Fundamentals of
Computer Vision
COMP 558
Fall 2009
Instructor:
Prof. Michael
Langer
Lecture Notes
-
pinhole camera model
(PDF)
- image motion seen by moving camera
(PDF)
-
homogeneous coordinates, camera model
(PDF)
-
thin lens model
(PDF)
-
lighting and reflectance
(PDF)
- color, image capture
(PDF)
- intro to linear systems (convolution)
(PDF)
- 1D Canny edge detection
(PDF)
- 2D Canny edge detection, Harris corners
(PDF)
- image registration (Lucas-Kanade)
(PDF)
- scale space 1 (normalized derivatives, blobs)
(PDF)
and
(code)
- scale space 2 (coarse to fine, SIFT)
(PDF)
- fitting lines (least squares, Hough, RANSAC)
(PDF)
- finding vanishing points
(PDF)
- shape from shading 1
(PDF)
- shape from shading 2
(PDF)
- shape from texture, focus
(PDF)
- camera calibration, least squares
(PDF)
- homographies, SVD
(PDF)
- structure from motion 1 (egomotion)
(PDF)
- structure from motion 2 (factorization)
(PDF)
- stereo 1 (epipolar constraints, fundamental matrix)
(PDF)
 
song
- stereo 2 (rectification, correspondence)
(PDF)
- stereo 3 (graph cuts)
(PDF)
|