2) ∗ f = I1 ∗ f + I2 ∗ f

(This is also simple to prove and I leave it to you as an exercise.) This property is also useful. For
example, if I1 = I(x) is an image and I2 = n(x) is a noise function that is added to the image, then
if we blur and take the derivative of the “image+noise,” we get the same result as if we blur and
take the derivative of the image and noise functions separately, and then add the results together.

Impulse function

Another way to think about convolution is in terms of the function

δ(x) =

{

1, x = 0
0, otherwise

which is called the (discrete) impulse function. It is straightforward to show that, for any f(x),

δ(x) ∗ f(x) = f(x).

For this reason, we sometimes call the filter f(x) an impulse response function, since it is the output
that you get when you convolve the impulse function with f(x).

3

COMP 558 lecture 7 Sept. 22, 2009

Next notice that
f(x) ∗ δ(x − x0) = f(x − x0) .

This is interesting, because we can write any function I(x) as a sum of shifted impulse functions,
namely

I(x) =
∑

u

I(u)δ(x− u)

and so

(f ∗ I)(x) = f(x) ∗
∑

u

I(u)δ(x − u) .

=
∑

u

I(u)f(x) ∗ δ(x − u) .

=
∑

u

I(u)f(x− u)

which is just the definition of convolution. This allows us to visualize what convolution does. It
adds up the “responses” to a sum of shifted impulse functions.

(Continuous) Convolution

It is often convenient to work with a continuous domain x rather than a discrete domain, since this
allows one to use the tools of Calculus. Here I will sketch out the basic ideas, and next lecture we
will see how to use them.

If we have functions I(x) and f(x) where x is real valued on [∞,∞], define the continouous
convolution of I(x) with f(x) to be

(I ∗ f)(x) ≡

∫

∞

−∞

I(x′) f(x − x′)dx′.

You should look at this formula and imagine that you adding up infinitely many shifted functions
f(x − x′) such that the one shifted by x′ is weighted by I(x′)dx′

The continuous version of the impulse function is defined as follows.

δǫ(x) =

{

1

ǫ
, |x| ≤ ǫ

2

0, otherwise

and
δ(x) ≡ limǫ→0δǫ(x).

Notice that the following is well defined

∫

∞

−∞

δ(x) = 1

since the integral is 1 for any ǫ > 0 (and hence the integral is 1 in the limit too).

4

COMP 558 lecture 7 Sept. 22, 2009

A function f(x) is again called an impulse response function, since

(δ ∗ f)(x) =

∫

∞

−∞

δ(x − u) f(u)du = f(x).

Make sure you understand what is happening in that last equation. The delta function only “sees”
an epsilon neighborhood of f(x), and the integral computes the local average of values of f(x) in
that ǫ neighorhood. If the impulse response function f(x) is continuous near x, then as ǫ shrinks
to zero, the result is the value exactly at f(x).

Let’s now return to the issues of “edges”. Consider an edge-like function,

u(x) =

{

1, x > 0
0, x ≤ 0.

This function is not continuous, but we can write it as the limit of a continuous function, as ǫ → 0:

uǫ(x) =







1, x > ǫ

2
1

2
+ x

ǫ
, |x| ≤ ǫ

2

0, otherwise

If we take the derivative of uǫ(x) (and ignore the two values of x where the derivative is not defined)
and take the limit, we see that

δ(x) =
d

dx
u(x)

that is, a delta function is equivalent to the derivative of a step edge.
One final point: What is the relationship between the derivative operation d

dx
and the discrete

derivative D that we saw at the beginning of the lecture? Recall from Calculus,

d

dx
g(x) = limǫ→0

g(x + ǫ) − g(x− ǫ)

2ǫ

So if we define a function

fǫ(x) =
1

2ǫ
δ(x + ǫ) −

1

2ǫ
δ(x − ǫ)

then, for any g(x), we have
dg(x)

dx
= limǫ→0fǫ(x) ∗ g(x).

Setting ǫ = 1 we get the discrete derivate D.

Introduction to Edge Detection

We will next look at the problem of finding an edge in an image. We take a simple model in which
the image is the sum of a step function and a noise function,

I(x) = Au(x) + n(x)

where the constant A is sometimes called the “amplitude” of the edge, and n(x) is set of independent,
identically distributed noise variables with mean 0 and variance σ2

n
.

To detect an edge, one typically convolves I(x) with some function f(x) such that I(x)∗f(x) has
a local maximum at x = 0. Even for the simplest case of an edge u(x), there are several challenging
issues that arise.

5

COMP 558 lecture 7 Sept. 22, 2009

• there may not be much different in intensity on the two sides of an edge, that is, A might be
a small number; in this case, the local maximum that is due to the edge might be hidden by
other local maxima that are due to the noise;

• even if we can detect a local maximum from the edge, the position of this local maximum
might not be at x = 0, i.e. the noise might cause the local maximum to be shifted.

Noise and smoothing

How can you reduce the effects of noise? Recall earlier the local averaging filter. Local averaging
smooths out an image. In the case that the image contains an edge plus noise, the smoothing has
two effects: it smooths out the noise (and reduces it, which is good), and it also smooths out the
edge (which is not good).

I will go over this in more detail next class. In the meantime, if you have forgetten or you never
learned (very) basic statistics, have a look at http://en.wikipedia.org/wiki/Variance up and
including the part “Sum of uncorrelated random variables.” You may need to spend an hour or two
looking through a basic stats text to see the details, if the wikipedia page is not enough.

6

http://en.wikipedia.org/wiki/Variance

