
COMP 558 lecture 4 Sept. 10, 2009

Up to now, we have taken the projection plane to be in front of the center of projection. Of
course, the physical projection planes that are found in cameras (and eyes) are behind the center
of the projection. For this reason, it will be convenient for us to consider two coordinate systems:
(Xo, Yo, Zo) represents the coordinates of a point in the scene, and (Xi, Yi, Zi) represents a point
behind the center of projection. (Subscript “o” is for object, and “i” is for image.)

Since the images on the projection plane behind the center of projectoin are upside-down and
backwards, we orient the axis of Xi to be opposite to Xo and similarly for Yi vs Yo and Zi versus
Zo. See figure. The two coordinate systems share the same origin.

Zo Zi

Xo

Xi

(Xi , Zi)

(Xo , Zo)

Non-pinhole cameras

The model that we have been discussing up to now assumes that we are projecting towards a single
point – the center of projection. If we project to a plane behind the origin, we have a pinhole
camera. The idea of a pinhole camera is that we are allowing light to pass through a tiny hole in
the Z = 0 plane and forming an image on a plane inside a black box.

What happens if we open the pinhole so that the opening has a width A (which we refer to
as the aperture) ? Suppose the light passes through the aperture and arrives at a plane at depth
f behind the aperture. For simplicity suppose the point we are considering in the scene lies on a
surface of constant depth Z0 i.e. a wall that is oriented parallel to the sensor plane. The resulting
image will be blurred.

We can think of the resulting blurring in two ways. See figures below. Each point on the sensor
plane (Xi, Zi) (where Zi = f in this case) will receive light from an area of points on the scene
plane, namely from the point that are visible through the aperture. (This is sometimes known as
reverse projection.)
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Alternatively, consider the point (Xo, Zo) that projects to (Xi, f) through the center of the
aperture, which we take to be the origin. This (Xi, f) is a single imaged point when the aperture
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goes to zero but for a finite aperture, there is a set of rays from (Xo, Zo) that pass through the
aperture and reach an area on the sensor plane. (This is sometimes called forward projection.)

Thin lens model

Real cameras (and real eyes) indeed have apertures. These serve to allow more light to reach the
sensors than a pinhole camera would. Cameras and eyes also have lenses, which redirect the light
and focus it. We will consider a simple model of the optics of lenses called the thin lens model.

The thin lens model assumes that, for any point on an object (Xo, Yo, Zo), the light rays that
diverge from that point and that pass through the lens all converge at some image point (Xi, Yi, Zi)
behind the lens. Such points (Xo, Yo, Zo) and (Xi, Yi, Zi) are called conjugate pairs. Note that this
is just a model. Real lenses behave this way only approximately, and only when certain conditions
are met – you’ll need to check out an Optics text if you want to understand what these conditions
are.

The relationship between the coordinates of a conjugate pair can be derived as follows. Consider
first the case of a point (Xo, Yo, Zo) = (0, 0,∞) which is the point at infinity in the direction
of the optical axis – or (0, 0, 1, 0) in homogeneous coordinates. The rays leaving this point and
arriving at the Z = 0 plane are all parallel and they pass through the lens and converge at a point
(Xi, Yi, Zi) = (0, 0, f) which is also (by symmetry) on the optical axis. This constant f is called
the focal length of the lens. This constant depends on the curvature of the two sides of the lens and
on the material of the lens (e.g. glass vs. water vs ...). Note: f does not depend on the distance
from the lens to the sensor plane, since obviously the lens does not know where the sensor plane is.
Thus, we are using f differently from how we used it in the previous lectures! This will make more
sense later.
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(Xi, Zi)
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One can relate the variables of a conjugate pair by assuming that the ray that passes through
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the origin (the center of the lens) does not change direction1 and so, by similar triangles, we have

Xi

Zi

=
Xo

Z0

.

Another useful relationship comes from similar triangles. There are two similar triangles in front
of the lens, giving

Xi

f
=

Xo

Z0 − f

and there are similar triangles behind the lens, giving

Xo

f
=

Xi

Zi − f
.

By rewriting each equation in terms of Xi

Xo

and then performing a few lines of algebra (do it!), one
can isolate a relationship between Zo, Zi, f , namely the thin lens formula:

1

Zo

+
1

Zi

=
1

f

Notice that if Zo → ∞, then Zi → f . In particular, if an object is very far away then all the
rays from that object (which will be roughly parallel when they arrive at the lens) will converge at
the depth Zi = f behind the lens. We saw this earlier for the special case of a point on the optical
axis, but now we see according to the model this property holds for all points at infinity.

Another interesting observation comes when we rewrite the thin lens equation as:

Zi =
Z0f

Z0 − f
.

We now see that the transformation from (Xo, Yo, Zo) to (Xi, Yi, Zi) can be written:

(Xi, Yi, Zi) = (f
Xo

Z0 − f
, f

Yo

Z0 − f
,

Z0f

Z0 − f
).

We can represent this transformation from a scene point to its image point using homogeneous
coordinates:
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Note that this transform is its own inverse i.e. any point is the conjugate point of its conjugate
point, in the sense that
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1There is a bending of the light at the lens – refraction – but it turns out that, at the origin, the bending at the

front and back face cancel out
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One final point: Most cameras people use these days do not have a single lens but rather they
have a set or system of lenses. These lenses are all centered on the same optical axis, and the camera
is designed so that the user can move them relative to each other. The main effect of this design is
that it allows the user to change the focal length f . This is what an “optical zoom” camera does.
Note that the position of the center of the lens i.e. the origin of the camera coordinate system does
not necessarily correpond to the physical center of any of the lens elements. Rather, we should
think of a virtual lens center for an equivalent thin lens of focal length f . From now on (and in
Assignment 1), we will pretend there is a single lens and continue to talk about its center.

Sensor plane and blur

Suppose we put a sensor plane at distance Zs from the lens center. The conjugate points will lie at
some depth Z∗

s in the scene, according to

1

f
=

1

Zs

+
1

Z∗

s

namely

Z∗

s =
Zsf

Zs − f

defines the focal plane in the scene.
Points that do not lie at depth Z∗

s will not be “in focus”, in that the rays from such points will
not converge on a single point in the sensor plane. Rather they will converge on a single point that
is either in front of or behind the sensor plane. Thus, rays leaving a object point will strike an area

on the sensor plane. This is illustrated below.
If the lens aperture is a disk, then the rays from (Xo, Yo, Zo) will arrive at a roughly disk shaped

region on the sensor. This disk is often called the circle of confusion. It is a roughly a circle because
the lens aperture is (roughly) circularly shaped. This is easiest to imagine if you consider the scene
point (0, 0, Zo). since the scene and lens would all be rotationally symmetric about the optical axis,
the blur region would also be rotationally symmetric.

Let’s next derive an expression for the blur width ∆Xi. We now consider a point at depth Zo

such that Zo 6= Z∗

s . Let ∆Xi be the diameter of the blur disk. (In the figure, the blur disk is a dark
line on the sensor plane. For a 2D sensor plane, it is a disk.) Let A be the diameter of the lens
aperture. Then, by similar triangles,

A

Zi

=
∆Xi

| Zs − Zi |
and so

∆Xi = A | Zs

Zi

− 1 | = A | Zs (
1

f
− 1

Zo

) − 1 |

For a given photograph, all the terms on the right hand side are constant except for Zo, and so we
see that blur width is a constant plus another constant times 1

Zo

. (Verify that if Zo = Z∗

s , then
the blur width is 0.) This is a very simple relationship. For example, recall from lecture 1 that if
there is a plane in the scene then inverse depth 1

Z
varies linearly across the image coordinates (x, y).

Hence the blur width would vary linearly across the image as well. We will return to this in Part 3
of the course.
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f-number (f-stop)

The amount of light that arrives at a point on the sensor plane depends on the number of rays that
arrive at that point, and this in turn depends on the angle subtended by the lens. (We will see a
more rigorous definition of “the amount of light” next lecture.) The angle subtended by the lens is
approximately proportional to A

f
, where A is the width of the aperture and f is the distance from

the aperture to the sensor. The inverse of this ratio is called the f-number or f-stop:

fnumber ≡ f

A

While is very common in photography to refer to the focal length of the lens explicitly (in units
of mm), it is much less common to refer to aperture explicitly. Instead, one refers to the aperture
as a particular f/# where # is a particular f-number. For example, “f/4” refers to an aperture
(in mm units) that corresponds to a particular focal length f and a particular f -number (in this
example, 4). This is confusing for novice photographers, and indeed even experienced photographers
sometimes write “f/4” when talking about the f-stop 4 (rather than the aperture that is one fourth
the value of a particular f).

Miscellaneous notes

• For a circular (disk) shaped aperture, the number of rays that converge on a point on the
sensor plane is proportional to (A

f
)2. The reason for the “square” is that the number of rays
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depends on the 2D area π(A
f
)2 of the aperture (A/f for the X direction and A/f for the Y di-

rection), not the width of the aperture. For this reason, the f-numbers on a typical camera are√
2,
√

4,
√

8,
√

16,
√

32, . . . (and one often sees them approximated as 1.4, 2, 2.8, 4, 5.6, 8, . . . ).
Each successive f-number decreases the number of rays reaching each sensor by a factor of 2,
each thus decreases the amount of light arriving at each pixel in the image by a factor of 2.
These statements will be made more concrete in the next two lectures.

• A typical pre-digital camera used film that was 35 mm wide (hence the name “35 mm camera”
or “35 mm film”). Today, the sensor array in a digital camera is not restricted to 35 mm. My
Nikon D70 (an SLR camera – single lens reflex) has a sensor area that is 23.7 mm × 15.6 mm.
It is a 6 MP (megapixel) camera, specifically it can make images with 3008 × 2000 pixels.
The scale factors are thus about mx ≈ my = 128 pixels per mm. (Recall the end of lecture 3.)
My Sony Cybershot which is a much smaller camera has a sensor area that is about 6.2× 4.6
mm. It has 10 MP, specifically it can make images of maximum size 3648 × 2736 and so
mx ≈ my ≈ 590 pixels per mm.

The D70 is a much bigger camera and its lens has focal lengths that can zoom from about
28 to 80 mm. The Cybershot is a much smaller camera, and its lens has focal lengths in the
range of about 6.2 to 18.6 mm. (This factor of 3 zoom range is indicated on the camera body
by a “3x”.)

• When you shoot a digital image and store it in JPG format, the file is typically wrapped
with EXIF (“exchangable image file”) metadata which contains information about how the
image was acquired, including the type of camera, the focal length, and much more. Check
the wikipedia page for EXIF to learn more. (You can read the EXIF data in many ways, for
example, Matlab has a command exifread, there is a Firefox plugin, etc.)

• For many decades, almost all photographers used 35 mm film, meaning that the film negative
recording the photograph was about 35 mm wide. (In fact it was about 36 × 24mm.) With
the “sensor area” fixed, the angle of the field of view is entirely determined by the focal length
setting of the lens. For example, suppose you are focussing at an object that is far away
and so Zs ≈ f . The horizontal angle of the field of view is then 2 tan θ

2
= 35

f
. Of course,

photographers do not make calculations using this formula. Rather, through experience, they
develop an intuitive sense of how the field of view angle is determined by f . For example,
a lens with a focal length of 18 mm is wide angle, namely about 90 degrees, whereas a focal
length of 180 mm is small angle or telephoto (“tele” meaning “at a distance” i.e. you can
pictures of small things that are far away) and the field of view is about 10 degrees. These
numbers mean particular things to photographers. A portrait photographer knows that to fill
the frame of an image with a person’s head and a particular focal length f , he/she needs to
stand at a certain distance from the subject.

With digital cameras, the sensor areas vary quite alot and so the classical notions relating f
to wide angle vs. telephoto are meaningless. Some camera manufacturers offer a conversion
factor – a focal length multiplier - that allows owners to relate the focal length of their camera
to that of a 35 mm camera giving the same field of view. (But for novices, this conversion
factors only confuse the situation.)
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