
COMP 558 lecture 12 Oct. 13, 2009

Today we will look at a few important topics in scale space in computer vision, in particular, coarse-
to-fine approaches, and the SIFT feature descriptor. I will present only the main ideas here to give
you a sense of the problem and possible solutions. You should consider these ideas to be the tip of
the iceberg. I’m hoping that some of you will be curious and will choose these as topics for your
term paper or further readings on your own.

Coarse-to-fine image registration

Lucas-Kanade image registration made use the second moment matrix.
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Let’s begin by building a scale space out of this matrix. Suppose that each of the partial derivatives
is computed with a normalized Gaussian derivative where the Gaussian has parameter σ. This
defines a scale space of 2nd moment matrices, namely a family of second moment matrices that are
defined over the domain (x, y, σ).

Notice that the summations over the neighborhoods themselves define a convolution. For ex-
ample, if we were to define

w(x, y) ≡

{

1, (x, y) ∈ Ngd(0, 0)
0, otherwise

then we could write
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where it is understood that each term in the 2×2 matrix is a function of (x, y) and the convolution
is applied to each of the terms.

Often in practice, one wishes to give more weight to closer neighbors of (x0, y0) and one uses
a Gaussian for w(x, y). In this common case, we have one Gaussian GσD

(x, y) to blur the noisy
image and a second Gaussian GσI

(x, y) to integrate the second moment matrix. The D and I refer
to the derivative scale and the integration scale, respectively. They are also sometimes called the
inner scale and outer scale. Typically the ratio σI : σD is constant, for example, 3.

Recall the version of the problem in which we were trying to find a translation (hx, hy) such
that I(x+hx, y +hy) ≈ J(x, y). In deriving the Lucas-Kanade method, we used a first order model
for the intensities of I(x, y) in local neighborhoods. This required that the translation distance
h = |(hx, hy)| is much less than the radius of the neighborhood.1 This implies that we need to
choose a neighborhood scale σI that is much greater than h. But what do we do if the actual
translation distance h is large ? In that case, it would seem that our estimate of (hx, hy) should
give a poor match (since it is computed under the assumption that h is small).

Assume our scale space for the second moment matrix is defined by keeping the ratio σI : σD

constant, so by “σ” here let’s just say we mean σD. Blurring the image by σ now removes not just
the image noise, but also smooths out variations in the image signal at distances similar to σ. The

1Recall: The first order model says that the intensity is linear. But if the intensity is linear over the whole
neighborhood, then we have the aperture problem and cannot uniquely determine (hx, hy).
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blurred image is now smooth (roughly linear) at these distances and so the linear model applies at
these distances, and we can estimate (hx, hy) up to around the distance σ.

Note, however, that this estimate of (hx, hy) often will be give us only a rough approximation
since the LK method also assumes that (hx, hy) is constant over the integration neighborhood
Ngd(x0, y0). But using a larger σD means that we need to use a larger σI too2 since we need
the gradient ∇I to be constant over the σD neigbhorhood, but we need it to vary over the σI

neighborhood. But the larger we make σI , the less likely it is that (hx, hy) will be constant over
this neighborhood. What can we do?

The solution is to use a coarse-to-fine approach. Suppose we wish to estimate (hx, hy) near pixel
(x0, y0). (We will repeat the following for all pixels, so let’s just work with a single pixel.) We
compute the scale spaces I(x, y, σ) and J(x, y, σ). We first estimate (hx, hy) at the largest scale,
and then proceed iteratively to the smaller and smaller scales.

Suppose we have estimated (hx, hy)
k+1 at scale σk+1. To estimate (hx, hy)

k at scale σk, we shift
the pixels (x, y) ∈ Ngd(x0, y0) and within scale σk

I∗(x, y)← I(x + hk+1
x , y + hk+1

y , σk).

Note that we copy the values into a temporary variable I∗(x, y) – that is, we don’t actually modify
the scale space!

We then apply LK registration to match I∗(x, y) to J(x, y) in Ngd(x0, y0). This match gives an
estimate (hx, hy), and so our net estimate at scale σk is:

(hx, hy)
k ← (hx, hy)

k+1 + (hx, hy)

Notice that at each scale σk, the blur used to compute the gradient is less and less and the size
of the neighborhood over which we integrate the gradients is less and less. This means that we
ultimately are using all the information in the image, and we are (at the end) assuming that the
translation (hx, hy) is constant in a small neighbhorhood only.

One final note: you should realize that there are two iterations going on here. There is the
coarse-to-fine iteration mentioned above. And there is also the iteration within each scale σk which
we discussed in lecture 10. I did not mention the latter iteration above – to avoid confusion. But
now I mention it to remind you it is still there.

Local descriptors

Difference of Gaussians (DOG)

Let’s now turn to our second topic for today’s lecture. Recall the problem of blob detection from
last lecture. I presented a simple solution to it which was based on the normalized Laplacian filter.
One observation is that is “historically” very important in vision research is that the Laplacian
of a Gaussian function has a similar shape to a difference of Gaussians (called a DOG), namely a
difference of two Gaussians with different standard deviations.3 You can see this by sketching the
two functions by by hand (as I did in class - do it for yourself now). A more formal proof goes as
follows:

2as mentioned earlier, often we are hold σI : σD constant
3e.g. D. Marr, E. Hildreth, ”Theory of Edge Detection”, Proc. Royal Soc. Lond. (Series B), 1980.
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First, one can show just by taking derivatives that

σ
∂2Gσ(x)

∂2x
=

∂Gσ(x)

∂σ
.

(This happens to be a version of the heat equation in physics.) Then4 we can approximate

∂Gσ(x)

∂σ
≈

Gsσ(x)−Gσ(x)

sσ − σ

where s is slightly bigger than 1, and so

σ
∂Gσ(x)

∂σ
≈

Gsσ(x)−Gσ(x)

s− 1

and substituting from the heat equation above gives what we want

σ2∂2Gσ(x)

∂2x
≈

Gsσ(x)−Gσ(x)

s− 1
.

Similarly in 2D,
Gsσ(x, y)−Gσ(x, y)

s− 1
≈ σ2∇2Gσ(x, y).

Thus, the DOG and Laplacian of a Gaussian have similar shapes, as claimed. (Note that s− 1 is a
constant, and so doesn’t affect any claims about scale invariance.)

Often one approximates the normalized Laplacian scale space by computing a Gaussian scale
space (Gσ ∗ I)(x, y) over a discrete set of scales siσ0 and then computing the difference of Gaussians
at neighboring scales. This is done by the SIFT method, which I will discuss below. (You will also
use this scheme in Assignment 2.)

Keypoints

Suppose that we have computed a scale space using the normalized Laplacian (or a difference of
Gaussians). I argued last lecture that such a scale space will give local maxima and local minima
over (x, y, σ) when there is a “blob” present. In 2D, a blob is a square that is brighter than its
background (this gives a local minimum) or a square that is darker than its local background (this
gives a local maximum). Recall that the maxima and minima occur at specific scales which are
related to the size of the squares. Also, the height of the local maxima and minima will depend
on the difference of the intensity between the blob and its background. Last class I assumed the
background intensity was zero, but since the DOG gives no response to a constant image all that
matters is the difference in intensity (recall Question 7 on the midterm exam).

As you will see in Q2 of Assignment 2, for general images you will lots of local maxima and
minima and these typically are not due to isolated square regions on a uniform background. Rather
these local maxes and mins arise from other image intensity patterns. We can refer to a local
maxima and minima of the filtered image as a keypoint. These are similar to Harris corner points

4This argument was taken from D. Lowe “Distinctive Image Features from Scale Invariant Keypoints, International
Journal of Computer Vision 2004”, but the basic idea is much older than that.
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mentioned in lecture 9, but now we are specifically defining them to be local maxes and mins of the
DOG filtered image in a 3D scale space, rather than in terms of a maximum of the Harris corner
measure at a particular scale.

For each keypoint, we have a position (x, y) and a scale σ. If we had a second image of the
same scene but the image was scaled relative to the first, the scale space of that image will be
stretched relative to the first, and it should have corresponding maxima and minima. (Moreover,
these maxima and minima should still be present if the second image was 2D translated and 2D
rotated relative to the first image.)

If we have a set of several hundred keypoints in one image, and we want to match these to
keypoints in another image, it is sometimes convenient to have a descriptor of the image in the
neighborhood of each keypoint. Otherwise any keypoint in the first image could potentially be
matched to any keypoint in the second image. Each keypoint has a scale σ so it makes sense to use
the intensity structure in the scale space at that scale σ and in a local neighborhood of the keypoint
position, where by “local” we mean a neighborhood that depends on σ. For example, as mentioned
earlier, if σ is scale at which we compute the derivative (σD), then the neighborhood could be a
Gaussian window defined by σI which is a fixed multiple of σD.

How can we describe the local intensity structure ? Let’s briefly sketch out one solution, called
SIFT, which has been extremely popular in the last decade.5

SIFT: Scale invariant feature transform

Assume we have found a keypoint at (x0, y0, σ) which is a local maximum (or minimum) in a
difference of Gaussian scale space. We ensure that this local peak is sufficiently different from its
neighbors and sufficiently different from zero, i.e. it is it is well localized and it is a large peak. We
now want to describe the intensities in scale space in the neighborhood of the keypoint.

SIFT constructs a local descriptor of the normalized gradients vectors σ∇Gσ ∗ I(x, y) at the
scale σ and in the (x, y) neighborhood of the feature point. Suppose we sample a square of width
say 4σ with 64× 64 grid of samples. Note that the larger is σ, the wider the spacing of the samples
relative to the original image.

The first step is to find any dominant orientations. For example, a square has four dominant
orientations corresponding to the four edges. A triangle with long side and two short sides would
have one dominant orientation, whereas a triangle with two long sides and one short side would
have two dominant orientations.

To find the dominant orientations, take the sampled gradient vectors in the neighborhood of
(x0, y0) and treat them as a “set”, that is, apart from the weighting we ignore their spatial locations.
Then make direction bins and drop these vectors into their appropriate bin, as follows.

5http://people.cs.ubc.ca/~lowe/keypoints
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// Let theta(x,y) and mag(x,y) be the direction and length

// of the image gradient at (x,y,sigma).

//

angleStep = 360/numAngleBins

for ctTheta = 0:numAngleBins-1

hist(ctTheta) = 0

for (x,y) in Ngd(x0,y0, sig)

hist(theta(x,y) mod angleStep) += mag(x,y)

Lowe uses 24 angle bins of 15 degree width.
This gives a histogram6 of orientations. The bin with the maximum value is taken to be the

dominant orientation of the keypoint. If there is more than one dominant orientation, i.e. there
may be more than one peak in the histogram that has roughly the same (max) height, then make
multiple local descriptors.

There are several ways one could imaging building a descriptor, once one has a dominant ori-
entation. (For example, one could use the raw image intensities I(x, y, σ) in some σ-neighborhood.
This turns out to work very poorly, though, for matching between images, since the intensities tend
to change enormously when either the lighting changes and or camera parameters change. )

What SIFT does (in a nutshell, ee his 1999 or 2004 paper for more details if you want to probe
a bit deeper) is the following. Define a rotated square that is oriented parallel to the dominant
direction found above. The width of the square is some multiple of the scale σ and the square is
partitioned into a 16× 16 grid. The gradient vector is chosen/computed for each of these 256 grid
elements. This 16× 16 grid is then partitioned in a 4× 4 array of 4× 4 subgrids. For each of the
subarrays, an orientation histogram with 8 orientations of 45 degrees each is constructed (rather
than 24 orientations of 15 degrees, which is what was used to find the dominant orientation for
the whole neigbhorhood). These 16 orientation histograms, with 8 bins each, define at 128 dimen-
sional “feature descriptor”. (In Lowe’s 2004 paper, he carries out several experiments comparing
performance for various choices of the number of subgrids and number of direction bins.)

Of course, there are several technical details that I have left out here, but that is the main idea.

6 http://en.wikipedia.org/wiki/Histogram
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