
COMP 558 lecture 18 Nov. 3, 2009

The last several lectures we have looked at image properties such as local intensity gradients
and how these are can be directly tied to scene structure. The remaining lectures will be concerned
mostly with geometry (as opposed to radiometry i.e. what to do with image intensities). We start
with camera calibration and work our way to various versions of the multiview geometry problem.

Camera calibration

To estimate geometric properties of 3D scenes, it helps to know the camera parameters, both external
and internal. The problem of finding all these parameters is typically called camera calibration.

Recall at the end of lecture 3, we had a transformation that takes a point (X, Y, Z, 1) in world
coordinates to a pixel position (wx, wy, w):

P = KR[I | −C]

where K, R, and I are 3 × 3 matrices, C is a 3 × 1 vector, and so P is 3 × 4. P is called a finite

projective camera. Recall that it assumes a pinhole only.

Estimating P using least squares

How could we estimate P ? The standard method assumes we have a set of known points (Xi, Yi, Zi)
in the scene. For example, we might have a cube of known size and whose faces have a checkerboard
pattern on them (also of known size). The corners of the squares on the checkerboard would define
3D points in a world coordinate system defined by a corner of the cube.

If we take a photograph of the cube, we could then (by hand) find the pixel coordinates of
the known points on the checkerboard, then we would have a set of constraints relating the pixel
positions (xi, yi) and the scene positions (Xi, Yi, Zi).

xi =
wxi

w
=

P11Xi + P12Yi + P13Zi + P14

P31Xi + P32Yi + P33Zi + P34

yi =
wyi

w
=

P21Xi + P22Yi + P23Zi + P24

P31Xi + P32Yi + P33Zi + P34

and so
xi(P31Xi + P32Yi + P33Zi + P34) = P11Xi + P12Yi + P13Zi + P14

yi(P31Xi + P32Yi + P33Zi + P34) = P21Xi + P22Yi + P23Zi + P24

We arrange these equations using a 2N × 12 matrix such that

















X1 Y1 Z1 1 0 0 0 0 −x1X1 −x1Y1 −x1Z1 −x1

0 0 0 0 X1 Y1 Z1 1 −y1X1 −y1Y1 −y1Z1 −y1

:
:

XN YN ZN 1 0 0 0 0 −xNXN −xNYN −xNZN −xN

0 0 0 0 XN YN ZN 1 −yNXN −yNYN −yNZN −yN













































P11

P12

P13

P14

:
P31

P32

P33

P34





























=





























0
0
0
0
:
0
0
0
0





























1

COMP 558 lecture 18 Nov. 3, 2009

P has 12 parameters, so if we want to solve for P then we need N ≥ 6 corresponding point pairs
i.e. we need 12 or more data values.

If we have exactly N = 6 points, then we will have a linear system with 12 equations and 12
unknowns and we can try to solve for P. If the (xi, yi) really are related to the (Xi, Yi, Zi) according
to the projection model, then there will be a P that solves the above system, and so P will lie in
the null space of the matrix (and the matrix will have to be non-invertible).

In practice, howeover, the values of (xi, yi, Xi, Yi, Zi) will contain some measurement error and
the projection model will only be an approximation to the actual physical situation. The result is
that, in practice, the 12×12 matrix formed from N = 6 data points will typically be invertible – i.e.
it won’t have a null space – and the equations might only have the trivial solution P = 0. Rather
than trying to solve the equations, one instead re-poses the problem in terms of least squares.

Least squares

Let’s step back and consider a few general least squares problems. We have seen instances of these
in the course and we will see more in the upcoming lectures. For this reason it is good to have a
general picture of these problems. We look at two versions.

Version 1: Given A, minimize ‖ Ax ‖2 subject to constraint on x

An example is the problem we just looked at, where x was our 12 × 1 P vector.
For the general problem, we are trying to minimize ‖ Ax ‖2

2. This is trivial if we set x=0 but
this is typically not the solution we are interested in. Instead we want to minimize xTATAx subject
to some condition such as ‖ x ‖= 1.

As we saw in lecture 13, we can solve this problem using Lagrange multipliers. Say our condition
is ‖ x ‖= 1, or equivalently xTx = 1. Then we minimize xTATAx+λ(xTx−1). Taking derivatives
with respect to the x components gives1

ATAx + λx = 0

and setting the λ derivative to 0 just gives our x constraint. Together we get that the minimum is
achieved when x is an eigenvector of ATA.

Our goal is to minimize xTATAx. So which eigenvector gives the least value of xTATAx ?
Clearly ATA is symmetric and so all eigenvalues are non-negative, and thus we want the eigenvector
with the smallest eigenvalue.

For the case of our camera calibration problem, A is the 2N ×12 coefficient matrix, and x is the
matrix P written as a 12-vector. We solve for P by finding the eigenvector of ATA having smallest
eigenvalue.

Version 2: Given A,b, minimize ‖ Ax− b ‖2

While we are discussing least squares solutions, let’s consider an alternative problem which arises
often (not just in computer vision, but in many other fields). Suppose we have an m × n matrix
A and an m vector b and would like to find the vector x that minimizes ‖ Ax − b ‖2, where

1You should work out the details here. They are straightforward, but make sure you can do it.

2

COMP 558 lecture 18 Nov. 3, 2009

the 2-subscript indicates the usual Euclidean distance (in ℜm). We have seen such least squares
problems in lecture 10, when we did image registration

If b is 0 then we have the same problem above, so let’s assume b 6= 0. We don’t need Lagrange
multipliers in this case (since the trivial solution x = 0 is no longer a solution so we don’t need to
avoid it).

We want to find the x that minimizes

‖ Ax− b ‖2

2 = (Ax− b)T (Ax− b) = xT ATAx− 2bTAx + bTb.

We take partial derivatives with respect to the x variables and set them to 0. This gives

2ATAx− 2ATb = 0.

or
ATAx = ATb. (1)

which we can solve using basic matrix methods.
What is the geometric interpretation of this solution? We can uniquely write b as a sum of

a vector in the column space of A and a vector in the space orthogonal to the column space of
A. To minimize ‖ Ax− b ‖2, we want to find the x such that the distance from Ax to b is as
small as possible. This is done by choosing x such that Ax is the component of b that lies in the
column space of A. Equivalently, we want the vector Ax - b to be entirely within the space that
is orthogonal to the column space of A, and so we require AT (Ax− b) = 0 which is just Eq. (1)!
Note that if b already belongs in the column space of A – that is, it can be represented as a linear
combination of the columns of A – then the least squares “error” is 0 and there is an exact solution.

A

+ b

bx = A
+

Ax

m x n

A
n x m

Pseudoinverse of A

For each b, there is an x that solves our minimization problem. If ATA is invertible - this happens
if the columns of A are linearly independent – our solution can be written

x = (ATA)−1ATb.

We define the pseudoinverse of A to be the n × m matrix,

A+ ≡ (ATA)−1AT

3

COMP 558 lecture 18 Nov. 3, 2009

(Note that if A itself is invertible – in particular, it must be a square matrix – then A+ = A−1.)
Also,

AA+ = A(ATA)−1AT

projects any vector b ∈ ℜm onto the column space of A, that is, it removes from b the component
that is perpendicular to the column space of A. This was illustrated in the above figure, namely
AA+ projects b onto the column space of A.

The pseudoinverse maps in the reverse direction of A, namely it maps b in an m-D space to
an n-D space and, rather than inverting, only “inverts” the component of b that belongs to the
column space of A, i.e. A+A = I but AA+ only equals I when A itself is invertible.

Factoring P into internal and external camera parameters

Getting back to our problem,... we have seen how to estimate the P matrix. Note that it is only
estimated up to an overall scale factor2: P operates on vectors (X, Y, Z) and (x, y) written in
homogeneous coordinates, so P is the same as aP for any a.

We would now like to decompose P into the product of a 3 × 3 upper triangular matrix K and
a 3 × 4 matrix R[I| − C].

Step 1: normalize P

We note that the elements (P31P32P33) are not all zero. (Recall from Exercise 1 Q4d that this 3-
vector is normal to the projection plane. It cannot be all 0’s if we indeed have a projection matrix.)
The first step is to divide each element of P by ‖ (P31, P32, P33) ‖ so that this vector is a unit
normal.

For the next steps, we consider only the left 3×3 submatrix of P whose 3rd row is now of length
1. Let P̃ be the 3 × 3 matrix which is the first three columns of P. We decompose P̃ into KR. To
to this, we want to find a rotation matrix such that P̃RT = K. We will construct P̃ by building
three rotation matrices that rotate about the canonical axes.

Step 2: find R

We will construct a rotation matrix R in three steps.
First, we find a rotation matrix RZ,θ that P̃RZ,θ has its (3, 1) element equal to zero. Define

RZ,θ =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .

Then we want
P31 cos θ − P32 sin θ = 0

and so we need
θ = arctan(P31/P32).

2 The Lagrange multiplier technique forced the solutions to be of unit length. But if it would have achieved the

same solution had used any non-unit fixed length, namely the solution is that P is an eigenvector of A
T
A. Note

that if P is an eigenvector than aP is an eigenvector for any a.

4

COMP 558 lecture 18 Nov. 3, 2009

Note that a Z-rotation does not affect the 3rd column of P̃.
Second, we find a rotation matrix

RX,β =





1 0 0
0 cos β sin β
0 − sin β cos β





such that PRz,θRX,β has its (3,1) and (3,2) elements equal to 0. Using the same method as above,
take

β = arctan (
(P̃RZ,θ)3,2

(P̃RZ,θ)33

).

Note that this rotation does not affect the first column, and so the last row of P̃Rz,θRX,β must be

(0, 0,±1). (Recall that we began by normalizing such that the last row of P̃ was of unit length, and
the two rotations about will not change this property since rotations preserve length. Note that the
3rd element could be -1 though.)

Third, we find a rotation matrix RZ,γ which sets element (2, 1) to 0. Again this is done by a
suitable choice of rotation angle, namely

γ = arctan (
(P̃RZ,θRX,β)2,1

(P̃RZ,θRX,β)2,2

) .

Note that this X rotation doesn’t affect the third row since its first two elements are 0. We are left
with an upper triangular matrix P̃RZ,θ RX,β RZ,γ.

[ASIDE: I have just described a standard matrix decomposition in linear algebra called the RQ

decomposition. In the RQ decomposition, R refers to a right upper triangular matrix (everything
below the diagonal is zero) and Q refers to an orthonormal matrix. Curiously, Matlab doesn’t
implement the RQ decomposition. It only implements the QR decomposition.]

Finally, strictly speaking, we need the diagonal elements (1,1), (2,2) and (3,3) of K to be non-
negative, so if these elements of P̃RZ,θ RX,β RZ,γ are negative, then we need to reflect about the
X, Y , Z axis using

K = P̃RZ,θ RX,β RZ,γ





±1 0 0
0 ±1 0
0 0 ±1



 .

This gives us K = P̃Q where Q is orthonormal, and so P̃ = KQT = KR.
[ASIDE: Strictly speaking, the Q matrix might not be a rotation (it might have determinant

-1, rather than 1) since we are allowing for reflections. This is not a problem, though it does
contradict what I wrote in lecture 3: When I first set up the camera matrix, I said that the left
3 × 3 submatrix R was a “rotation.” But in fact I never used the constraint that the matrix has
determinant 1 (rather than -1). So it would have been better in lecture 3 if I had just stated that
R was just orthonormal and could be a rotation and/or reflection.]

5

COMP 558 lecture 18 Nov. 3, 2009

Step 3: obtain camera position C

Since K R (-C) is the fourth column of P, we can obtain -C by multiplying

RTK−1





P14

P24

P34



 = −C

i.e. RT is a rotation matrix, so RT = R−1.

6

