What isVHDL ?

A hardware description language that can be used
to model adigital system.

 VHDL =VHSIC Hardware Description Language
o Very High Speed Integrated Circuit

e Can describe:
— behaviour,
— structure, and
— timing
of alogic circuit.

Hardware Modelling in VHDL

 VHDL isNOT aprogramming language like C or
Java.

 |tisusedto model the physical hardware used in
digital systems.

» Therefore you must always think about the hardware
you wish to implement when designing systems using
VHDL.

Abstraction Hierarchy

Increasing
Abstraction

A System Concept
Algorithm
RTL (Register Transfer Level)

Gate

\4

Transistor Increasing
Complexity

Data Objects

A data object holds avalue of a specified type.

» The data objects that can be synthesized directly in
hardware are:
1. Signal: Represents aphysical wirein acircuit.
It holds alist of values which includes its current
value and a set of possible future values.

2. Variable: Used to hold results of computations.
It does not necessarily represent awirein a
circuit.

3. Constant: Contains avalue that cannot be
changed. It is set before the beginning of a
simulation.

Predefined Data Types

» Standard logic type: STD_LOGIC,

STD LOGIC VECTOR
(Canhold O, 1, Z, and —.)

 Bit type: BIT, BIT_ VECTOR
* Integer type: INTEGER

» Floating—point type: REAL

* Physical type: TIME

* Enumeration type: BOOLEAN, CHARACTER

e TousetheSTD_ LOGIC and

STD_LOGIC VECTOR types, the std logic 1164
package must be included inthe VHDL design file.

* We can define our own datatypes. Thisis

especially useful when designing finite—-state machines
(FSMs).

e An object declaration is used to declare an object, its
type, its class, and optionally to assign it avalue.

Object Declaration Examples

e Signal declarations:
SIGNAL sresetn : STD _LOGIC,
SIGNAL address: STD_LOGIC VECTOR(7
downto 0);

e Variable declarations:

VARIABLE index : INTEGER range 0 to 99 :=
20;

VARIABLE memory : BIT_MATRIX(0to 7,0
to 1023);

e Constant declarations:

CONSTANT cycle time: TIME := 100 ns;
CONSTANT cst : UNSIGNED(3 downto 0);

Operators

Operator Class Operator
Highest Miscellaneous **, ABS, NOT
Precedence Multiplication *,/, MOD,
REM
Unary +, —
Arithmetic
(Sign)
Addition +, -, &
Shift/Rotate dl, srl, da, sra,
rol, ror
Relational = /=, <, <=, >
Lowest >—
Precedence Logical and, or, nand,

Nnor, Xor, Xxnor

e Theindividual operatorsin each class have the same

precedence.

VHDL Design Entity

Design Entity

Entity Declaration

— Specifies the interface of entity to the
outside world.

- Has a name.

- Includes PORT statement which specifies
the entity’s input and output signals (ports)

— Ports can have different modes:
IN
ouT
INOUT
BUFFER

Architecture
— Provides circuit details for an entity

— General form:
ARCHITECTURE arch_name OF entity_name IS
Signal declarations
Constant declarations
Type declarations
Component declarations
BEGIN
Component instantiations
Concurrent assignment statements
Process statements
END arch_name

Concurrent Assignment Statements

« A concurrent assignment statement is used to assign
avalueto asignal in an architecture body.

e Used to model combinational circuits.

 The order in which these statements occur does not
affect the meaning of the code.

2x4 Decoder Example

A > 4

B —» decoder2x4 // > Z

EN ——»

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY decoder2x4 IS
PORT (A, B, EN: IN STD LOGIC,;
Z . OUT STD_LOGIC_VECTOR(3 downto 0));
END decoder2x4;
——this is a comment

Architecture Body of 2x4 Decoder

= =L

3: g
Do 3: L
—— S T

ARCHITECTURE dec_df OF decoder2x4 IS
SIGNAL ABAR, BBAR : STD_LOGIC;
BEGIN
——Order of concurrent signal assignment
statements is not important.
Z(3) <= not (A and B and EN);
Z(0) <= not (ABAR and BBAR and EN);
BBAR <= not B;
Z(2) <= not (A and BBAR and EN);
ABAR <= not A;
Z(1) <= not (ABAR and B and EN);
END dec_df;

Sequential Assignment Statements
e Seguential assignment statements assign values to
signals and variables. The order in which these
statements appear can affect the meaning of the code.

e Can be used to model combinational circuits and
sequential circuits.

* Reguire use of the PROCESS statement.

e |ncludethreevariants: |IF statements, CASE
statements, and L OOP statements.

2x4 Decoder Revisited

ARCHITECTURE dec_seq OF decoder2x4 1S
BEGIN
PROCESS(A, B, EN) ——Sensitivity list
VARIABLE ABAR, BBAR : STD LOGIC;
BEGIN
——Variable values assigned immediately.
ABAR = not A;
BBAR = not B;
IF (EN ='1") THEN
Z(3) <= not(A and B);
Z(2) <= not(A and BBAR);
Z(1) <= not(ABAR and B);
Z(0) <= not(ABAR and BBAR);
ELSE
Z<="1111";
END IF;
END PROCESS;
END dec_seq;

| F and CASE Statements

* |F and CASE statements are used to model
multiplexers, decoders, encoders, and comparators.

e Canonly be used in a PROCESS.

Modelling a 4-1 Multiplexer
Using an IF statement: Using a CASE statement:

PROCESS (Sel, A, B,C, D) PROCESS (Sel, A, B, C, D)

BEGIN BEGIN
IF (Sel ="00") THEN CASE Sel IS
Y <= A; WHEN "00" =>Y <= A;
ELSIF (Sel ="01") WHEN "01" =>Y <= B;
THEN WHEN "10" =>Y <= C;
Y <=B; WHEN "11" =>Y <= D;
ELSIF (Sel ="10") WHEN OTHERS =>Y
THEN <=A;
Y <=C; END CASE;
ELSE END PROCESS;
Y <=D;
END IF;

END PROCESS;

e Can also model multiplexers with WHEN/EL SE

clause and WITH/SELECT clause. These can only be
used outside of a PROCESS.

FSM Example

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY Controller IS
PORT (Write, Read, Fin . IN STD_LOGIC;
Busy, Snd, Rec, Dn : OUT STD_LOGIC;
Clock . IN STD _LOGIC;
Reset . IN STD_LOGIC);
END Controller;

FSM Example Continued

ARCHITECTURE My _FSM OF Controller IS
TYPE State_Type IS (ldle, Send, Receive,
Done);
SIGNAL State : State Type,;

BEGIN
PROCESS(Reset, Clock)
BEGIN
IF Reset="1" THEN
State <= Idle;
ELSIF(Clock’ EVENT and Clock="1") THEN
CASE State IS
WHEN Idle =>
IF Read="1' THEN
State <= Receive;
ELSIF Write="1' THEN
State <= Send;
ELSE
State <= Idle;
END IF;

FSM Example Continued

WHEN Receive =>
IF Fin="1" THEN
State <= Done;
END IF;

WHEN Send =>
IF Fin="1" THEN
State <= Done;
END IF;

WHEN Done =>
State <= Idle;
END CASE:;
END IF;
END PROCESS;

Busy <='0' WHEN State = Idle ELSE '1’;
Rec <='1" WHEN State = Receive ELSE '0’;
Snd <='1' WHEN State = Send ELSE '0’;
Dn <='1"WHEN State = Done ELSE '0’;

END My FSM:

Behavioural vs. Structural M odelling

 With VHDL, we can describe the behaviour of

simple circuit building blocks and then use these to
build up the structure of a more complex circuit.

e Behavioural modelling is useful because it allows

the designer to build alogic circuit without having to
worry about the low—level detalls.

o Structural modelling is useful because it tells the

synthesis tools exactly how to construct a desired
circuit.

Behavioural M odel of a D Flip—Flop

Clock

Resetn 4(])

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY my_dff IS
PORT (D :IN STD LOGIC;
Q : OUT STD_LOGIC;
Clock : IN STD_LOGIC;
Resetn: IN STD_ LOGIC);
END my_dff;

ARCHITECTURE Behaviour OF my_dff IS
BEGIN
PROCESS(Clock, Resetn)
BEGIN
IF Resetn="0’ THEN
Q<="07
ELSIF (Clock' EVENT AND Clock='1") THEN
Q <=D;
END IF;
END PROCESS:
END Behaviour;

Behavioural Model of a 4-Bit Shift Register

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY shift_reg_behav IS
PORT (Data IN:IN STD LOGIC;
Data OUT : OUT STD_LOGIC;
Clock, Resetn : IN STD_LOGIC);
END shift_reg_behav;

ARCHITECTURE Behaviour OF shift_reg_behav IS
SIGNAL Shift : STD_LOGIC_VECTOR(3 downto
0);
BEGIN
PROCESS(Clock, Resetn)
BEGIN
IF Resetn="0" THEN
Shift <= "0000";
ELSIF (Clock' EVENT AND Clock='1") THEN
Shift(3) <= Data_IN;
——shift data to the right
Shift(2 downto 0) <= Shift(3 downto 1);
END IF;
END PROCESS;

Data_ OUT <= Shift(0);

END Behaviour;

Structural Modd of a 4-Bit Shift Register

——

Q3 ou Q2 _out Q1 out
Data_ IN—D Q D Q D Q D Q— Data_OU
DFF_3 DFF_2 DFF 1 DFF O
Clock— —] _
Resetn_ﬁ> J J J
LIBRARY ieee;:

USE ieee.std logic_1164.all;

ENTITY shift_reg_struct IS
PORT (Data_IN : IN STD_LOGIC;
Data OUT: OUT STD_LOGIC;

CLK, RESN : IN STD_LOGICQO);

END shift_reg_struct;

Structural Model of a 4-Bit Shift Register Cont.

Q3_ouE Q2 _out Q1 out
Data_ IN—D Q D Q D Q D Q— Data_OU

DFF_3 DFF_2 DFF_1 DFF_QO

Clock——] _ |

Resetn_(l> J J J

ARCHITECTURE Structure OF shift_reg_struct IS
COMPONENT my_dff
PORT(D:IN STD_LOGIC;
Q:OUT STD LOGIC;
Clock : IN STD_LOGIC;
Resetn: IN STD _LOGIC);
END COMPONENT;

SIGNAL Q3 out, Q2 out, Q1 out: STD LOGIC,;

BEGIN
DFF_3: my_dff PORT MAP (Data_IN, Q3_out, CLK, RESN);

DFF_2: my_dff PORT MAP (Q3_out, Q2_out, CLK, RESN);

DFF _1:my dff PORT MAP (D=>Q2_out, Q=>Q1 out,
Clock=>CLK, Reseth=>RESN);

DFF 0 : my_ dff PORT MAP (D=>Q1 out, Q=>Data_OUT,
Clock=>CLK, Reseth=>RESN);

END Structure;

Using Altera’s Library of Parameterized Modules (L PMs)

o AlteraMAX+plus Il has numerous predefined
circuit building blocksin its LPMs.

» Theselibrariesinclude everything from full—adders
to ROMs.

Altera LPM Flip—Flop

* Must include library and use:
LIBRARY Ipm;
USE Ipm.Ipm_components.all;

COMPONENT Ipm_ff
GENERIC (LPM_WIDTH: POSITIVE;
LPM_AVALUE: STRING :="UNUSED";
LPM_FFTYPE: STRING :="FFTYPE_DFF";
LPM_TYPE: STRING :="L_FF";
LPM_SVALUE: STRING :="UNUSED";
LPM_HINT: STRING :="UNUSED");
PORT (data: IN STD _LOGIC_VECTOR(LPM_WIDTH-1
DOWNTO 0);
clock: IN STD_LOGIC;
enable: IN STD _LOGIC :="1";
sload: IN STD_LOGIC :="0’;
sclr: IN STD_LOGIC :='0’;
sset: IN STD_LOGIC :='07;
aload: IN STD _LOGIC :='0’;
aclr: IN STD_LOGIC :="0;
aset: IN STD_LOGIC =0’
g: OUT STD_LOGIC VECTOR(LPM_WIDTH-1 DOWNTO
0));
END COMPONENT;

Altera LPM Flip—Flop Device Description

Ports:

INFLTS

Fart Mame Required Description Carments

datal] Mo T-type flipflap: Toggle enable Input part ZEY_WIDTHwide. fthe data[]

O-tyne flipflop: Data input input is not used, at least one of the aset,
aclr, ssst, or sclr pots must be used.
Unused data inputs default to GHND.
clock Yes Positive-edge-trigyered Clack
enable Mg Clock Enable input. Default = 1.
sclr Mo aynchranous Clear input. If both s=et and sclr are used and both
are assetted, sclris dominant. The sclr
signal affects the output q[] values before
polarity is applied to the paorts.

szet Mo Synchronous set input. Sets g outputs to the value specified by

LPH_SVALUE, if that value is present, or
sets the g outputs to all 1's. If both sset

QUTPUTS

Port Name Requred Description Comments

q[] Yeg Data output from D or T flipflops. Output port LPM_VIDTH wide.

Parameters:

Parameter Type Required Description

LPY_WIDTH Integer Yes Width of the datal] and q[] ports.

LPM_&VALUE Integer Mo Constant value that is loaded when a=zet is high. If omitted, defaults to all 1's,
The LPM_AVALUE parameter is limited to a maximum of 32 bits.

LPM_SVALUE Integer Mo Constant value that is loaded on the rising edge of clock when sset is high. If
ornitted, defaults to all 1's.

LPY_FFTYPE String Ma ‘Yalues are "DFF", "TFF", and "UHUSED". Type of flipflop. If omitted, the default
iz "DFF". When the LFM_FFTYFE parameter is set to "DFF", the =load port is
ignored.

LPM_HINT String Mo Allows you to specify Altera-spacific parameters in YHOL Design Files. The
default is "THUSED".

LPH_TYPE String Ma [dentifies the LPM entity name in %HOL Design Files.

Structural Description of Shift Register Using Altera’s

Flip—Flop LPM
Data IN——D Q Q5-out D QQZ_OUt D QQl_OUt D Q— Data_OUT
DFF_3 DFF_2 DFF_1 DFF_0

Clock — | N N]

Resetn;l) <‘> %) J
LIBRARY ieee;
USE ieee.std logic_1164.all;
LIBRARY Ipm,;

USE Ipm.lpm_components.all;

ENTITY shift_reg_struct2 IS
PORT (
Data IN: IN STD_LOGIC _VECTOR(0 downto 0);
Data OUT: OUT STD _LOGIC _VECTOR(0
downto 0);
CLK, RESN : IN STD_LOGIC);
END shift_reg_struct2;

Structural Description of Shift Register Using Altera’s
Flip—Flop LPM Cont.

ARCHITECTURE Structure OF shift_reg_struct2 IS
SIGNAL Q3 out, Q2 out, Q1 out:
STD_LOGIC _VECTOR(0O downto 0);
SIGNAL Reset _Internal : STD_LOGIC,;

BEGIN
Reset_Internal <= not RESN;

DFF _3: lpm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")
PORT MAP (data=>Data_IN, q=>Q3 out,
clock=>CLK, aclr=>Reset_Internal);

DFF _2: lpm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")
PORT MAP (data=>Q3_out, g=>Q2_out,
clock=>CLK, aclr=>Reset_Internal);

DFF 1 :Ilpm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")
PORT MAP (data=>Q2_out, g=>Q1_out,
clock=>CLK, aclr=>Reset_Internal);

DFF O : Ipm_ff GENERIC MAP (LPM_WIDTH=>1,
LPM_FFTYPE=>"DFF")
PORT MAP (data=>Q1 out, g=>Data_OUT,
clock=>CLK, aclr=>Reset_Internal);

END Structure;

