
1

ECSE-487A
COMPUTER ARCHITECTURE LABORATORY

Assignment #1

To be completed individually.

1. INTRODUCTION

The objectives of this assignment are: (1) to introduce you to the VHDL synthesis and simulation tools, (2) to
provide some experience in hardware design for a useful application, and (3) to recognize the tradeoffs between
behavioural and structural VHDL descriptions.

Image processing involves the manipulation of graphical data, either to alter its appearance or to analyze its
contents. Applications of image processing include, among others, high-speed manufacturing, criminal
forensics, medical analysis, computer-assisted surgery, aircraft guidance systems, and entertainment. Given the
performance demands of many of these applications, a hardware implementation is required to obtain real-time
output. Thus, for this assignment, you will design, synthesize, and simulate a basic image processing toolbox
using VHDL. You will construct simple modules to operate on pixels, and then use these as building blocks for
higher level image processing algorithms.

2. PROBLEM DESCRIPTION

2.1 Image Processing Operation Module
The basic operations you implement will operate on a single pixel at a time. In order to apply an operation to an
entire image, you will thus have to iterate over every column of every row. For example, to brighten or darken
an image, the same value (PIXEL_OPERAND) may be added to or subtracted from all pixel values
(PIXEL_DATA) in turn. Operations are summarized in Table 1, with a possible module (architecture) shown
in Figure 1. A brief description of the input and output ports is given in Table 2.

Module Description
SET Set pixel to specified value
ADD Add a value to pixel
SUB Subtract a value from pixel
AND AND a value to pixel
OR OR a value with pixel
XOR XOR a value with pixel
INVERT Invert pixel (subtract from MAXVAL)
THRESH Threshold pixel (output is MAXVAL if pixel is

greater than specified value)

DATA_OUT
8 bits

DATA_VALID

PIXEL_PROCESSOR

OPERATION
3 bits

ENABLE

RESET

CLOCK

ERROR

PIXEL_DATA
8 bits

PIXEL_OPERAND
8 bits

Table 1. Module name and description of basic operations. Figure 1. Logic symbol of operation module.

2

Port name Width Direction Description
PIXEL_DATA 8 bits Input Data bits of image pixel value
PIXEL_OPERAND 8 bits Input Data bits of operand value (which may be from a second image)
OPERATION 4 bits Input Pre-encoded scheme to select the type of operation (ADD, …)
RESET 1 bit Input Reset the output when set
CLOCK 1 bit Input Clock input
ENABLE 1 bit Input Module enable when set
DATA_OUT 8 bits Output Data bits of output value
DATA_VALID1 1 bit Output Flag bit (see footnote)
ERROR 1 bit Output Set if error encountered during I/O operation

Table 2. Pinout of the PIXEL_MODULE processing block.

2.2 PGM Image File Format
We will use the portable grayscale map (PGM)2 file format, which contains the following elements:

§ A two-character "magic number" for identifying the file type: ‘P5’ for binary data or ‘P2’ for ASCII
format. Your design may assume that it will only deal with the ‘P2’ format.

§ One or more whitespace characters (space, TAB, CR, or LF).
§ The image WIDTH, expressed as a decimal number in ASCII characters (e.g., 640).
§ One or more whitespace characters
§ The image HEIGHT, expressed as a decimal number in ASCII characters.
§ One or more whitespace characters.
§ The maximum gray value (MAXVAL), expressed as a decimal number in ASCII characters. Your

design may assume that MAXVAL does not exceed 255.
§ A single whitespace character (typically newline).
§ A raster of WIDTH x HEIGHT non-negative grayscale values, represented in ASCII characters,

between 0 (black) and MAXVAL (white), proceeding through the image in conventional English
reading order (row by row, left to right), separated by at least one whitespace character.

§ Prior to the line specifying MAXVAL, any characters beginning from ‘#’ until the end-of-line are
comments and may be ignored.

Below is a small example of a grayscale map in the PGM format:

P2
feep.pgm
24 7
15
0 0
0 3 3 3 3 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 15 15 15 0
0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 15 0
0 3 3 3 0 0 0 7 7 7 0 0 0 11 11 11 0 0 0 15 15 15 15 0
0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 0 0
0 3 0 0 0 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 0 0 0 0
0 0

Under Linux, you can view PGM files with display or gimp. On Windows, you may use IrfanView
(available as freeware from www.irfanview.com).

1 This bit makes the pixel processing unit interface insensitive to pipeline or internal processing delay. Supposing a single-
stage design, the DATA_VALID bit would be : DATA_VALID <= ENABLE; (1 clock delay after the input, the output is
valid). In a multi-stage pipeline, latency would make the first clock cycles invalid and thus, DATA_VALID would not
become asserted until the ENABLE had time to propagate through the pipeline.
2 Reference: Jef Poskanzer, UNIX man (5) page, 1991.

3

3. ASSIGNMENT TASKS

3.1 Design the hardware module(s) that read (see note) and write image files, with careful attention to error
handling. You should account for any violation of the PGM file format, raising an exception under such
conditions. Some possible (although by no means exhaustive) errors are as follows:

§ File does not begin with magic number ‘P2’
§ HEIGHT or WIDTH not specified
§ Image data exceeds HEIGHT × WIDTH pixels

There are several examples that can be found on-line that demonstrate basic file I/O routines in VHDL and how
to call these routines from a testbench. Students may find the material from http://tinyurl.com/okny4zu useful.
Please note that while some of the exception cases are taken into account by that example code, you are
responsible for all other cases where an exception can be thrown, e.g., related to the specifics of the PGM
image format.

3.2 Design the basic image processing module as described in Section 2.1.

3.3 Use the basic image processing module from Section 3.2 to design a system that performs useful operations
over an entire image, or that performs an operation using the corresponding pixels from two images.

3.4 Use the system from Section 3.3 to implement a simple vertical edge detector that operates on a
background-difference image. Such a system has important applications to tracking tasks as it quickly identifies
the contours of moving objects.

A horizontal gradient (change in gray level with direction) operator can be used to detect vertical edges. The
gradient is formed by taking the difference between column values J(x,y) ← I(x+1,y) – I(x,y), where I is the
input image and J is the gradient image of I. This can be represented by a filter array [-1, 1], which operates
over the input image, I. Obviously, you should not attempt to compute gradient values for the rightmost
column of J, which should, instead, be filled with zeros. If I consists of grayscale values in the range of
[0,max] then the filter may produce values in the range [-max,max]. These values should be normalized back
to [0,max] by shifting and scaling. Finally, you must threshold J (with a threshold of 1) to detect any vertical
edges. Note: Care should be taken in the normalization procedure as an 8-bit subtraction operation will
produce an invalid result.

3.5 Test your VHDL modules to ensure correct operation, including handling of error conditions and special
cases. In your report, include excerpts of no more than five simulation traces to convince the reader that the
design is functioning correctly. Describe the important features of the simulation and annotate your traces to
improve readability. Remove any irrelevant signals from the traces. All diagrams must be self-explanatory: the
reader should not need to consult your VHDL code in order to understand the meaning of any signals. Provide a
representative sample of test bench results as confirmation that your tests passed.

3.6 Synthesize your design without the testbench. In your report, describe the results of the synthesis, including
the number of logic cells, look-up tables, and the latency of your circuit. Identify in your design the piece that
consumes the most space and the longest path. Discuss what improvements could be made to decrease the size
of the design or increase its speed.

4

4. LABORATORY REPORT

The written report should not exceed 3 pages (excluding title page, diagrams and appendices). The following
outline gives an overview of what should be contained in the report. The exact content and organization of the
report is left to your discretion.

§ front page (course number, lab title, student name, ID, date)
§ design description (Sections 3.1 – 3.4)

o diagram and brief description of each unit
o brief summary of any important design choices
o list of supported features

§ simulation results:
o description of testing strategy
o simulation traces and discussion of results (Section 3.5)

§ synthesis results:
o summary and discussion of results (Section 3.6)

§ appendices:
o VHDL source code
o simulation traces (concentrate on selecting meaningful traces) and test vectors
o graphic result of edge-detector applied to sample images (Section 3.4)

Your report and the appendices will be submitted only in softcopy through the course Moodle.

Although your VHDL code will not be graded directly, it is good practice to ensure that it is well documented.
Each file should start with a header including the filename, author, last revision date, and a meaningful
description. All the ports of an entity should be briefly described. Comments should be used to indicate
interesting parts of the code or areas that could be improved. Use meaningful names for your variables and
signals to ensure readability of your code by others who are not familiar with your design.

