
COMP 558 lecture 17 Oct. 29, 2009

Slant and tilt

One familiar perceptual property of an overall surface shape is its depth gradient, or more intuitively,
how it slopes away from you. Does it slope to the right, or to the left, or downward (a ceiling) or
upward (a floor) ?

Slope depends on the first order properties of a surface, that is, the depth gradient – or equiva-
lently, the surface normal. So, working with camera axes XY Z, let’s write the slope of the surface
in terms of the depth gradient and normal. We work with spherical coordinates: the north pole is
in the −Z direction i.e. opposite to the “straight ahead”. We call 1 the latitude σ (also known as
slant), and we call the longitude τ (known as tilt). Slant σ can go from 0 to π/2 or 90 degrees. Tilt
τ can go from 0 to 2π or 360 degrees.

The depth gradient ∇Z ≡ ( ∂Z
∂X

, ∂Z
∂Y

) can be written

∇Z = |∇Z| (cos τ, sin τ)

where

|∇Z| =

√

(
∂Z

∂X
)2 + (

∂Z

∂Y
)2 = tan σ

and so
∇Z = tanσ(cos τ, sin τ).

To see why |∇Z| = tanσ, take the case that tilt is 0, and consider the following figure.
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Below are two sketches illustrating how slant and tilt vary on a cylinder and on a sphere. For
the cylinder, tilt is either 0 (right half) or π (left half) and slant varies from 0 (midline) to π/2 (left
and right edge). For the sphere, all possible values of slant and tilt are present.

1The vision community again has overloaded the symbol σ.
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The above definition of slant and tilt make intuitive sense for objects that you are “looking at”
that is, objects that are near the optical axis. But the intuition does hold for objects that are not
near the optical axis. For example, if I ask you to look straight at a wall, then the slant is 0 degrees.
However, note that points on the wall that are off the optical axis will be seen at an oblique angle -
though the slant of the wall wouldn’t change. If I asked you to “look at” one of these off axis points,
you would rotate your eye. But note that this changes the X, Y, Z coordinate system and so the
definition of the slant of the wall would change. The point here is is that we can define slant and
tilt (relative to our current camera axes XY Z) but we must realize this definition only correspond
to our intuition of the direction of the slope τ and the amount of the slope σ in the case for the
surface that is intercepted by the optical axis.

Plane under perspective

The sketches on the previous page use little disks dropped on the surface as a way to gauge (mea-
sure)2 the local surface normal. We will explore this technique further to understand the notion of
visual slant and how it affected by perspective projection.

Recall from lecture 1 that we can write a plane as

Z = AX + BY + C

and, multiplying by f

Z
we can write it in image plane coordinates as

f = Ax + By + C
f

Z
.

Note ∇Z = (A, B). Also recall that if we let Z → ∞ we get the vanishing line

f = Ax + By.

It is not difficult to show that the distance in the image from any (x, y) to this vanishing line is
| Cf

Z
√

A2+B2
|. (Recall bottom of p. 1 in lecture 13.)

As an example, suppose τ = π
2

so A = 0 which is the common case that the eye is looking at
some point on the ground. In this case,

f − By = C
f

Z
.

Writing in terms of the slant and tilt, we have

Z = Y tan σ + C

and so

f = y tanσ + C
f

Z
.

2Indeed a recent and powerful method used in visual perception experiments (psychology) for estimating how
people perceive shape is to use computer graphics to superimpose little graphically rendered virtual disks on a
surface and have users adjust the disks using a computer mouse so that they appear to lie on the surface. See
Koenderink et al’s fascinating study “Surface Perception in Pictures” (1992) which introduced this technique
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Let’s drop a disk of diameter D somewhere onto the plane. The farthest and nearest points on the
disk define ∆Y = D cos σ, and ∆Z = D sin σ, and so and

∆y tan σ = Cf∆(
1

Z
)

≈ −C
f

Z2
∆Z

and so

|∆y| ≈ |CD
f

Z2
cos σ|.

The width of the disk in the X direction is ∆X = D, and x = f X
Z

, so we get

∆x =
f∆X

Z
=

fD

Z

and so the width of the disk goes like 1

Z
and the image aspect ratio of the projected disk is

∆y

∆x
=≈ |

C cos σ

Z
|

which also goes like 1/Z. In particular, as we approach the horizon, the aspect ratio goes to 0.
Below is a photograph I took of some upside-down dessert plates on my dining room table. The

plates are all the same size in 3D and they are spaced evenly on the table. You can see that both
the image size and aspect ratio of the plates varies. The image width ∆x of the near plate is about
twice as great as the far plate, and the aspect ratio ∆y/∆x of the far plate is about 1/3 whereas
that the of the near plate is just under 1.
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Shape from texture

Surfaces in the world are not covered with little disks, obviously, such as in the figures above. In man-
made environments though, surface often do have such little markers on them which are equivalent
to disks, for example, tiled floors and ceilings, and buildings with regularly placed windows or
bricks. For these surfaces, it is possible to use the systematic distorsion of the tile elements to infer
the overall surface shape.3 This observation leads us to the problem known as shape from texture.

Consider a surface with lots of reflectance variations and/or shading and shadows on it. The
reflectance markings could be like wood grain, fur, rust, scratches, dents, dirt, stains, etc. Or it
could be like what you seen on a grassy lawn partly covered in leaves. Note that although we don’t
have a inform grid of plates or tiles, the same type of deformations described above are present,
namely the individual texture elements (say leaves) are smaller and more foreshortened toward the
horizon.

How could you infer the shape of the surface (say the slant and tile of the ground) from such
an image? One idea is to examine the second moment matrix. Since the texture elements are more
foreshorted near the horizon, one might imagine that there would be more vertical gradients near
the horizon. Thus, a system change in the ratio of the eigenvalues of the second moment matrix
might be an indication of the tilt of the surface. And if you could measure the size of the elements
(using a blob detector) then you might use the variations in the size as well. This is just a sketch
of an idea. For more details, see e.g.

• Witkin, “Recovering surface shape and orientation from texture” Artificial Intelligence, 1991.

• Lindeberg and Garding, “Shape from texture from a multi-scale perspective”, ICCV 1993.

3Indeed such surfaces also give you vanishing points!
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Depth from defocus

One last “Shape from X” problem to be discussed involves optical blur, and is called depth from

defocus. Recall from lecture 4 the expression for image irradiance from a thin lens.

E(x, y) = (
πA2

4
)
L(x, y) cos4 α

Z2
s

where the expression in brackets in the area of the aperture. To derive this expression we assumed
that all rays that pass through the lens and arrive at the image point (x, y) have the same radiance
L(x, y). For surfaces that have significant texture and that do not lie exactly on the image plane,
however, this assumption will typically not be true.

To obtain a proper expression for image irradiance in the presence of blur, we could consider
each point (x, y) on the sensor plane and consider where the rays that reached (x, y) started out,
and then average the radiances of those rays. (Think of this as reverse projection.) Alternatively,
we could forward project, by considering the rays that all come from the same point in the scene,
and follow those rays until they spread out on the sensor plane. We will take the latter approach.

Consider the image irradiance Ep(x, y) for a very small aperture (p is for pinhole). We can think
of this irradiance function as being in focus since the aperture is small by assumption and the blur
width is (recall lecture 4):

∆Xi = A | Zs (
1

f
−

1

Zo

) − 1 | . (1)

Of course, the irradiance will be very low when the aperture is so small. So, we are interested in
what happens with a larger aperture.

To keep the notation simple, let’s suppose that the blur that arises has a Gaussian distribution
over space, with standard deviation σ which is proportional to ∆Xi. We model image irradiance
by

E(x, y) =

∫

Ep(x
′, y′) σ2Gσ(x − x′, y − y′)dx′dy′.

We use the blur function σ2Gσ(x, y) rather than Gσ(x, y) since, as we open the aperture, we allow
more light in. i.e. we are not merely averaging the irradiance over the blur width neighborhood, but
we are also increasing the irradiance as A increases. (When taking a photograph, if one increases
the aperture, one typically also increases the shutter speed to counteract the increase in irradiance,
and thus maintain exposure.)

If the scene has constant depth Z, then the blur width will be constant and so will σ and the
integral will be a convolution. A weaker assumption is that, in local image region, the depth is
approximately constant, and so the above integral can be locally approximated as a convolution

E(x, y) = (Ep ∗ σGσ)(x, y).

Various methods have been invented for estimating the blur width in a local region in an image.
Note that since blur width is related to depth (and various camera parameters), it is possibly to
use the amount of blur in a local region for estimating depth.

For a few examples of papers related to focus (including a few classics, and a very recent paper
of mine that contains many citations to other focus papers, see
http://www.cim.mcgill.ca/~langer/558/TermPaperTopics.txt
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