
COMP 558 lecture 21 Nov. 12, 2009

Structure-from-motion: factorization method

Last lecture we looked at a structure from motion method that used two adjacent frames in a video.
It was assumed that the instantaneous motion vectors could be computed reliably at many points,
especially points near depth discontinuities. It was also assumed that the field of view was large
so that the camera rotation field was not parallel i.e. second order terms were significant. Finally,
it was also assumed that perspective effects were significant, namely there were large variations in
depths; specifically, large differences in inverse depths at depth discontinuities which gave parallax
information.

The above conditions are met in many situations, but certainly not all situations. Today we
will look at a scenario that is quite different, and that needs a very different approach - now called
Tomasi-Kanade factorization1. Here is what we assume:

• F image frames (not just 2). Normally one collects many frames using a video camera.

• N corresponding points (xki, yki), i = 1, /dots, N that are visible in each frame k. Typically,
these points are detected and tracked from frame to frame. We have not discussed the problem
of tracking a point – but we have discussed how to find interest points (Harris corners) and
how to register two images. So you can imagine that we could find the motion of an interest
point from one frame to the next. That is basically the tracking problem.

The N points have fixed 3D coordinates {(Xi, Yi, Zi), i = 1, ..n} which are expressed in un-
known object coordinate system. Without loss of generality, we assume

N
∑

i=1





Xi

Yi

Zi



 =





0
0
0



 (1)

that is, we assume the origin is the centroid of the object. (We need to divide by N to get
this, but the right side is zero so dividing by N doesn’t do anything to it.)

• In each of the F frames, the average depth of the points is about Zo and the range of depths
is small, relative to Zo. An example is that you are holding a small object at arm’s length,
you rotate it in your hand. Another example is shown below. (This was photographed using
f = 80 mm, which gives a small field of view.)

1Tomasi and Kanade, “Shape and motion from image streams: a factorization method”, IJCV 1992

1

COMP 558 lecture 21 Nov. 12, 2009

• The camera’s K matrix is known. So, we can back-project points from pixel coordinates
(xki, yki) to points on frame k’s Z = Zo plane, and define:





Xki

Yki

Z0



 ≡
Zo

f
K−1





xki

yki

f



 (2)

The K−1 mapping takes pixel coordinates to projection plane coordinates (Z = f) and then
multiplying by Zo

f
rescales so all points are at depth Zo in camera coordinates.

NOTE: the true point positions are not at constant depth, so there is an approximation being
made here: the Xki and Yki values are only approximately equal to the true X, Y positions of
the points (represented in camera k’s coordinates), and of course Z0 is only an approximation
to the true depths of point i in camera k’s coordinates.

This approximation is illustrated in the sketch below. We are assuming that the green point’s
coordinates are approximately the same as the red point’s coordinates. In particular, below
we will only use the Xki and Yki values. This approximation of the Xki and Yki values gets
better if Z0 is large compared to the range of depths within the object, since the projection
directions (to the camera center) become near parallel with the optical axis. Recall that this
is precisely what was assumed on page 1.

Problem

We have set up the scenario. Now let’s define the problem we want to solve. Let A be the image

measurement matrix, which is constructed from the 2× 1 matrices

[

Xki

Yki

]

, i.e. point i seen in the

kth frame, k = 1, . . . , m. A is 2F ×N data matrix. Think of it as two F ×N matrices, one for the
Xki values and one for the Yki values.

Each frame k defines its own mapping Rk[I | −Ck] from the object XY Z coordinate system
into the kth camera coordinate system. So, for object point i and frame k, we have





Xki

Yki

Z0



 ≈ Rk[I | −Ck]









Xi

Yi

Zi

1









The three rows of Rk are the camera’s unit X, Y, Z axes, expressed in the object’s coordinate frame
– in particular, the third row of Rk is the camera’s Z axis, and the third element of RCk is the

2

COMP 558 lecture 21 Nov. 12, 2009

depth of the origin of the object’s coordinate system (X, Y, Z) = (0, 0, 0) and this is our Z0. The
model is approximating the Z values of all points as having this depth. (See Eq. (2)).

The approximation for the first two rows is very good if the assumptions on page 1 are met,
whereas the approximation in the third row is not good, since it ignores the depth variations of the
points in camera k. Because the third row’s approximation is not good, we will ignore it.

So finally, the problem to be solved is this: Given the 2F ×N matrix A, decompose it into the
variables shown on the right side, namely the “motion” Rk (which is just the orientations of the
camera at frame k) and the scene “structure”, i.e. the 3D positions (Xi, Yi, Zi) of the N points, as
expressed in the object coordinate frame.

Solution (Factorization)

Let R̃k be the 2 × 3 matrix which is the first two rows of Rk. For any camera k,

∑

i=1,..N

[

Xki

Yki

]

=
∑

i=1,..N

R̃k[I | − Ck]









Xi

Yi

Zi

1









4×N

= R̃k[I | − Ck]
∑

i=1,..N









Xi

Yi

Zi

1









4×N

Applying Eq. (1) to the right side, we get

∑

i=1,..N

[

Xki

Yki

]

2m×K

= −NR̃kCk 2×1

Thus, for each camera k, we can compute R̃kCk, namely by taking the average of the (Xki, Yki)
values over all i:

[

X̄k

Ȳk

]

2m×K

≡
1

N

∑

i=1,..N

[

Xki

Yki

]

2m×K

= −R̃kCk 2×1

This gives:
[

Xki − X̄k

Yki − Ȳk

]

2×N

= [R̃k]2×3





Xi

Yi

Zi





3×N

(3)

We have two equations for each frame k, so we stack them to get a matrix product 2F × N =
(2F × 3) × (3 × N). That is, we have a 2F × N data matrix (left side) which is (approximately!)
factored into the product of a matrix whose rows are the true X, Y camera axes of the k cameras,
and a matrix whose columns are the true 3D point points written in object coordinates.

If there were no image noise and if the approximation in the projection model were exact, then
the data matrix on the left would have rank 3, that is, the column space would span a (at most) 3
dimensional space only. To see this, note that the right side of Eq. (3) maps from ℜN to ℜ3 and
then from ℜ3 to ℜ2m. The column space of the matrix of R vectors has dimension at most 3 and
so this limits the dimension of the vectors reached by the mapping (i..e. the range).

We would like to estimate these R̃ matrices as well as the points (Xi, Yi, Zi). How can we do it?
Let the 2F × N data matrix on the left side of Eq. (3) be A. We can write it using the SVD

A = U2F×NΛN×NVT
N×N .

3

COMP 558 lecture 21 Nov. 12, 2009

If the model were perfect, then A would have rank 3, i.e. only three of the singular values would
non-zero. We look for a rank 3 approximation (the factorization) so we first verify that the 4th
largest singular value is much smaller than the third largest and, if this is the case, we keep only
use the largest 3 singular values and the corresponding eigenvectors:

A ≈ U∗

2F×3Λ
∗

3×3V
∗T
3×N

As long as the ignored singular values are small, the column space of A will be approximately the
same as the column space of U∗.

Notice that the U∗ matrix and the (Λ∗V∗T) have the same dimensions as the rotation (motion)
and (X, Y, Z) (structure) matrices earlier. However, we cannot just assign these as our solution
since there is no reason why rows 2k − 1 and 2k of U∗ should be orthonormal. And we need the
two rows of R̃k to be orthonormal.

But notice that
U∗Λ∗V∗T = U∗QQ−1Λ∗V∗T

for any invertible matrix 3× 3 Q. Such a Q matrix takes three linear combinations of the columns
of U∗, namely each column of Q defines a linear combination of the columns of U∗. We would like
to take linear combinations of the three columns of U∗ such that the F pairs of rows of U∗Q are

orthonormal, or as close to orthonormal as we can make them.
Specifically, let u1i and u2i be the ith pair of 1 × 3 rows of U∗. We want to choose Q such that

(u1iQ) · (u1iQ) = 1

(u2iQ) · (u2iQ) = 1

(u1iQ) · u2iQ = 0

But notice this defines 3F equations that are second order in the 9 elements of Q. We want to find
a Q that simultaneously solves these three equations – or at least solves them as close as possible.
(We have more equations than unknowns and we have made approximations along the way, so we
don’t expect an exact solution.) This requires we solve a non-linear least squares problem. (See
next page.)

One final point (not mentioned in class). Even if we use the factorization on the right side of

U∗Λ∗V∗T = (U∗Q)(Q−1Λ∗V∗T)

there is still an ambiguity since we can always insert any 3 × 3 orthonormal matrix W

(U∗Q)(Q−1Λ∗V∗T)(U∗QW)(WTQ−1Λ∗V∗T)

and this will be an equally good solution/factorization i.e. since the quadratic constraints above
are unaffected by the W. What are these extra rotation/reflection degrees of freedom? They just
allow for the fact that we cannot solve for the orientation of the object coordinate XY Z axes –
they are always known only up to a rotation.

4

COMP 558 lecture 21 Nov. 12, 2009

Non-linear least squares (using Newton’s method)

We write the 3F equations above as:
~f(Q) = 0

Note: we have brought the 1’s on the right side to the left side. We would like to find a 3×3 matrix
Q that satisfies them. In our example, the equations are each quadratic in the 9 variables of Q and
the coefficients depend on the U∗ values that were obtained from the SVD.

We make an initial guess for Q, namely we set it to the identity matrix, Q0 = I. If ~f(Q0) = 0
then we are done. (This won’t happen.) So, we ask how to change the matrix Q0 by adding some
∆, and updating our estimate to Q0 + ∆. How do we choose ∆ such that the solution is better ?

We want ~f(Q0 + ∆) = 0 so we try to find ∆ by approximating ~f() as linear in a neighborhood
of Q0. We compute the 3F × 9 Jacobian matrix, namely the matrix of partical derivatives, and we
evaluate it at Q0,

J ≡
∂ ~f

∂Q
|Q0

.

The linear approximation is
~f(Q0 + ∆) ≈ ~f(Q0) + J∆

We then require ~f(Q0 + ∆) = 0, and seek at ∆ such that

−~f(Q0) ≈ J∆

This is now a least squares problem, since we can evaluate the ~f(Q0) and the Jacobian J|Q0
so they

are just a vector and matrix of numbers, respectively.
The ∆ that we get will not solve ~f(Q0 + ∆) = 0 exactly of course, for two reasons: first, ~f()

is quadratic, not linear; second, least squares gives a solution that minimizes the sum of squared
errors, but this minimum might not be zero.

So, since we don’t have an exact solution, we iterate:

Qj+1 = Qj + ∆j

and keep going until Qj+1 ≈ Qj . If we get ~f(Qj+1) ≈ ~0, then we have a good solution.
[ASIDE: Does this algorithm alwyas converge, and does it converge to a good solution? It would

seem so, since quadratic functions are usually well-behaved. However, I cannot offer any guarentees.
The published paper by Tomasi and Kanade doesn’t say anything about it, nor do textbooks that
summarize the paper. (Perhaps it is in Tomasi’s PhD thesis?) I spoke to Prof. Xiaowen Chang
about this problem – but at first glance it was not obvious to him either that it was always well
behaved.]

5

