
COMP 558 lecture 14 Oct. 20, 2009

Vanishing points

One of the more interesting and familiar phenomena in perspective geometry is that parallel lines
in the 3D world typically project to non-parallel lines in the image and in particular these projected
lines intersect at a image point – called the vanishing point. Parallel lines are quite common in man
made environments. The boundaries of floors, ceilings and doorways typically align with a natural
XYZ orthogonal coordinate system and produce visible edges in images. There are typically many
other lines in the scene that are parallel to each of these axes as well. For example, furniture such
as desks and shelves has this sort of cube geometry and is often placed so that its coordinate system
is parallel to the scene’s coordinate system. This implies that there are groups of lines and edges in
images which are the projections of parallel lines in the world and the lines in each group all point
to a vanishing point.

In earlier lectures we have discussed how to detect edges in images. In this lecture we will
examine the problem of finding vanishing points.

Let’s begin by reviewing the basic model. Take a point (X0, Y0, Z0) in space and a direction
(TX , TY , TZ). This defines a line

(X0, Y0, Z0) + t(TX , TY , TZ).

If the camera center (X, Y, Z) = (0, 0, 0) does not lie on the line, then the camera center and the
line together define a plane.

The image projection of the line is the intersection of this plane with the image projection plane,
and this image line can be parameterized by t:

(x(t), y(t)) = (
X0 + TX t

Z0 + TZ t
,
Y0 + TY t

Z0 + TZ t
) f

Note that it is not immediately obvious that (x(t), y(t)) define a line. The fact that it does define
a line follows from the geometric argument above.

If TZ 6= 0, then we can let t → ∞ and we get

(xv, yv) = f(
TX

TZ

,
TY

TZ

) (1)

1

COMP 558 lecture 14 Oct. 20, 2009

which is the vanishing point of the line. If TZ = 0, then the 3D line lies in a constant Z plane, and
the image projection of the line is

(x(t), y(t)) = (
X0 + TX t

Z0
,
Y0 + TY t

Z0
) f

As t → ∞, we go to a point at infinity in direction (Tx, Ty) in the image plane. Thus, if we have
a set of parallel lines whose direction is perpendicular to the Z axis, then the vanishing point is a
point at infinity in the direction of the lines.

Notice that the vanishing point is only defined by the direction vector (TX , TY , TZ), not by the
point (X0, Y0, Z0). This means that we can vary the latter point however we like (not just along the
line) and we will always get the same vanishing point. Thus, any set of parallel lines have the same
vanishing point. Thus, parallel lines in the world project to image lines that converge at a vanishing

point.
Also note the above derivations are similar to the analysis of translational camera motion which

we saw in lecture 2. Why? When you translate the camera, all points in the scene travel along
straight lines relative to the camera center. From the camera’s perspective, there is no difference
between translating the camera and keeping the world fixed versus translating the world and keeping
the camera fixed. Recall that when you translate the camera, all points move away from the direction
of heading. The direction of heading is thus mathematically equivalent to the vanishing point.

Finally, you may have heard of vanishing points in the context of classical painting and drawing.
In particular, you may have heard of 1,2, and 3 point perspective. What do these refer to? In a
scene where there are many 3D lines/edges that are parallel to the scene’s X, Y, Z axes, the image
projection projection plane will typically contain up to three finite vanishing points. (It can contain
more, for example, if there are additional sets of parallel lines.)

Suppose that the scene’s X, Z axes are north and west, and Y is the gravity direction. If the
camera is pointing in the scene’s X (or Z) direction and the camera’s y axis is parallel to gravity,
then the image is a one point perspective since there is only one finite vanishing point, namely at
the optical axis. The other two vanishing points are at infinity. A two point perspective arises, for
example, when the camera’s Y axis is parallel to the line of gravity, but the camera’s X axis different
from the scene’s X and Z axes (and you can deduce that the camera’s Z axis is also different from
the scene’s X and Z axes). In this case, the scenes X and Z axes both produce finite vanishing
points. But since the gravity direction Y produces a vanishing point at infinity, there are only two
finite vanishing points. Finally, if none of the three camera axes are parallel to the scene’s XY Z

axes, then you have a three point perspective. There are three finite vanishing points.
[ASIDE: When looking at a two or three point perspective drawing, you should position your

eye so that the axes subtend a 90 degree angle, since that would be the situation in the scene.
Notice that this typically requires your eye is quite close to the paper/canvas.]

Estimating a vanishing point

Suppose you have run a Canny edge detector (or some other edge detector) and so you have a set of
image points and orientations (x, y, θ) where θ is the direction of the gradient of the image intensity,
i.e. perpendicular to the edge. Each such triplet defines a line

(x − xv, y − yv) · (cos θ, sin θ) = 0

2

COMP 558 lecture 14 Oct. 20, 2009

where (xv, yv) is the vanishing point.
Estimating the location of the vanishing point requires estimating the intersection of such lines.

This problem would be trivial to solve except that: (1) only some subset of the lines in the 3D
scene will be parallel to each other and so we don’t know which image edges to use, and (2) the
estimated values of (x, y, θ) typically are noisy.

Notice that this problem resembles the problem we saw last lecture in which we wanted to fit a
line to a set of points. There, (1) we talked about inliers and outliers, namely points that belonged
to a line and those that did not, and (2) the positions of the points that belonged to a line were noisy.
I argued that when the percentage of outliers was non-negligable, a least squares fit on all the data
didn’t make much sense and suggested instead that we use a method such as the Hough transform
or RANSAC. We will follow a similar line of thinking today for vanishing point estimation.

“Hough transform” approach 1

We will consider two different approaches, both of which are of the Hough transform flavor since
they involve voting for location (xv, yv) of the vanishing point. For the first approach, let’s first
assume that the vanishing point lies within the limited field of view of the image. (This is a very
strong assumption and in general we don’t want to make it. But it is a good place to start.)

Given (xi, yi, θi), our model for a line through (xi, yi) and perpendicular to (cos θ, sin θ) is

(x − xi, y − yi) · (cos θ, sin θ) = 0 .

Here is a sketch of an algorithm we could try (assuming θ 6= 0):

for each edge element (xi, yi, thetai){

for x in 1:Nx

y = round((yi sin (theta) + (xi - x) cos(theta)) / sin(theta))

if (1 <= y <= Ny)

count(x,y)++

}

find (x,y) that maximizes count(x,y) // there may be several peaks

This algorithm will be very sensitive to noise1, and so to make it work you would need to do more.
For example, to account for noise in the θi estimate, you could add a loop over a small range of
angles centered at θi. You could also weight the vote by the inverse distance from (xi, yi), since the
errors in θi would lead to bigger errors in the location of the line as you move away from (xi, yi).
We will not bother further with these details, though, since we will introduce a better algorithm
later this lecture.

Note the time complexity of this algorithm. If we have n edges and an N × N image then we
need O(nN) operations. (Recall we are assuming the vanishing point lies within the image.)

“Hough transform” approach 2

A second approach is to try to estimate the vanishing point directly by taking pairs of edges
(xi, yi, θi) and (xj , yj, θj), computing the intersection of their lines, and then voting directly on the
intersection points. Note that this assumes that θi 6= θj .

1and there are other problems, such as skipping y values when | tan θi| > 1

3

COMP 558 lecture 14 Oct. 20, 2009

You can find lines using Gaussian elimination, but there is an equivalent (and slightly quicker)
way to find the intersection of two lines. Let the two lines li be

aix + biy + ci = 0

where i = 1, 2. Think of 3D vectors (ai, bi, ci) and (x, y, 1), where the latter lies on a projection
plane Z = 1. Then vectors (ai, bi, ci) and (x, y, 1) are orthogonal to each other. In particular,
(ai, bi, ci) is orthogonal to the plane πi spanned by the origin and the line li.

We now have two planes π1 and π2, both of which pass through the origin. The intersection of
these two planes must therefore be a line that passes throuh the origin. This line meets Z = 1 at
precisely the intersection of l1 and l2. What is this line?

Since (ai, bi, ci) is orthogonal to plane πi, it follows that the cross product vector

(wx, wy, w) = (a1, b1, c1) × (a2, b2, c2)

must lie in both planes π, and hence it lies on the intersection of the two planes. Thus, to get the
intersection of the two lines l1 and l2, we normalize the cross product vector (x, y, z) so that it
intersects Z = 1, and so the intersection point is (x

z
, y

z
)

For example, suppose we have the two lines

3x + 4y + 2 = 0

2x − y = 0.

Then (3, 4, 2)× (2,−1, 0) = (2, 4,−11) and so the intersection point is (− 2
11

,− 4
11

).
Here is a similar algorithm as above, but which is based edge intersections.

for each pair of edge elements (x,y,theta) and (x’,y’,theta’)

if theta != theta’{

compute intersection (xv,yv) of lines containing these edges

count(xv, yv)++

}

find (xv,yv) that maximizes count(xv,yv)

The complexity is slightly different here. If there are n edge elements, then there are n(n−1)
2

pairs,
so the time is O(n2).

Gaussian sphere

One key limitation with the above methods is that often the vanishing points does not lie within
the image domain. The first algorithm explicitly assumed that the vanishing point was within the
range of a fixed Nx × Ny grid. The second assumed a count matrix with real valued indices (since
the (xv,vy) values are not necessarily integers. Obviously to implement the second algorithm you
would need to quanitze the possible (xv,vy) values. However, no matter how bit a matrix you use
for the possible quantized values of (xv,vy) values, it will still only cover a finite set of directions.
The algorithm cannot handle the case that the vanishing point is at infinity, i.e. that the direction
of the parallel lines have TZ = 0 (see page 1).

4

COMP 558 lecture 14 Oct. 20, 2009

The classic solution to this problem is to consider a projection sphere, rather than a projection
plane. That is, place a unit sphere at the center of projection and consider each ray arriving at
the camera center by where it intersects the unit sphere. This unit sphere is sometimes called the
Gaussian sphere2

vanishing point

Recall that any edge element (x, y, θ) defines a line in the projection plane, and that this line
defines a plane containing the line and the center of projection. This plane is sometimes called
the interpretation plane in the vanishing point literature. Since this plane contains the center of
projection, it must intersect the Gauss sphere on a great circle, namely a circle of radius 1 whose
center is the center of projection. (Note that there is a 1-1 relationship between great circles and
points on the unit sphere, namely each great circle lies on a plane which has a unit normal.) Thus,
all points on the 3D line in question must project to points on the great circle defined by that line.
In particular, the vanishing point must lies on that great circle as well.

A set of parallel lines in the scene define a set of great circles and since the vanishing point lies
on each great circle, the vanishing point must be the intersection point of these great circles. There
is nothing new here. I am just repeating the arguments made above for the projection plane, but
now the projection plane (and the lines drawn on it) itself is projected onto the Gauss sphere.

The advantage of using the Gauss sphere rather than the projection plane is that the Gauss
sphere is finite. We can re-define the two “Hough transform” methods above, but vote on the Gauss
sphere instead. We just need to carve up the Gauss sphere into cells.3 You would like to do so in
such a way that the area of each tile is about constant. Why? Presumably the vanishing points
could occur in any direction we will be looking for the tile with the maximum number of votes. If
we were to make one tile much bigger than another, then we would be more likely to get the max
number of votes in the big tile. If we don’t use equal sized tile, then at least we should normalize
the votes so that their number is weighted inversely by the tile area.

The first Hough method goes as follows. For each line element, you need to find the set of
tiles on the unit sphere that intersect the interpretation plane defined by that line element. You
increment the counter for each such tile. After all line elements have been considered, you pick the
tile with the highest count. This is the vanishing point.

The second Hough method is to compute the intersection of pairs of lines as before. (This is

2The term “Gaussian sphere” is used for many things, not just this.
3 There are various ways to tile a sphere. For example, you could use spherical coordinates (longitude and

latitude). Or you could use a soccer ball type tiling.

5

COMP 558 lecture 14 Oct. 20, 2009

equivalent to computing the intersection of the corresonding great circles.) You then normalize the
intersection vector so it has unit length (not unit Z value, which is what we did before). This defines
a direction on the Gaussin sphere. Increment the counter for the tile containing this direction.

Orthogonal frames (also known as “Manhattan world”)

As mentioned at the beginning of the lecture, many scenes contain not just one set of parallel lines,
but rather two or three sets of parallel lines and these lines directions are orthogonal. e.g. Many
made environments for example have a floors and ceilings, walls and doorways, etc, which define a
natural XYZ orthogonal coordinate system. (Such scenes are said to obey the Manhattan World

model.)
On the one hand, having three vanishing points makes each of them more difficult to estimate,

since the inlier edges for one vanishing point are outliers for the other vanishing points, i.e. we expect
to find three maxima with our Hough method. On the other hand, the fact that the directions of the
vanishing points are orthogonal is a constraint that could be useful both for finding the vanishing
points and for subsequently using them e.g. to visually orient yourself with respect to the canonical
directions in the scene.4

What can we say in general about the image positions of the vanishing points in the case?
Suppose that there exist three vanishing points that correspond to three orthogonal directions. Let
these vanishing points be P, Q, R in the image projection plane Z = f . What can we say about the
relationship between P, Q, R ?

Since each of these points lies in the image projection plane Z = f , the line joining any two of
these points to each other also lies in the projection plane. Let C be the center of projection (the
origin) and let O be the principal point which is the intersection of the Z axis with the projection
plane. Then the vector CO is perpendicular to the line between any two of the vanishing points.

Take a vanishing point S. Since vector CS is perpendicular to vectors CR and CQ, vector CS is
perpendicular to the vector CR−CQ. But vector OC is also perpendicular to the vector CR−CQ.
Thus CR − CQ must be be perpendicular to the plane spanned by OC and CS. Thus, within the
projection plane Z = f , the line through CR and CQ must meet the line through CS and CO at
right angles. Thus, O lies on the unique image line from S that meets line RS at right angles.

Applying these arguments to the other two pairs, we get that the image center O is at the
intersection of the (three) lines through each of the vanishing points that meets at a right angle the
line through the other two vanishing points. (This intersection point is called the orthocenter of the
triangle.)

At first glance, it seems from the above argument that if we know the three vanishing points,
then we can find the image center. Similarly, if we know two of the vanishing points and we know
the image center, then we can find the third vanishing point.

Not so fast, however. The above arguments were in terms of points on the projection plane,
rather than in terms of pixel units. But the image is given in pixel units! If we want to use the
above result, then we need to know the relationship between the two, namely we need to know the
calibration matrix K. I will leave this issue for an Exercise.

4See for example, J. M. Coughlin and A.L. Yuille “Manhattan World: compass direction from a single image by
Bayesian inference” in ICCV 1999”, or more recently “J. P. Tardif “Non-iterative approach for fast and accurate
vanishing point detection” in ICCV 2009, and several papers cited within.

6

