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When we examined the egomotion problem, we considered two neighboring frames of a video
that were close in time so that the rotation and translation were very small. In the remaining
lectures, we address a related problem, namely binocular stereo. Here, we do not assume that the
translation and rotation between cameras is small, nor do we assume that the two cameras have
the same internal parameters.

Despite these differences, similarities between the problems remain. Recall that in the egomotion
problem, the velocity vector at a pixel was the sum of a rotation component and a translation
component, such that the translation component depended on inverse depth. The velocity vector
at a point (x, y) was thus constrained to a line in (vx, vy) space, such that the direction of the line
was in the direction of heading i.e. the direction of translation from one camera position to the
next. (Recall Eqns. 1,2,4 from lecture 20.) As we see in this lecture, there is a similar constraint
in binocular stereo – namely that constrains corresponding points to lie on a line.)

Stereo and Epipolar Geometry

The figure below shows the basic setup of stereo geometry. We have two cameras, 1 and 2, with
centers shown respectively in pink and black. Each camera has a position in 3D. Each camera also
has a coordinate system with orthonormal axes, and projection plane (illustrated using a rectangle
in the figure).

camera 1

camera 2epipole 2

epipole 1

For any 3D point (blue or green, for example), we project that point into the image projection
planes of the two cameras. What can we say about this projection? Since the two cameras and the
chosen 3D point define a plane Π, the image projection of the 3D point must lie on the intersection
of this plane Π with the image projection plane, namely along a line. The dotted lines in the figure
show these plane intersections for the two cameras and for two 3D points (blue and green). These
dotted lines are called epipolar lines.

The epipolar lines intersect at a single point. To see this, note that the line joining the two
cameras lies on every plane Π defined above, hence the point of intersection of this line with the
image plane also lies on every epipolar line. We call this point the epipole. (This point could be at
infinity, for example, if the cameras are facing the same direction.)

Given two cameras, if you know the epipolar geometry (namely the epipoles and epipolar lines)
then you can narrow down the possible correspondences between points in the two images. All
points on the blue plane project to the blue epipolar lines. So given a blue point (which lies on a

1



COMP 558 lecture 22 Nov. 17, 2009

blue epipolar line) in the first image, you only need to search for the corresponding point on the
blue epipolar line in the second image.

The Essential Matrix

Let us now translate the argument on the previous page from geometry to algebra. Suppose we

have a 3D point that is written as X1 =





X1

Y1

Z1



 in camera 1’s coordinates and the same 3D

point is written as X2 =





X2

Y2

Z2



 in camera 2’s coordinates. Let the position of camera 2 be

(TX , TY , TZ) when written in camera 1’s coordinates. Of course, the position of camera 2 in camera
2’s coordinates is (0, 0, 0)T and the position of camera 1 in camera 1’s coordinates is (0, 0, 0)T .
Let R2←1 be an orthonormal matrix that rotates/reflects camera 1 coordinate axes to camera 2
coordinate axes. (That is, the columns of R2←1 are the coordinates of camera 1’s axes, expressed
in camera 2’s coordinates. Or equivalently, the rows of R2←1 are the camera 2 axes expressed in
camera 1’s coordinates.)

Then we have:
X2 = R2←1(X1 − T)

This is just the usual change of coordinates, where we are starting with camera 1 coordinates and
mapping to camera 2 coordinates. Bringing the R matrix to the other side gives

R1←2X2 = X1 −T. (1)

The epipolar constraint is hidden in there (implicitly). To make it more explicit, we write the
relationship between X1 and X2 in a different way. The vectors X1, T and X1 − T are linear
dependent and, in particular,

(X1 − T) · (T × X1) = 0. (2)

Define the cross product with T operation as matrix,

[T]× ≡





0 TZ −TY

−TZ 0 TX

TY −TX 0





and so combining Eqns. (1) and (2) gives

XT
2

R2←1[T]×X1 = 0.

This says: you take X1, cross it with T (which gives a vector perpendicular to the plane containing
the two camera centers and the 3D point), write this vector in terms of the camera 2 axes, and
you get a vector that is perpendicular to X2, i.e. the scene point written in terms of the camera 2
coordinates.

The matrix
E ≡ R2←1[T]× (3)
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is called the essential matrix, and so one writes:

XT
2

EX1 = 0. (4)

Now we are ready to define epipolar lines and epipoles. From Eq. (4), note that we can scale
the vectors X1 and X2 to x1 = (x1, y1, f1) and x2 = (x2, y2, f2), respectively, so that they lie in the
image planes of their respective cameras. So, for any X1, we get an epipolar line in the camera 2
projection plane, as follows. Define a 3-vector l2 ≡ Ex1. Then

xT
2
Ex1 = xT

2
l2 = 0

which is the epipolar line in the second image.
Similarly, for any X2, define lT

1
≡ xT

2
E, then

x2Ex1 = lT
1
x1 = 0

which is the epipolar line in the first image.
What about the intersections of the epipolar lines? Note that the essential matrix is of rank 2,

since [T]× is of rank 2. In particular, [T]×T = 0 and so ET = 0. Thus, xT
2
ET = 0 for any x2.

Thus, f1
T

|T
lies on all epipolar lines in camera 1’s projection plane. Thus it is the epipole.

For the epipole in camera 2, we need xT
2
E = 0, or equivalently, ETx2 = 0. But

ETx2 = −[T]×R1←2x2,

since [T]× is anti-symmetric. So, for the camera 2 epipole, we want R1←2x2 = T. So the epipole is
x2 = R2←1T, that is, the translation vector written in camera 2’s coordinates.

The Fundamental Matrix

The above arguments relied on points on image projection planes. We next write them in terms of
pixel coordinates.

Suppose the two cameras have calibration matrices K1 and K2. If a 3D point (X, Y, Z) is written
in the the first camera’s coordinates, then its pixel position is (x1, y1) where





w1x1

w1y1

w1



 = K1X1

and its pixel position in the second camera is (x2, y2) where:





w2x2

w2y2

w2



 = K2X2

Note the (x1, y1) and (x2, y2) values are different from what we saw at the top of this page, where
they referred to points on the projection plane (not pixels).

3



COMP 558 lecture 22 Nov. 17, 2009

We can rewrite Eq. (4) in terms of the pixel coordinates and ignore the scalers w1 and w2,

[

x2 y2 1
]

K−T
2

E K−1

1





x1

y1

1



 = 0.

The matrix
F ≡ K−T

2
E K−1

1

is called the fundamental matrix. It relates corresponding pixels (x1, y1) and (x2, y2) in the two
cameras.

Epipolar lines (and epipoles) are defined in exactly the same way as was done for the essential
matrix. Any pixel x1 = (x1, y1, 1)T in the first image defines a vector

l2 = K−T
2

E K−1

1
x1

such that x2l2 = 0, which is an epipolar line in the second image. Similarly, any pixel x2 = (x2, y2, 1)
in the second image defines a vector

l1 = x2 K−T
2

E K−1

1

such that l1 · x1 = 0, which is an epipolar line in the first image.
F has rank 2, since the essential matrix E has rank 2. The epipole e1 in the camera 1 image is

in the null space of F. The epipole e2 in the camera 2 image is in the null space of FT . Note that
the epipoles positions might not lie within the image domain (which is finite). Indeed they could
even be at infinity.

Finally, note that if you know the fundamental matrix F, then the correspondence problem from
points in one image to points in the other image is restricted to lines. Notice that this is restriction
holds, even if you only know F, but you do not know the camera calibration matrices (internal) or
the rotation and translation between cameras (external).

Estimation of Fundamental matrix (8 point algorithm)

How could we find the fundamental matrix that relates two images? Suppose we find a pair of
corresponding points (x1, y1) and (x2, y2) in the first and second camera’s image, respectdively. We
then would have the following constraint on the nine Fij elements.

(x1x2, y1x2, x2, x1y2, y1y2, y2, x1, y1, 1) · (F11, F12, F13, F21, F22, F23, F31, F32, F33) = 0

Eight points gives a systems of 8 equations with 9 unknowns. This defines an 8 × 9 matrix. The
null space of this system of equations would give us an exact estimate of F. This is called the eight
point algorithm.

The positions of the eight corresponding points will typically be noisy. To get a more accurate
estimate, we can use N ≫ 8 corresponding points and take the SVD of an N × 9 matrix. This
amounts to solving the least squares problem, of finding an F that minimizes:

N
∑

i=1

(xiT

2
Fxi

1
)2
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subject to a constraint such as ‖ F ‖= 1. [ASIDE: I neglected to mention this constraint in class
but it is important, since you can trivially minimize the sum of squares by letting F → [0], that
is, the zero matrix.] For the solution, we take the last column of VT , which corresponds to the
smallest eigenvalue.

There are several final points to make. One is that the fundamental matrix is a 3 × 3 matrix
of rank 2, and it has seven degrees of freedom. To see this, note that the rank 2 constraint implies
that any column is a linear combination of the other two columns e.g. the third column is a linear
combination of the first two columns. So the first two elements of the third column specify the
linear combination and hence specify the third element of the third column. This suggests there ar
eight degrees of freedom. However, recall that we are working with homogeneous coordinates, so
you can scale F by any constant without changing the xT

2
Fx1 = 0 constraint. This removes one of

the eight degrees of freedom, leaving seven.
Another point is that, if there is any error/noise in the positions of the points then the ninth

singular value will not be zero, and most likely the estimated F will be of rank 3 rather than rank
2. If we use this estimated F, then the epipolar lines will not intersect exactly at the epipoles, and
the epipolar constraints will not hold exactly.

If the estimated F is of rank 3, then often one decomposes the F (3 × 3) using the SVD,

F = UΛVT

and one finds a rank 2 matrix that is close to F. It can be shown that you can obtain the rank 2
matrix that is “closest to” F by setting the third singular value to 0. (That is, set Λ33 to 0.) This
forces the F matrix to be rank 2. It forces the corresponding points to line on epipolar lines and all
epipolar lines in an image pass through an epipole. (Of course, this epipolar lines and epipoles will
be incorrect, since we are making an approximation.) But it is the best we can do in the presence
of noise.

5


