
What is VHDL?

•  A hardware description language that can be used
to model a digital system.

•  VHDL = VHSIC Hardware Description Language
•  Very High Speed Integrated Circuit

•  Can describe:
− behaviour,
− structure, and
− timing

   of a logic circuit.



Hardware Modelling in VHDL

• VHDL is NOT a programming language like C or
Java.

•  It is used to model the physical hardware used in
digital systems.

•  Therefore you must always think about the hardware
you wish to implement when designing systems using
VHDL.
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Data Objects

•  A data object holds a value of a specified type.  

•  The data objects that can be synthesized directly in
hardware are:

1. Signal:  Represents a physical wire in a circuit.
It holds a list of values which includes its current
value and a set of possible future values.

2. Var iable:  Used to hold results of computations.
It does not necessarily represent a wire in a
circuit.

3. Constant:  Contains a value that cannot be
changed.  It is set before the beginning of a
simulation.



Predefined Data Types

•  Standard logic type: STD_LOGIC,
STD_LOGIC_VECTOR
(Can hold 0, 1, Z, and −−.)

•  Bit type: BIT, BIT_VECTOR

•  Integer type: INTEGER

•  Floating−point type: REAL

•  Physical type: TIME

•  Enumeration type: BOOLEAN, CHARACTER

•  To use the STD_LOGIC and
STD_LOGIC_VECTOR types, the std_logic_1164
package must be included in the VHDL design file.

•  We can define our own data types.  This is
especially useful when designing finite−state machines
(FSMs).

•  An object declaration is used to declare an object, its
type, its class, and optionally to assign it a value.



Object Declaration Examples

•  Signal declarations:
SIGNAL sresetn : STD_LOGIC;
SIGNAL address : STD_LOGIC_VECTOR(7 

downto 0);

•  Variable declarations:
VARIABLE index : INTEGER range 0 to 99 := 

20;
VARIABLE memory : BIT_MATRIX(0 to 7, 0 

to 1023);

•  Constant declarations:
CONSTANT cycle_time : TIME := 100 ns;
CONSTANT cst : UNSIGNED(3 downto 0);



Operators

Operator Class Operator
Highest
Precedence

Lowest
Precedence

Miscellaneous ** , ABS, NOT
Multiplication * , /, MOD,

REM
Unary

Arithmetic
(Sign)

+, −

Addition +, −, &
Shift/Rotate sll, srl, sla, sra,

rol, ror
Relational =, /=, <, <=, >,

>=
Logical and, or, nand,

nor, xor, xnor

•  The individual operators in each class have the same
precedence.



VHDL Design Entity



Concurrent Assignment Statements

Design Entity

Entity Declaration

Architecture

− Specifies the interface of entity to the
outside world.

− Includes PORT statement which specifies
the entity’s input and output signals (ports)

− Ports can have different modes:
IN

OUT
INOUT

BUFFER

− Provides circuit details for an entity

− Has a name.

− General form:
ARCHITECTURE arch_name OF entity_name IS

Signal declarations
Constant declarations
Type declarations
Component declarations

BEGIN
Component instantiations
Concurrent assignment statements
Process statements

END arch_name



•  A concurrent assignment statement is used to assign
a value to a signal in an architecture body.

•  Used to model combinational circuits.

•  The order in which these statements occur does not
affect the meaning of the code.

2x4 Decoder  Example

decoder2x4

A

B

EN

Z
4

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY decoder2x4 IS
PORT (A, B, EN : IN STD_LOGIC;

Z : OUT STD_LOGIC_VECTOR(3 downto 0));
END decoder2x4;
−−this is a comment



Architecture Body of 2x4 Decoder

ARCHITECTURE dec_df OF decoder2x4 IS
SIGNAL ABAR, BBAR : STD_LOGIC;

BEGIN
−−Order of concurrent signal assignment
statements is not important.
Z(3) <= not (A and B and EN); 
Z(0) <= not (ABAR and BBAR and EN);
BBAR <= not B;
Z(2) <= not (A and BBAR and EN);
ABAR <= not A;
Z(1) <= not (ABAR and B and EN);

END dec_df;



Sequential Assignment Statements

•  Sequential assignment statements assign values to
signals and variables.  The order in which these
statements appear can affect the meaning of the code.

•  Can be used to model combinational circuits and
sequential circuits.

•  Require use of the PROCESS statement.

•   Include three variants:  IF statements, CASE
statements, and LOOP statements.



2x4 Decoder  Revisited

ARCHITECTURE dec_seq OF decoder2x4 IS
BEGIN

PROCESS(A, B, EN)  −−Sensitivity list
VARIABLE ABAR, BBAR : STD_LOGIC;

BEGIN
−−Variable values assigned immediately.
ABAR := not A; 
BBAR := not B;
IF (EN = ’1’) THEN

Z(3) <= not(A and B);  
Z(2) <= not(A and BBAR);
Z(1) <= not(ABAR and B);
Z(0) <= not(ABAR and BBAR);

ELSE
Z <= "1111";

END IF;
END PROCESS;

END dec_seq;



IF and CASE Statements

•  IF and CASE statements are used to model
multiplexers, decoders, encoders, and comparators.

•  Can only be used in a PROCESS.

Modelling a 4−1 Multiplexer

Using an IF statement: Using a CASE statement:

PROCESS (Sel, A, B, C, D)
BEGIN

IF (Sel = "00") THEN
Y <= A;

ELSIF (Sel = "01")
THEN

Y <= B;
ELSIF (Sel = "10")

THEN
Y <= C;

ELSE
Y <= D;

END IF;
END PROCESS;

PROCESS (Sel, A, B, C, D)
BEGIN

CASE Sel IS
WHEN "00" => Y <= A;
WHEN "01" => Y <= B;
WHEN "10" => Y <= C;
WHEN "11" => Y <= D;
WHEN OTHERS =>Y

<=A;
END CASE;

END PROCESS;

•  Can also model multiplexers with WHEN/ELSE
clause and WITH/SELECT clause.  These can only be
used outside of a PROCESS.



FSM Example

IDLE

SEND RECEIVE

DONE
FIN = ’1’

READ = ’1’

FIN = ’1’

WRITE = ’1’

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY Controller IS
PORT ( Write, Read, Fin : IN STD_LOGIC;

Busy, Snd, Rec, Dn : OUT STD_LOGIC;
Clock : IN STD_LOGIC;
Reset : IN STD_LOGIC);

END Controller;



FSM Example Continued

IDLE

SEND RECEIVE

DONE
FIN = ’1’

READ = ’1’

FIN = ’1’

WRITE = ’1’

ARCHITECTURE My_FSM OF Controller IS
TYPE State_Type IS (Idle, Send, Receive, 

Done);
SIGNAL State : State_Type;

BEGIN
PROCESS(Reset, Clock)
BEGIN

IF Reset=’1’ THEN
State <= Idle;

ELSIF(Clock’EVENT and Clock=’1’) THEN
CASE State IS

WHEN Idle =>
IF Read=’1’ THEN

State <= Receive;
ELSIF Write=’1’ THEN

State <= Send;
ELSE

State <= Idle;
END IF;



FSM Example Continued

IDLE

SEND RECEIVE

DONE
FIN = ’1’

READ = ’1’

FIN = ’1’

WRITE = ’1’

WHEN Receive =>
IF Fin=’1’ THEN

State <= Done;
END IF;

WHEN Send =>
IF Fin=’1’ THEN

State <= Done;
END IF;

WHEN Done =>
State <= Idle;

END CASE;
END IF;

END PROCESS;

Busy <= ’0’ WHEN State = Idle ELSE ’1’;
Rec  <= ’1’ WHEN State = Receive ELSE ’0’;
Snd  <= ’1’ WHEN State = Send ELSE ’0’;
Dn   <= ’1’ WHEN State = Done ELSE ’0’;

END My_FSM;



Behavioural vs. Structural Modelling

•  With VHDL, we can describe the behaviour of
simple circuit building blocks and then use these to
build up the structure of a more complex circuit.

•  Behavioural modelling is useful because it allows
the designer to build a logic circuit without having to
worry about the low−level details. 

•  Structural modelling is useful because it tells the
synthesis tools exactly how to construct a desired
circuit.



Behavioural Model of a D Flip−Flop

D Q

Clock

Resetn

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY my_dff IS
PORT ( D : IN  STD_LOGIC;

Q : OUT STD_LOGIC;
Clock : IN  STD_LOGIC;
Resetn: IN STD_LOGIC);

END my_dff;

ARCHITECTURE Behaviour OF my_dff IS
BEGIN

PROCESS(Clock, Resetn)
BEGIN

IF Resetn=’0’ THEN
Q <= ’0’;

ELSIF (Clock’EVENT AND Clock=’1’) THEN
Q <= D;

END IF;
END PROCESS;

END Behaviour;



Behavioural Model of a 4−Bit Shift Register

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY shift_reg_behav IS
PORT ( Data_IN : IN STD_LOGIC;

Data_OUT : OUT STD_LOGIC;
Clock, Resetn : IN STD_LOGIC);

END shift_reg_behav;

ARCHITECTURE Behaviour OF shift_reg_behav IS
SIGNAL Shift : STD_LOGIC_VECTOR(3 downto 

0);
BEGIN

PROCESS(Clock, Resetn)
BEGIN

IF Resetn=’0’ THEN
Shift <= "0000";

ELSIF (Clock’EVENT AND Clock=’1’) THEN
Shift(3) <= Data_IN;
−−shift data to the right
Shift(2 downto 0) <= Shift(3 downto 1);

END IF;
END PROCESS;

Data_OUT <= Shift(0);

END Behaviour;



Structural Model of a 4−Bit Shift Register

D Q D Q D Q D QData_IN Data_OUT

Clock

Resetn

DFF_3 DFF_2 DFF_1 DFF_0

Q3_out Q2_out Q1_out

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY shift_reg_struct IS
PORT (Data_IN : IN STD_LOGIC;

Data_OUT: OUT STD_LOGIC;
CLK, RESN : IN STD_LOGIC);

END shift_reg_struct;



Structural Model of a 4−Bit Shift Register  Cont.

D Q D Q D Q D QData_IN Data_OUT

Clock

Resetn

DFF_3 DFF_2 DFF_1 DFF_0

Q3_out Q2_out Q1_out

ARCHITECTURE Structure OF shift_reg_struct IS
COMPONENT my_dff

PORT ( D : IN  STD_LOGIC;
Q : OUT STD_LOGIC;
Clock : IN  STD_LOGIC;
Resetn: IN STD_LOGIC);

END COMPONENT;

SIGNAL Q3_out, Q2_out, Q1_out : STD_LOGIC;

BEGIN
DFF_3 : my_dff PORT MAP (Data_IN, Q3_out, CLK, RESN);

DFF_2 : my_dff PORT MAP (Q3_out, Q2_out, CLK, RESN);

DFF_1 : my_dff PORT MAP (D=>Q2_out, Q=>Q1_out, 
Clock=>CLK, Resetn=>RESN);

DFF_0 : my_dff PORT MAP (D=>Q1_out, Q=>Data_OUT, 
Clock=>CLK, Resetn=>RESN);

END Structure;



Using Altera’s L ibrary of Parameter ized Modules (LPMs)

•  Altera MAX+plus II has numerous predefined
circuit building blocks in its LPMs.

•  These libraries include everything from full−adders
to ROMs.

Altera LPM Flip−Flop

•  Must include library and use:
LIBRARY lpm;
USE lpm.lpm_components.all;

COMPONENT lpm_ff
   GENERIC (LPM_WIDTH: POSITIVE;
      LPM_AVALUE: STRING := "UNUSED";
      LPM_FFTYPE: STRING := "FFTYPE_DFF";
      LPM_TYPE: STRING := "L_FF";
      LPM_SVALUE: STRING := "UNUSED";
      LPM_HINT: STRING := "UNUSED");
   PORT (data: IN STD_LOGIC_VECTOR(LPM_WIDTH−1 

DOWNTO 0);
      clock: IN STD_LOGIC;
      enable: IN STD_LOGIC := ’1’;
      sload: IN STD_LOGIC := ’0’;
      sclr: IN STD_LOGIC := ’0’;
      sset: IN STD_LOGIC := ’0’;
      aload: IN STD_LOGIC := ’0’;
      aclr: IN STD_LOGIC := ’0’;
      aset: IN STD_LOGIC := ’0’;
      q: OUT STD_LOGIC_VECTOR(LPM_WIDTH−1 DOWNTO 

0));
END COMPONENT;



Altera LPM Flip−Flop Device Descr iption



Structural Descr iption of Shift Register  Using Altera’s
Flip−Flop LPM

D Q D Q D Q D QData_IN Data_OUT

Clock

Resetn

DFF_3 DFF_2 DFF_1 DFF_0

Q3_out Q2_out Q1_out

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY shift_reg_struct2 IS
PORT (

Data_IN : IN STD_LOGIC_VECTOR(0 downto 0);
Data_OUT: OUT STD_LOGIC_VECTOR(0 

downto 0);
CLK, RESN : IN STD_LOGIC);

END shift_reg_struct2;



Structural Descr iption of Shift Register  Using Altera’s
Flip−Flop LPM Cont.

ARCHITECTURE Structure OF shift_reg_struct2 IS
SIGNAL Q3_out, Q2_out, Q1_out : 

STD_LOGIC_VECTOR(0 downto 0);
SIGNAL Reset_Internal : STD_LOGIC;

BEGIN
Reset_Internal <= not RESN;

DFF_3 : lpm_ff GENERIC MAP (LPM_WIDTH=>1, 
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Data_IN, q=>Q3_out, 
clock=>CLK, aclr=>Reset_Internal);

DFF_2 : lpm_ff GENERIC MAP (LPM_WIDTH=>1, 
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Q3_out, q=>Q2_out, 
clock=>CLK, aclr=>Reset_Internal);

DFF_1 : lpm_ff GENERIC MAP (LPM_WIDTH=>1, 
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Q2_out, q=>Q1_out, 
clock=>CLK, aclr=>Reset_Internal);

DFF_0 : lpm_ff GENERIC MAP (LPM_WIDTH=>1, 
LPM_FFTYPE=>"DFF")

PORT MAP (data=>Q1_out, q=>Data_OUT, 
clock=>CLK, aclr=>Reset_Internal);

END Structure;


