
What is VHDL?

• A hardware description language that can be used
to model a digital system.

• VHDL = VHSIC Hardware Description Language
• Very High Speed Integrated Circuit

• Can describe:
− behaviour,
− structure, and
− timing

 of a logic circuit.

Hardware Modelling in VHDL

• VHDL is NOT a programming language like C or
Java.

• It is used to model the physical hardware used in
digital systems.

• Therefore you must always think about the hardware
you wish to implement when designing systems using
VHDL.

Abstraction Hierarchy
Increasing
Abstraction

System Concept

Algorithm

RTL (Register Transfer Level)

Gate

Transistor Increasing
Complexity

Data Objects

• A data object holds a value of a specified type.

• The data objects that can be synthesized directly in
hardware are:

1. Signal: Represents a physical wire in a circuit.
It holds a list of values which includes its current
value and a set of possible future values.

2. Var iable: Used to hold results of computations.
It does not necessarily represent a wire in a
circuit.

3. Constant: Contains a value that cannot be
changed. It is set before the beginning of a
simulation.

Predefined Data Types

• Standard logic type: STD_LOGIC,
STD_LOGIC_VECTOR
(Can hold 0, 1, Z, and −−.)

• Bit type: BIT, BIT_VECTOR

• Integer type: INTEGER

• Floating−point type: REAL

• Physical type: TIME

• Enumeration type: BOOLEAN, CHARACTER

• To use the STD_LOGIC and
STD_LOGIC_VECTOR types, the std_logic_1164
package must be included in the VHDL design file.

• We can define our own data types. This is
especially useful when designing finite−state machines
(FSMs).

• An object declaration is used to declare an object, its
type, its class, and optionally to assign it a value.

Object Declaration Examples

• Signal declarations:
SIGNAL sresetn : STD_LOGIC;
SIGNAL address : STD_LOGIC_VECTOR(7

downto 0);

• Variable declarations:
VARIABLE index : INTEGER range 0 to 99 :=

20;
VARIABLE memory : BIT_MATRIX(0 to 7, 0

to 1023);

• Constant declarations:
CONSTANT cycle_time : TIME := 100 ns;
CONSTANT cst : UNSIGNED(3 downto 0);

Operators

Operator Class Operator
Highest
Precedence

Lowest
Precedence

Miscellaneous ** , ABS, NOT
Multiplication * , /, MOD,

REM
Unary

Arithmetic
(Sign)

+, −

Addition +, −, &
Shift/Rotate sll, srl, sla, sra,

rol, ror
Relational =, /=, <, <=, >,

>=
Logical and, or, nand,

nor, xor, xnor

• The individual operators in each class have the same
precedence.

VHDL Design Entity

Concurrent Assignment Statements

Design Entity

Entity Declaration

Architecture

− Specifies the interface of entity to the
outside world.

− Includes PORT statement which specifies
the entity’s input and output signals (ports)

− Ports can have different modes:
IN

OUT
INOUT

BUFFER

− Provides circuit details for an entity

− Has a name.

− General form:
ARCHITECTURE arch_name OF entity_name IS

Signal declarations
Constant declarations
Type declarations
Component declarations

BEGIN
Component instantiations
Concurrent assignment statements
Process statements

END arch_name

• A concurrent assignment statement is used to assign
a value to a signal in an architecture body.

• Used to model combinational circuits.

• The order in which these statements occur does not
affect the meaning of the code.

2x4 Decoder Example

decoder2x4

A

B

EN

Z
4

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY decoder2x4 IS
PORT (A, B, EN : IN STD_LOGIC;

Z : OUT STD_LOGIC_VECTOR(3 downto 0));
END decoder2x4;
−−this is a comment

Architecture Body of 2x4 Decoder

ARCHITECTURE dec_df OF decoder2x4 IS
SIGNAL ABAR, BBAR : STD_LOGIC;

BEGIN
−−Order of concurrent signal assignment
statements is not important.
Z(3) <= not (A and B and EN);
Z(0) <= not (ABAR and BBAR and EN);
BBAR <= not B;
Z(2) <= not (A and BBAR and EN);
ABAR <= not A;
Z(1) <= not (ABAR and B and EN);

END dec_df;

Sequential Assignment Statements

• Sequential assignment statements assign values to
signals and variables. The order in which these
statements appear can affect the meaning of the code.

• Can be used to model combinational circuits and
sequential circuits.

• Require use of the PROCESS statement.

• Include three variants: IF statements, CASE
statements, and LOOP statements.

2x4 Decoder Revisited

ARCHITECTURE dec_seq OF decoder2x4 IS
BEGIN

PROCESS(A, B, EN) −−Sensitivity list
VARIABLE ABAR, BBAR : STD_LOGIC;

BEGIN
−−Variable values assigned immediately.
ABAR := not A;
BBAR := not B;
IF (EN = ’1’) THEN

Z(3) <= not(A and B);
Z(2) <= not(A and BBAR);
Z(1) <= not(ABAR and B);
Z(0) <= not(ABAR and BBAR);

ELSE
Z <= "1111";

END IF;
END PROCESS;

END dec_seq;

IF and CASE Statements

• IF and CASE statements are used to model
multiplexers, decoders, encoders, and comparators.

• Can only be used in a PROCESS.

Modelling a 4−1 Multiplexer

Using an IF statement: Using a CASE statement:

PROCESS (Sel, A, B, C, D)
BEGIN

IF (Sel = "00") THEN
Y <= A;

ELSIF (Sel = "01")
THEN

Y <= B;
ELSIF (Sel = "10")

THEN
Y <= C;

ELSE
Y <= D;

END IF;
END PROCESS;

PROCESS (Sel, A, B, C, D)
BEGIN

CASE Sel IS
WHEN "00" => Y <= A;
WHEN "01" => Y <= B;
WHEN "10" => Y <= C;
WHEN "11" => Y <= D;
WHEN OTHERS =>Y

<=A;
END CASE;

END PROCESS;

• Can also model multiplexers with WHEN/ELSE
clause and WITH/SELECT clause. These can only be
used outside of a PROCESS.

FSM Example

IDLE

SEND RECEIVE

DONE
FIN = ’1’

READ = ’1’

FIN = ’1’

WRITE = ’1’

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY Controller IS
PORT (Write, Read, Fin : IN STD_LOGIC;

Busy, Snd, Rec, Dn : OUT STD_LOGIC;
Clock : IN STD_LOGIC;
Reset : IN STD_LOGIC);

END Controller;

FSM Example Continued

IDLE

SEND RECEIVE

DONE
FIN = ’1’

READ = ’1’

FIN = ’1’

WRITE = ’1’

ARCHITECTURE My_FSM OF Controller IS
TYPE State_Type IS (Idle, Send, Receive,

Done);
SIGNAL State : State_Type;

BEGIN
PROCESS(Reset, Clock)
BEGIN

IF Reset=’1’ THEN
State <= Idle;

ELSIF(Clock’EVENT and Clock=’1’) THEN
CASE State IS

WHEN Idle =>
IF Read=’1’ THEN

State <= Receive;
ELSIF Write=’1’ THEN

State <= Send;
ELSE

State <= Idle;
END IF;

FSM Example Continued

IDLE

SEND RECEIVE

DONE
FIN = ’1’

READ = ’1’

FIN = ’1’

WRITE = ’1’

WHEN Receive =>
IF Fin=’1’ THEN

State <= Done;
END IF;

WHEN Send =>
IF Fin=’1’ THEN

State <= Done;
END IF;

WHEN Done =>
State <= Idle;

END CASE;
END IF;

END PROCESS;

Busy <= ’0’ WHEN State = Idle ELSE ’1’;
Rec <= ’1’ WHEN State = Receive ELSE ’0’;
Snd <= ’1’ WHEN State = Send ELSE ’0’;
Dn <= ’1’ WHEN State = Done ELSE ’0’;

END My_FSM;

Behavioural vs. Structural Modelling

• With VHDL, we can describe the behaviour of
simple circuit building blocks and then use these to
build up the structure of a more complex circuit.

• Behavioural modelling is useful because it allows
the designer to build a logic circuit without having to
worry about the low−level details.

• Structural modelling is useful because it tells the
synthesis tools exactly how to construct a desired
circuit.

Behavioural Model of a D Flip−Flop

D Q

Clock

Resetn

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY my_dff IS
PORT (D : IN STD_LOGIC;

Q : OUT STD_LOGIC;
Clock : IN STD_LOGIC;
Resetn: IN STD_LOGIC);

END my_dff;

ARCHITECTURE Behaviour OF my_dff IS
BEGIN

PROCESS(Clock, Resetn)
BEGIN

IF Resetn=’0’ THEN
Q <= ’0’;

ELSIF (Clock’EVENT AND Clock=’1’) THEN
Q <= D;

END IF;
END PROCESS;

END Behaviour;

Behavioural Model of a 4−Bit Shift Register

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY shift_reg_behav IS
PORT (Data_IN : IN STD_LOGIC;

Data_OUT : OUT STD_LOGIC;
Clock, Resetn : IN STD_LOGIC);

END shift_reg_behav;

ARCHITECTURE Behaviour OF shift_reg_behav IS
SIGNAL Shift : STD_LOGIC_VECTOR(3 downto

0);
BEGIN

PROCESS(Clock, Resetn)
BEGIN

IF Resetn=’0’ THEN
Shift <= "0000";

ELSIF (Clock’EVENT AND Clock=’1’) THEN
Shift(3) <= Data_IN;
−−shift data to the right
Shift(2 downto 0) <= Shift(3 downto 1);

END IF;
END PROCESS;

Data_OUT <= Shift(0);

END Behaviour;

Structural Model of a 4−Bit Shift Register

D Q D Q D Q D QData_IN Data_OUT

Clock

Resetn

DFF_3 DFF_2 DFF_1 DFF_0

Q3_out Q2_out Q1_out

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY shift_reg_struct IS
PORT (Data_IN : IN STD_LOGIC;

Data_OUT: OUT STD_LOGIC;
CLK, RESN : IN STD_LOGIC);

END shift_reg_struct;

Structural Model of a 4−Bit Shift Register Cont.

D Q D Q D Q D QData_IN Data_OUT

Clock

Resetn

DFF_3 DFF_2 DFF_1 DFF_0

Q3_out Q2_out Q1_out

ARCHITECTURE Structure OF shift_reg_struct IS
COMPONENT my_dff

PORT (D : IN STD_LOGIC;
Q : OUT STD_LOGIC;
Clock : IN STD_LOGIC;
Resetn: IN STD_LOGIC);

END COMPONENT;

SIGNAL Q3_out, Q2_out, Q1_out : STD_LOGIC;

BEGIN
DFF_3 : my_dff PORT MAP (Data_IN, Q3_out, CLK, RESN);

DFF_2 : my_dff PORT MAP (Q3_out, Q2_out, CLK, RESN);

DFF_1 : my_dff PORT MAP (D=>Q2_out, Q=>Q1_out,
Clock=>CLK, Resetn=>RESN);

DFF_0 : my_dff PORT MAP (D=>Q1_out, Q=>Data_OUT,
Clock=>CLK, Resetn=>RESN);

END Structure;

Using Altera’s L ibrary of Parameter ized Modules (LPMs)

• Altera MAX+plus II has numerous predefined
circuit building blocks in its LPMs.

• These libraries include everything from full−adders
to ROMs.

Altera LPM Flip−Flop

• Must include library and use:
LIBRARY lpm;
USE lpm.lpm_components.all;

COMPONENT lpm_ff
 GENERIC (LPM_WIDTH: POSITIVE;
 LPM_AVALUE: STRING := "UNUSED";
 LPM_FFTYPE: STRING := "FFTYPE_DFF";
 LPM_TYPE: STRING := "L_FF";
 LPM_SVALUE: STRING := "UNUSED";
 LPM_HINT: STRING := "UNUSED");
 PORT (data: IN STD_LOGIC_VECTOR(LPM_WIDTH−1

DOWNTO 0);
 clock: IN STD_LOGIC;
 enable: IN STD_LOGIC := ’1’;
 sload: IN STD_LOGIC := ’0’;
 sclr: IN STD_LOGIC := ’0’;
 sset: IN STD_LOGIC := ’0’;
 aload: IN STD_LOGIC := ’0’;
 aclr: IN STD_LOGIC := ’0’;
 aset: IN STD_LOGIC := ’0’;
 q: OUT STD_LOGIC_VECTOR(LPM_WIDTH−1 DOWNTO

0));
END COMPONENT;

Altera LPM Flip−Flop Device Descr iption

Structural Descr iption of Shift Register Using Altera’s
Flip−Flop LPM

D Q D Q D Q D QData_IN Data_OUT

Clock

Resetn

DFF_3 DFF_2 DFF_1 DFF_0

Q3_out Q2_out Q1_out

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY shift_reg_struct2 IS
PORT (

Data_IN : IN STD_LOGIC_VECTOR(0 downto 0);
Data_OUT: OUT STD_LOGIC_VECTOR(0

downto 0);
CLK, RESN : IN STD_LOGIC);

END shift_reg_struct2;

Structural Descr iption of Shift Register Using Altera’s
Flip−Flop LPM Cont.

ARCHITECTURE Structure OF shift_reg_struct2 IS
SIGNAL Q3_out, Q2_out, Q1_out :

STD_LOGIC_VECTOR(0 downto 0);
SIGNAL Reset_Internal : STD_LOGIC;

BEGIN
Reset_Internal <= not RESN;

DFF_3 : lpm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Data_IN, q=>Q3_out,
clock=>CLK, aclr=>Reset_Internal);

DFF_2 : lpm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Q3_out, q=>Q2_out,
clock=>CLK, aclr=>Reset_Internal);

DFF_1 : lpm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Q2_out, q=>Q1_out,
clock=>CLK, aclr=>Reset_Internal);

DFF_0 : lpm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Q1_out, q=>Data_OUT,
clock=>CLK, aclr=>Reset_Internal);

END Structure;

