COMP 558 lecture 16 Oct. 27, 2009

Linear shape from shading (continued)

Recall the linear shading model from last class, where the [; component of the light source was
small in comparison to |(lx,ly)|. In order to estimate shape from shading using this linear model,
we would need to know the direction of the (Ix,ly) vector. How might we estimate it? The
technique is simple — and I'll explain later this lecture. But to understand why it works, we first
need to understand the relationship between Z and its derivatives, the light source direction, and
the surface irradiance gradient.
According to the linear shading model,
E(X, Y) ~ — lZ + g—)Z(ZX + g—ily

and so the gradient of irradiance along the surface is
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The 2 x 2 matrix of second derivatives of Z is the Hessian H. Let’s have a closer look at the Hessian.
The Hessian is symmetric and so its eigenvalues are real and its eigenvectors u; and us are
orthogonal:
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Thus the Hessian can thus be diagonalized
H = UAUT,

where u; and uy are the columns of U. [Keep in mind that the U and A will vary with position
(X,Y,Z(X,Y)) along the surface.]
The diagonal elements of A are the second derivatives of Z in the directions of the eigenvectors,
A = ‘327% for ¢+ = 1,2. This is perhaps not obvious. To see why it is so, take a point (X, Yy) and
expand Z(X,Y) to second order around this point. Letting (AX,AY) = (X — X,,Y — Y}), and
(u1,u2) = (AX, AY)U, we get
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and so writing Z(u1,us) in a Taylor expansion about (uy,us2) = (0,0), we get
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from which it follows immediately that
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The eigenvalues A; and Ay can be either negative, positive, or zero. The figure below illustrates
the various combinations — think of it as a 2D shape space which is defined by the two eigenvalues
A1 and Ay. Cylinders occur when one eigenvalue is zero: a cylindrical hill occurs when the non-zero
eigenvalue is positive, and a cylindrical valley occurs when the non-zero eigenvalue is negative.
Saddle points occur when the two eigenvalues are of opposite sign (top left and bottom right). A
hill (top right) or valley (bottom left) occurs when the eigenvalues are of the same sign.

The shape space just defined is closely related to the local curvature of the surface. Those of
you who will continue on to Siddiqi’s course in the Winter semester will learn more about this.

Estimating the light source direction (lx,ly)

Eq. (@) implies that there is a relationship between the irradiance gradient, the vector (Ix,ly), and
the eigenvectors and eigenvalues of the Hessian H. In Exercise 2, I plan to ask you to work out
some of these relationsships. For now, let’s just note what happens when we take a surface that
has relatively small gradients |V Z| and we illuminate it from various directions. The figure belows
shows three images of piece of an approximately Lambertian white paper that has been crumpled
up and then uncrumpled so that it nearly flat. The paper is viewed under perspective from about
one meter. In each image, the light source is positioned in the same Z = 0 plane as the camera. In
the leftmost image, the light source is directly “above” the camera (namely Y > 0). In the middle
image the light source is off the left of the camera (X < 0,Y & 0). In the rightmost image, the
lightsource is to the left and above the camera.

For each image, I have computed the image intensity gradient at each pointﬂ, then computed
the direction 6 of the gradient, have summed up the gradient magnitudes within small theta bins,
and then plotted using Matlab’s polar command.

!To do this experiments properly, I really should have undone the camera’s non-linear response. Instead I am
just taking the raw image intensities.
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Notice how the image gradients first image in the first image are much more uniformly distributed
over direction than are the second and third. The reason is that the [y, [y components are much less
in the first image, and so the [; component (quadratic shading) plays more of a role. For the second
and third images, there is a dominant gradient orientation. This points roughly in the direction of
(and directly away from) the (Ix,ly) component. The reason why this effect occurs will be clear
once you work through the Exercise question.
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Shape from shading on a cloudy day

Let’s now turn to a different shading problem, which I introduced in my PhD thesis and presented
at ICCV in 1993, Again suppose we have a Lambertian surface of uniform reflectance. Now,
however, rather than having a unique light source direction as on a sunny day, we instead have a
diffuse light source such as on a cloudy day. We assume that the radiance from the sky is constant
L. and is much greater than the radiance coming from other surfaces in the scene. So we ignore
the radiance from surfaces in the scene, and approximate the surface irradiance as

B(X,Y) = L / n(x) -1d0
1EV(X,Y)
where V(X,Y) is the set of directions in which the sky is visible from (X, Y, Z(X,Y)). Notice that

the irradiance now depends both on the surface normal variations as well as on the amount of sky
that is visible.

2See a longer version of this paper, “Shape from shading on a cloudy day,” which appeared in the Journal of the
Optical Society of America in 1994
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Below is an image of a bumpy surface rendered with computer graphics, under the diffuse
lighting model just given. There are noticable intensity variations on the surface which are due to
the hill vs. valley shapes. Below are three sketches illustrating where the shading comes from. The
hemispheres in the two sketches on the left are partitioned into two regions — a solid color which
represents directions in which the sky is not visible, and the remainder which are directions in which
the sky is visible. Notice that with the example of the cylinder lying on the ground, the points on
the of the cylinder sees the entire sky, but as you move toward the contact between the cylinder
and the ground, there is less light arriving at the surface and so it is darker.

n (X)
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Having a model of shading is just the first step. We would like to come up with an algorithm
that estimates the surface shape from such shading. The first algorithm I came up was based on
an approximation of the above lighting model, in which the surface irradiance only depends on the
solid angle of the sky that is visible. To obtain such an approximation, one can replace the factor
n-1 by % which is its average value over the hemisphereﬁ, giving:

L
/ a0, (@)
1EV(X,))

E(X)Y) ~

3You can calculate this using spherical coordinates
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The integral just gives us the solid angle of the sky that is visible, and hence we model the surface
wrradiance as some constant times the solid angle of the visible sky.

The task now is to come up with an algorithm for computing surface shape, given the surface
irradiance functionf This shape from shading problem is challenging to solve because the visibility
of the sky is not a local property of the surface shape (like the surface normal) but rather it is a
global property. In particular, the sky visibilty V(X,Y") at a surface point (X,Y, Z(X,Y)) can be
affected by scene points that are far away, which can “cast shadows” i.e. block the sky.

The insight I had for an algorithm for solving this shape from shading problem was to think of the
visibility function not just on the surface but also in the 3D space above the surface. In particular,
when the visibility function V(XY Z) is defined in 3D space, it has strong local constraints, which
[ called local visibility constraints: If the sky is visible from some point (X, Y, Z) in space and in a
direction 1, then the sky also will be visible from the nearby point (XY, Z) 4+ rl and in direction
1. The algorithm for computing shape from shading that I came up with involved computing this
visibility field in the free space above the surface, using the local visibility constraints.

The algorithm can be explained intuitively as follows. Imagine a surface with height function
Z(X,Y). Suppose we were to flood the surface with water so that all points on the surface were
covered with water. Then, we drop down on the surface of the water a square grid of water spiders
at locations (X,Y), which correspond to the image pixels (under weak perspective). Using the
approximate model that irradiance is proportional to the solid angle of the visible sky, we can tell
each water spider the following: when the water is drained away and you land on the surface below,
you will see a certain total solid angle of the sky.

The algorithm proceeds depth by depth, analogous to draining away the water. For each depth
Z = k and for each point (X,Y, k) at that depth, we use the local visibility constraints to compute
the set of directions in which the sky is visible. If for any X,Y the solid angle of the sky decreases
to the given solid angle (what the water spider is told at the beginning), then the water spider
knows that it has reached the ground and it stops. After it stops, it is able to block the sky from
other water spiders that have not yet stopped.

How does the water spider compute how much of the sky is visible? The idea is to use the local
visibility constraint mentioned earlier. Suppose the water spider at (X,Y, Z) wishes to know if the
sky is visible in direction 1 = (Ix,ly,lz). It can then ask the nearest neigbhoring water spider in
direction (ly,ly) whether the sky was visible in direction 1 earlier when that water spider passed
through a point on the ray (X,Y,Z) + rl. This way, local visibilities are used to solve a global
problem.

There are various technical details required to get this algorithm to work, e.g. 1 assume that
outside the (X,Y’) range of the image, the surface is flat, and so the surface Z(X,Y’) has been
excavated from the ground — it lies no higher than the (assumed) flat ground outside the field of
view.

4In fact, we are given the image irradiance, not surface irradiance. But these two quantities are closely related
for a Lambertian surface, seen under weak perspective — recall lecture 15, page 1.
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\\ Algorithm (Shape from shading on a cloudy day)
\\

\\ Given an estimate Omega*(X,Y) of the solid angle
\\ of the sky that seen from each unknown surface
\\ point (X,Y, Z(X,Y)), compute the depth Z(X,Y).

for all (X,Y),
Z(x,y) :=0
for all k <= 0, V_k(X,Y) := hemisphere of directions
k :=0
repeat
forall (X,Y)
if Z(X,Y) =k
Compute V(X,Y,k) using the Local Visibility Constraints
Compute Omega(X,Y,k) from V_k(X,Y,k)
if Omega(x,y,k) > Omegax(X,Y,k)
Z(X,Y)++
k++
until Omega(X,Y,k) <= Omegax(X,Y,k) for all (X,Y),

Subsequent work...

In class I discuss a few other shape from shading papers that I wrote after the original one. You
will not be held responsible for these subsequent works. If you are interested, though, then you can

have a look at at the following papers which are (also) available on my home page:

e Towards Accurate Recovery of Shape from Shading Under Diffuse Lighting, A.J. Stewart
and M.S. Langer, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp.

411-418. San Fran., CA. (1996).

e A prior for global convexity in local shape from shading, M.S. Langer and H. H. Buelthoff,

Perception. 30(4):403-410, 2001.

e Depth discrimination from shading under diffuse lighting, M.S. Langer and H. H. Buelthoff,

Perception.29 (6) 649-660, 2000.



