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Theoretical studies suggest that primary visual cortex (area V1) uses a sparse
code to efficiently represent natural scenes. This issue was investigated by
recording from V1 neurons in awake behaving macaques during both free
viewing of natural scenes and conditions simulating natural vision. Stimulation
of the nonclassical receptive field increases the selectivity and sparseness of
individual V1 neurons, increases the sparseness of the population response
distribution, and strongly decorrelates the responses of neuron pairs. These
effects are due to both excitatory and suppressive modulation of the classical
receptive field by the nonclassical receptive field and do not depend critically
on the spatiotemporal structure of the stimuli. During natural vision, the
classical and nonclassical receptive fields function together to form a sparse
representation of the visual world. This sparse code may be computationally
efficient for both early vision and higher visual processing.

Although area V1 has been studied for over
40 years, little is known about how V1 en-
codes complex natural scenes. Theoretical stud-
ies suggest that natural scenes can be efficient-
ly represented by a sparse code based on
filters that resemble neurons found in area V1
(1, 2). Sparse codes lie along a continuum
ranging from dense codes, where neurons
respond to most stimuli, to local codes, where
neurons give extremely selective responses
(3). Both of these extremes are inefficient in
several important respects. Dense codes are
highly redundant and each neural response
carries little information, whereas local codes
require an implausibly large number of neu-
rons and are computationally intractable. In
contrast, neurons that are tuned to match the
sparsely distributed, informative components
of the natural world can produce sparse codes.
Sparse codes transmit information with min-
imal redundancy and relatively few spikes.
Consequently, they are both informationally
and metabolically more efficient than dense
codes (4). There have been a few studies of
sparse coding in inferior temporal visual ar-
eas (5). We have addressed this issue in area
V1.

Recent theoretical studies suggest that
nonlinear interactions between neurons may
increase coding sparseness in area V1 (2, 6).
These interactions are predominantly reflect-
ed in modulation of classical receptive field
(CRF) responses by the surrounding nonclas-
sical receptive field (nCRF) (7). Previous ex-

periments have demonstrated that nCRF stim-
ulation strongly modulates responses during
free viewing of natural scenes (8). This report
demonstrates that V1 employs a sparse code
to represent natural scenes and shows that the
nCRF plays a crucial role in this process.

We have addressed this issue by using
controlled stimuli that simulate natural vi-
sion. The stimuli were sequences of images
simulating the spatial and temporal patterns
occurring in and around the CRF when an
animal freely views a static natural scene (see
Fig. 1A). Eye scan paths were generated with
a statistical model of eye movements made
during free viewing (9). Image patches were
extracted from a natural scene along the sim-
ulated scan path and converted to gray scale
(10). Each natural vision movie was com-
posed of a series of simulated fixations sep-
arated by brief simulated saccadic transitions.

In the experiments described here, we ma-
nipulated the size of the extracted image
patches. Patch size varied from one to four
times the diameter of the CRF. To reduce
potential boundary artifacts, the outer 10% of
each image patch was blended smoothly into
the neutral gray background. Data reported
here are from 61 well-isolated neurons re-
corded in area V1 of two awake behaving
primates (11).

The sparseness of V1 responses increases
dramatically with larger natural image patch-
es that encompass both the CRF and the
nCRF. This effect is illustrated in Fig. 1,
which compares responses obtained with
stimuli confined to the CRF (Fig. 1B) with
those obtained with stimuli four times the
diameter of the CRF (Fig. 1C). To quantify
sparseness we used a nonparametric statistic
(12): S 5 {1 2 [(Sri/n)2/S(ri

2/n)]}/[1 2 (1/n)],
where ri is the response to the ith frame of a

movie (averaged across trials) and n is the
number of movie frames. Values of S near
0% indicate a dense code, and values near
100% indicate a sparse code.

Distributions of S across the sample of
neurons are shown in Fig. 2 for each stimulus
size. As stimulus size increases, sparseness
increases systematically (P , 0.01) (13). The
sparseness statistic saturates when stimuli are
three to four times the size of the CRF,
consistent with the spatial extent of V1 nCRF
modulation reported in other studies (7). The
high sparseness values produced by large
stimuli suggest that area V1 uses a sparse
code during natural vision, when stimuli span
the entire visual field.

The simulated saccades in our natural vi-
sion movies often produce large transient re-
sponses followed by rapid adaptation during
the course of the fixation. To assess the con-
tribution of this fine temporal structure to
sparseness, we recomputed the sparseness
statistic after averaging all responses within
each fixation. Absolute sparseness values are
significantly lower in the fixation-based anal-
ysis (P , 0.05), but sparseness still increases
with increasing nCRF stimulation (14). Thus,
transient responses and adaptation contribute
to sparseness but do not account for all of the
observed nCRF effects.

We reanalyzed a subset of cells to deter-
mine whether these sparsening effects were
due to nCRF suppression, excitation, or both
(n 5 36 cells; stimuli four times the CRF
diameter). Twenty-nine percent of all the
frames in this sample are significantly mod-
ulated (P , 0.05), and the ratio of suppres-
sion to excitation is about 4.5 to 1. Excitation
is often concentrated in the onset transients
that occur after simulated saccades, whereas
suppression reduces responses across an en-
tire fixation. Thus, natural nCRF stimulation
appears to increase sparseness by both en-
hancing and suppressing specific epochs of
the response.

It is unlikely that these results are an
artifact of incorrect CRF definition (15). We
defined the CRF as the circular region cir-
cumscribing all locations where stimuli evoked
action potentials. Overestimation of CRF siz-
es would cause inadvertent nCRF stimulation
by movies confined to the nominal CRF,
thereby increasing estimates of CRF sparse-
ness and decreasing the apparent sparsening
effects of nCRF stimulation.

We also performed a control experiment
to ensure that our sparseness estimates did
not depend on the position of the patch
boundary, which necessarily varied with patch
size. The control stimulus consisted of a nat-
ural vision movie four times the CRF diam-
eter on which a sharp, white ring was super-
imposed along the exterior boundary of the
defined CRF. The ring provided a strong
artificial edge to enhance the magnitude of
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any potential edge effects. Ring trials were
randomly interleaved with non-ring trials.
The addition of the CRF-diameter ring in-
creases sparseness by an average of 8% (n 5
12 neurons) relative to that observed without
the ring. Thus, sparseness estimates for CRF-
diameter stimuli may be inflated slightly be-
cause of the presence of the sharp border,
which suggests that our estimates of the
sparsening effects of nCRF stimulation prob-
ably underestimate the true size of this effect.

The data presented above were acquired
with controlled stimuli that simulate natural
vision. During natural free viewing, V1 ac-
tivity reflects both visual stimulation and

modulation by extraretinal factors such as eye
movements and attention (16). We examined
how these extraretinal factors affect sparse-
ness by comparing responses obtained during
free viewing of natural scenes (17) to re-
sponses obtained with natural vision movies
that re-created the visual stimulation occur-
ring in the CRF and the surround during the
same free-viewing episodes (18). Both free-
viewing and natural vision movie data were
acquired in 11 V1 neurons (17 separate free-
viewing episodes). Sparseness values ob-
tained during free viewing and with natural
vision movies are highly correlated (r 5
0.91). However, the slope of the regression
line is 1.2, which suggests that free viewing
produces a slightly more sparse response than
do natural vision movies simulating free
viewing. Given that the movies may not fully
stimulate the nCRF of some cells, this small

difference is expected, but we cannot rule out
the possibility of weak extraretinal effects.

As a final control, we examined sparse-
ness values obtained with dynamic grating
sequences (n 5 22 neurons) (19) to see if
sparsening is specific to natural stimuli. To
compare response sparseness for random
grating sequences and natural vision movies,
we computed S for both stimulus types and
for stimuli one and two times the size of the
CRF. The sparseness values obtained with
gratings and natural vision movies are not
significantly different from each other, which
suggests that sparseness might be induced by
oriented energy present in both natural stim-
uli and grating sequences.

The sparse coding hypothesis also pre-
dicts that responses will be sparse when ex-
amined across the population of neurons in
V1. To investigate this, we evaluated the
kurtosis of the response distribution (RD)
obtained with each stimulus size. The RD is
the histogram of responses (i.e., action poten-
tials per movie frame) pooled over all cells
and all stimuli; it is an estimate of the popu-
lation response of V1 to an ensemble of
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Fig. 1. Natural vision movie and representative
responses. (A) Example of a natural scene used
as the source image for natural vision movies.
White line represents simulated visual scan
path. Image patches centered on the scan path
were extracted to form the movie. Small white
circle gives the CRF size; larger circle is four
times the CRF diameter. (B) Raster plot of
action potentials during 20 presentations of a
movie confined to the CRF. The number of
action potentials during each 13.8-ms movie
frame is indicated by intensity. Solid line is the
peri-stimulus time histogram (PSTH). The
sparseness of these data is 16%, which implies
a dense distribution of responses across the
stimulus set. (C) Raster plot of action potentials
during 20 presentations of a movie with a
stimulus size four times the CRF diameter. Dark
line again gives the PSTH. Stimulation of the
nCRF increases sparseness to 53%.

Fig. 2. Stimulation of the nCRF increases
sparseness in single neurons. Effects of stimulus
size on distribution of the sparseness statistic
across the sample of cells. Expressed as a per-
centage, S is 0% when a neuron responds
equally to all frames of a movie and 100%
when a neuron responds to only a single frame.
An increase in S indicates an increase in the
sparseness of neural coding across the stimulus
ensemble. Mean sparseness values are 41%,
52%, 61%, and 62% for stimuli one, two, three,
and four times the CRF diameter, respectively.
To quantify sparseness changes in single neu-
rons we computed the ratio of the observed
shift in S to the maximum possible shift as a
function of nCRF stimulation: Sshift 5 (SnCRF 2
SCRF)/(1 2 SCRF). Average Sshift values are 18%,
32%, and 36% for stimuli two, three, and four
times the CRF diameter, respectively. Neurons
with statistically significant (P , 0.01) shifts
are black and are stacked on top of those with
insignificant shifts.

Fig. 3. Stimulation of the nCRF decorrelates
responses across the population of neurons in
area V1. (Upper) Distribution of upper limits of
the separation angles between pairs of neurons
tested with similar natural vision movies con-
fined to the CRF. Separation angle is inversely
proportional to the similarity of responses be-
tween randomly selected V1 neurons recorded
in separate sessions [see text and (21) for de-
tails]. The mean separation angle is 51°, indi-
cating substantial response similarity. (Lower)
Distribution of upper limits of the separation
angles between neuron pairs obtained with
natural vision movies four times the CRF diam-
eter, plotted as in (Upper). The mean of this
distribution is 67°, which is significantly larger
than the mean of the distribution obtained
from CRF stimulation alone (P # 0.001). This
increase in separation angle reflects decorrela-
tion across the population of V1 responses.
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natural images. Kurtosis is the fourth moment
of this distribution about its mean value. As
the RD becomes more sparse the proportion
of moderate responses decreases and the pro-
portion of both small and large responses
increases; this is reflected by an increase in
RD kurtosis. For this reason, theorists have
used kurtosis as an index of sparseness (2, 20,
21).

RD kurtosis is 4.1 when stimuli are con-
fined to the CRF, consistent with theoretical
studies suggesting that the CRF of V1 neurons
produces a moderately sparse code (1). How-
ever, when stimuli are two, three, or four
times the CRF diameter, kurtosis values in-
crease significantly to 5.2, 8.7, and 10.2,
respectively (P # 0.001). This result further
confirms that nonlinear nCRF interactions
increase sparseness and demonstrates that
this effect occurs across the population of
cells in V1.

We also tested whether nCRF stimulation
increased the independence of responses across
the population of V1 neurons. We accom-
plished this by examining the similarity of
responses between randomly selected pairs of
neurons presented with nearly identical stim-
uli during different recording sessions. This
similarity reflects the distribution of correla-
tions across the entire population of cells in
V1. If neurons carry independent informa-
tion, then randomly selected pairs will be
weakly correlated, whereas if they carry re-
dundant information responses will be strongly
correlated.

We selected neuron pairs stimulated with
natural vision movies created from the same
eye scan path and natural scene (patch sizes
varied slightly because of differences in CRF
size). For this analysis the average responses
across movie frames were treated as a vector
in a high-dimensional space. We quantified
response similarity by computing the angle
between the response vectors of each neuron

pair (22). Using this metric, cells with similar
tuning properties have small separation an-
gles and those with different tuning proper-
ties have large separation angles.

Figure 3 shows the distribution of separa-
tion angles between neuron pairs recorded
with natural vision movies confined to the
CRF (Fig. 3, Upper) and four times larger
than the CRF (Fig. 3, Lower). Stimulation of
the nCRF significantly increases the separa-
tion angle between cells (P # 0.001) (23).
This is direct evidence that nCRF stimulation
decorrelates responses between pairs of V1
neurons and it suggests that one consequence
of increasing sparseness is increased indepen-
dence of the responses across cells.

In a final experiment we investigated the
nCRF mechanisms that might be responsible
for sparsening and decorrelation. We accom-
plished this by mapping the spatial domains
of the nCRF via reverse correlation. The
stimulus was a dynamic, compound grating
sequence consisting of a CRF conditioning
grating and an nCRF probe extending to two
times the CRF size [see Fig. 4A and (24)].
The strength, sign, and spatial distribution of
nCRF domains vary widely across cells (n 5
19 neurons) (see Fig. 4, B to D). Many cells
have irregular nCRF domains (Fig. 4, B and
C), although some have a fairly uniform
structure (Fig. 4D). These patterns are similar
to those reported recently for area 17 of the
anesthetized cat (25). The diversity of the
nCRF structure may be responsible for de-
correlating the responses of V1 neurons dur-
ing natural vision.

Our experiments provide direct experi-
mental evidence that V1 uses a sparse code
matched to the underlying sparse structure of
natural scenes. During natural vision, CRF
and nCRF mechanisms function together as a
single computational unit. Although CRF re-
sponses during natural vision are already
moderately sparse, nCRF stimulation elicits

nonlinear interactions (2, 6) that dramatically
increase sparseness and decorrelate responses
between neurons. Consequently, each neuron
appears to carry statistically independent in-
formation. Between the retina and lateral
geniculate nucleus, the visual system encodes
information to optimize information trans-
mission given the limited bandwidth of the
optic nerve (26). V1 then recodes this infor-
mation into a sparse representation. One in-
teresting possibility is that these cells repre-
sent the independent components of natural
scenes (20, 27). This would facilitate the
development of associations between visual
stimuli in higher visual areas and increase the
efficiency of pattern recognition (1).

Sparse coding provides a unifying frame-
work for understanding the diverse functions
claimed for the nCRF: such as contrast gain
control; the potential representation of extended
contours, junctions or corners; and figure-
ground segmentation (28). Our studies demon-
strate how experiments with natural images can
complement those with conventional stimuli.
When used carefully, natural stimuli allow us to
test our current understanding of sensory sys-
tems and to interpret known effects in terms of
their natural function.
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Mitochondrial FtsZ in a
Chromophyte Alga

Peter L. Beech,1,3* Thao Nheu,3†
Thomas Schultz,3‡ Shane Herbert,1 Trevor Lithgow,4

Paul R. Gilson,2,3 Geoffrey I. McFadden2,3

A homolog of the bacterial cell division gene ftsZ was isolated from the alga
Mallomonas splendens. The nuclear-encoded protein (MsFtsZ-mt) was closely
related to FtsZs of the a-proteobacteria, possessed a mitochondrial targeting
signal, and localized in a pattern consistent with a role in mitochondrial division.
Although FtsZs are known to act in the division of chloroplasts, MsFtsZ-mt
appears to be a mitochondrial FtsZ and may represent a mitochondrial division
protein.

Mitochondria are ubiquitous organelles that
form networks, reticulae, or punctate struc-
tures in eukaryotic cells. Mitochondria in
many cells appear to constitutively fuse with
one another and divide (1), but we know little
about the proteins involved in these process-
es, particularly mitochondrial division. Eu-
karyotes depend on mitochondria for respira-
tion and adenosine triphosphate synthesis and
rely on them to divide before daughter mito-
chondria can be apportioned to each new cell
generation. In chloroplasts, homologs of the
bacterial cell division protein FtsZ are essen-

tial components of the organellar division
machinery (2). FtsZ is found in nearly all
prokaryotes, is structurally related to tubulin,
and accumulates at the furrow between divid-
ing cells, playing a critical role in cell divi-
sion (3). No potential mitochondrial FtsZ has
been identified in the complete genomes of
Caenorhabditis elegans or Saccharomyces
cerevisiae. However, because both mitochon-
dria and chloroplasts arose from endosymbi-
otic bacteria, we anticipated that early in
evolution, mitochondrial division might also
have been regulated by FtsZ. Here we de-
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