
COMP 558 lecture 19 Nov. 5, 2009

Homography

Let’s now look at another image transformation, called a homography, which arises very often in
real scenes, both manmade and natural. The problems and analysis I will give this lecture are very
similar to what we saw last lecture, and we see similar things in lectures to come.

Case 1: scene plane to image pixels

Suppose we have a planar surface in the world (e.g. a wall, a ground plane) and we view it with
a camera with projection matrix P. The planar surface is 2D and so we can give it a coordinate
system (s, t). Points on the plane are situated in the 3D world and their 3D positions can be
expressed in XY Z camera coordinates. We can transform from (s, t) to camera coordinates XY Z

by multiplying (s, t, 1) by a 4 × 3 matrix, as follows:









X

Y

Z

1









=









ax bx X0

ay by Y0

az bz Z0

0 0 1













s

t

1



 (1)

The first two columns can be interpreted as direction vectors corresponding to the coordinate
system’s basis vectors, namely where (1, 0, 0) and (0, 1, 0) are mapped to. The third column is the
3D position of the origin of the plane, i.e. (s, t) = (0, 0). Note that this mapping takes the origin
(s, t) = (0, 0) to (X0, Y0, Z0); it takes the corner (s, t) = (0, 1) to (X0 + bx, Y0 + by, Z0 + bz), and it
takes the corner (s, t) = (1, 0) to (X0 + ax, Y0 + ay, Z0 + az), etc.

The image pixel (x, y) corresponding to a point (s, t) in the scene plane is obtained by





wx

wy

w



 = P









X

Y

Z

1









These two mappings together define a 3 × 3 matrix H mapping (s, t, 1) to (wx, wy, w),





wx

wy

w



 = H





s

t

1



 .

Such an matrix H is called a homography.
Note that the inverse of this mapping is:





w′s

w′t

w′



 = H−1





x

y

1





The inverse is well-defined as long as the camera does not lie in the plane defined by Eq. (1) since,
in that case, the entire plane would project to a line in the image.

1

COMP 558 lecture 19 Nov. 5, 2009

3 x 4

3 x 3

4 x 3

image pixels (wx, wy, w)

projection P

Camera axes

homography H

coordinates on scene plane (s,t, 1)

Homography 2 (two cameras, one scene plane)

Suppose the same scene plane is viewed by a second camera (which would have a different XY Z

coordinate system). We would now have two homographies H1 and H2, defined by the two cameras.
This implies that the composite mapping H2H

−1

1
maps pixels in the first camera to pixels in the

second camera. That is, each camera defines a homography of the form

H−1





wx

wy

w



 =





s

t

1





but the right side is the same for both (since it is independent of the camera), so we just equate
the left sides for the two cameras.

Since the product of two 3 × 3 invertible matrices is itself an invertible matrix, we see that the
mapping from pixels of the first camera to pixels of the second camera is a homography. Note: This
construction relies critically on the scene being a planar surface.

Homography 3 (panoramas)

Surprisingly, homographies can arise for general scenes as well (non-planar), namely if it is viewed
by two cameras from the same center of projection. In practice this happens when you have one
camera and you use it to take more than one image by rotating the camera around the center of
projection. This is often done is modern digital cameras when you try to stitch images together to
make panorama images.

To see that two images taken under these conditions are related by a homography, let (X, Y, Z)
be a scene point visible to camera 1 and written in camera 1’s coordinate system.





wx

wy

w



 = K





X1

Y1

Z1





2

COMP 558 lecture 19 Nov. 5, 2009

If camera 2’s coordinate system is defined by a rotation R2←1 relative to camera 1, we have





w̃x̃

w̃ỹ

w̃



 = KR2←1





X1

Y1

Z1





But then




w̃x̃

w̃ỹ

w̃



 = KR2←1K
−1





wx

wy

w





But KR2←1K
−1 is an invertible 3 × 3 matrix i.e. a homography !

Notice that the distance of the points from the camera plays no role here. This may be somewhat
surprising at first glance, but notice that if you are only considering what the scene looks like from
a single position then the scene points could be at any distance (even infinity) along the rays that
arrive at the camera. Rotating the camera will not have any effect on the directions from which the
scene points are seen. So its no really so surprising that the distance to the points plays no role.

[ASIDE: By the way, if you are trying to understand homographies in terms of planes projecting
onto planes, then you can think of the last homography as the mapping between the two image
projection planes – specifically, where each is defined by pixel coordinates.]

Solving for the homography between two images

Suppose we have N sets of corresponding point pairs (xi, yi) and (x̃i, ỹi) between two images which
are approximately related by an unknown homography H, namely





wx̃i

wỹi

w



 =





H11 H12 H13

H21 H22 H23

H31 H32 H33









xi

yi

1





The points might be image features such as Harris corners. Note that we don’t expect to localize
these points exactly - there may be errors.

Using N points

We want to solve for H. We can rewrite the equations













x1 y1 1 0 0 0 −x̃1x1 −x̃1y1 −x̃1

0 0 0 x1 y1 1 −ỹ1x1 −ỹ1y1 −ỹ1

: : : : : : : : :
xN yN 1 0 0 0 −x̃NxN −x̃NyN −x̃N

0 0 0 xN yN 1 −ỹNxN −ỹNyN −ỹN









































H11

H12

H13

H21

H22

H23

H31

H32

H33





























=













0
0
:
0
0













3

COMP 558 lecture 19 Nov. 5, 2009

But this is just the same type of least squares problem we saw last class. The least squares solution
for H is obtained by taking the 2N × 9 data matrix A and find the eigenvector of ATA having
smallest eigenvalue.

[ASIDE: The relationship between this problem and the one we looked at last class is closer
than you might think. When we had a calibration grid, we knew a set of points (Xi, Yi, Zi). In the
case that all points lie on a plane, we can think of the plane as Zi = 0 for all i, and (s, t) ≡ (Xi, Yi).
Since Zi = 0 for all i, it plays no role in the problem and this drops the number of constraints from
12 to 9, namely it drops the third column of the P matrix.]

Using 4 points only

If we have four corresponding points (xi, yi, x̃i, ỹi), i = 1, . . . , 4 then we get a system of 8 homogenous
equations with 9 unknowns. A homography H that puts the points into exact correspondence can
be obtained by finding the null space of this system of equation. (That is, we have 9 column vectors
each with 8 elements. These column vectors cannot be linearly independent and so there must be
a linear combination of them (the Hij) that sums to the zero vector.) We could thus find H by
solving for the null space of the 8 × 9 matrix A.

(Alternatively, still thinking of this as a least squares problem, we could find the eigenvector of
9 × 9 matrix ATA with smallest eigenvalue – which we can conclude will be 0, i.e. we know there
is an H in the null space of A so this is an eigenvector with eigenvalue 0.)

Using RANSAC

In the context of an autonomous vision system such as a robot, you would like to automate these
computation, including the problem of finding matching points. This may be difficult to do correctly.
Why? In problem 2 where we had two cameras and a scene plane, there may be other surfaces in
the scene that do not belong to this plane and that would not be explained by the homography –
these other points need somehow to be automatically avoided. Even if you can avoid them, you
stil need to correctly match points on the plane as viewed by two different cameras. This might be
difficult to do e.g. a bright red flower might be a good feature to detect match from one image to
the other, but there might be many bright red flowers.

This should remind you of a problem we saw in lecture 13 where we tried to fit points to lines.
So here is the typical RANSAC approach that people take to this problem:

1. Find many feature points (e.g. Harris corners, or SIFT features) in each of the two images:
{(xi, yi)} and {(x′j, y

′

j)}.

2. For each feature point (xi, yi) in one image, find a candidate corresponding feature point in
the second image (x′i, y

′

i) whose intensity neighborhood is similar e.g. the SIFT descriptors are
similar (recall lecture 12 page 5) or the sum of squared intensity values in a neighbhorhood
are similar. This give a set of 4-tuples (xi, yi, x

′

i, y
′

i). You might want to allow each (xi, yi) to
have several candidate matches (x′i, y

′

i).

3. Randomly choose four 4-tuples and fit an exact homography H Hi that maps the four {(xi, yi)}
exactly to their corresponding {(x′j , y

′

j)}. Find the consensus set for that homography, namely
find the number of other 4-tuples for whom the distance of the 4-tuple from the model is
sufficiently small.

4

COMP 558 lecture 19 Nov. 5, 2009

The distance could be defined in a variety of ways1 e.g. compute





wx̃

wỹ

w



 = H





x

y

1





and define
dist(H, xi, yi, x

′

i, y
′

i) = ‖ (x̃, ỹ) − (x′, y′) ‖2 .

4. After repeating step 3 a certain number of times (or until you find a homography whose
consensus set exceeds some pre-determined threshold), choose the homography with the largest
consensus set and use that consensus set to re-estimate the homography H using least squares.
The reason you do this final step is that your first homography was chosen to exactly fit four
pairs of points, and if there is any noise in those points then the fit will be biased by the
particular noise of those points, which is undesirable.

At the end of this lecture, I reviewed the SVD. I am inserting a page break so it is clear to you
that this is not tied to homographies. See you on the next page.

1Some are better than others – a technical detail that I have decided to prune off.

5

COMP 558 lecture 19 Nov. 5, 2009

SVD (Singular Value Decomposition)

Take any m × n matrix A. I want to show how to decompose A into

A = UΣVT

where U is m × m, Σ is an m × n matrix that is 0 except for the diagonal elements σi = Σii, and
V is n× n. Note if m 6= n, then Σ is not square, but we can still talk about the diagonal elements.
We will assume that m ≥ n. (A similar construction can be given when m < n.)

The first step is to note that the n × n matrix ATA is symmetric and positive semi-definite –
that’s easy to see since xT ATAx ≥ 0 for any real x. So ATA has an orthonormal set of eigenvectors
and the eigenvalues are all real and non-negative. Let V be an n × n matrix whose columns are
the orthonormal eigenvectors of ATA. Since the eigenvalues are non-negative, we can write2 them
as σ2

i .
Define Σ to be an n×n matrix with values Σii = σi on the diagonal and value 0 off the diagonal.

(These diagonal elements, σi, are called the singular values of A. Note that they are the square
roots of the eigenvalues of ATA.) We now have

ATAV = VΣ2.

Next define
Ũm×n ≡ Am×nVn×n.

Then
ŨT Ũ = VTATAV = Σ2.

Thus, the Ũ columns are orthogonal and of length σi.
We now define U whose columns are orthonormal (length 1), and so

UΣ = Ũ.

Right multiplying both sides by VT gives us

Am×n = Um×nΣn×mVT
n×n.

[ASIDE: Typically one defines the singular value decomposition of A to be slightly different than
this, namely one defines the U to be m×m, by just adding m− n orthonormal columns. One also
needs to add m − n rows of 0’s to Σ to make it m × n, giving

Am×n = Um×mΣm×nV
T
n×n

For our purposes there is no important difference between these two decompositions.]

By the way, Matlab has a function svd which computes the singular value decomposition. We
can use svd(A) to compute the eigenvectors and eigenvalues of ATA.

2Forgive me for using the symbol σ yet again, but σ is always used in the SVD.

6

