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Figure 1: Overall pipeline to characterize the voice from user’s head and externalize it as a resource to generate speech of a
virtual avatar.

ABSTRACT
The need to generate convincing simulation of voices often arises
in the context of avatar therapy, a treatment approach for disorders
such as schizophrenia. This treatment involves patients interacting
with simulations of the entity they imagine to be responsible for
the voices they hear, for which there is often no external reference
available. However, in such scenarios, there is little knowledge of
how to design and reproduce these voices in a convincing manner.
Existing voice manipulation interfaces are often complex to use, and
highly limited in their ability to modify vocal characteristics beyond
small adjustments. To address these challenges, we designed a
framework that allows users to explore and select from a large set of
voices, and thereafter manipulate the voice(s) to converge towards
an effective match for one they have inmind.We demonstrated both
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the usability and superior performance of this system compared to
existing voice manipulation interfaces.
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1 INTRODUCTION
Avatar therapy offers a communication environment in which pa-
tients can enter into a face-to-face dialogue with an avatar rep-
resenting their auditory hallucinations [11, 14, 36]. The avatar is
typically voiced by clinicians who talk to the patients in their own
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voice or through a voice transformer to match the vocal charac-
teristics of the patient’s auditory hallucinations. Since most hallu-
cinations among schizophrenic patients are auditory, the avatar’s
vocal characteristics are considered to be central to the success of
the therapy [1, 45]. However, achieving convincing matches for
the voice properties that may be present only in the mind of a
patient remains challenging. Although there exist powerful tools
to facilitate the design of graphical avatars, e.g., character creation
interfaces for video games, the same is unfortunately not true for
the auditory domain.

In this paper, we develop a voice modelling paradigm that assists
the design of an avatar’s voice for non-expert users. At its core, we
identify the dominant effect vectors from the speaker embeddings
by the usage of principal component analysis (PCA) and utilize
them as tuning parameters. By leveraging a large corpus of speech
samples and our two refinement techniques, we allow users to
easily obtain a convincing emulation of their internalized voices.
To be effective, the created voice should match specific traits of the
intended voice, such as age, pitch, resonance, and prosody.

The interaction techniques we investigated for this purpose in-
cluded:

• Voice Space Navigation: Exploration of a voice map to find
an initial estimation to the target voice the user has in mind.

• Latent Parameter Editing: Modulating the parameters of
pitch, resonance, hoarseness, and emotional prosody, which
we determined to be highly salient to one’s perception of
voice properties.

• Voice Mixing: Synthesizing new voices by interpolating two
selected samples from the space of existing voices.

Our main contributions include the development of a user inter-
action paradigm for voice design that is efficient and accessible to
novice users. Our results indicate that the latent parameter editing
can generate voices that are highly similar to the voices in the user’s
head. The voice blending technique demonstrates comparable ac-
curacy, preferred by users due to its simplicity. An additional blind
assessment validated that voices produced with both techniques
achieved higher similarity scores than the voices generated from
a commercial voice morphing tool. The voices designed through
our system can subsequently be used in conjunction with a text-
to-speech (TTS) tool to produce any output speech in the target
voice. In this manner, we seek to enhance the degree of realism for
auditory psychotherapy [17]. Beyond the initial target of avatar
therapy for people who suffer from auditory hallucinations, our
work may benefit a variety of other such therapeutic applications
that similarly rely on voice stimuli, for example, autism spectrum
disorder (ASD), bipolar disorder, and post-traumatic stress disorder
(PTSD) [10].

2 RELATED WORK
2.1 Speaker-based Voice Transformation
Voice conversion (VC) is a technology that adapts the speech of
a source speaker to that of a target speaker while keeping the
linguistic content unchanged [39]. Early work in VC involves de-
composition of the signal into excitation (i.e., pitch and prosody)
and spectral (i.e., voice timbre) components using linear predictive

coding [25]. In this approach, the authors make use of a Gauss-
ian mixture model (GMM), wherein the spectral parameters of a
source voice are made to predict the spectral parameters of a target
voice. With the advancement of deep learning, state-of-the-art VC
algorithms achieve natural speech transformation with a higher
degree of fidelity, reported in recent Voice Conversion Challenges
(www.vc-challenge.org). Such approaches in VC, however, often
require a large amount of speech data both from source and target
speakers and are not able to generate the voice of a speaker that is
unseen in training data.

Another recent work has seen the development of vocal synthesis
methods conditioned on low-dimensional speaker representation
of arbitrary voices, which is often denoted as “speaker embedding”
[3]. While these systems are intended to recreate known voices
(i.e., those whose embeddings can be captured from input record-
ings), we expand on this speaker embedding technology to generate
novel vocal avatars by directly manipulating the embedding space.
Speaker embeddings were initially developed to identify unique
voices, and have been shown to perform strongly in this domain
with an accuracy of above 95% among 1000 speakers [44]. Yet,
it is unclear which vocal characteristics are encoded in speaker
embedding and how they are mapped to meaningful properties
that account for human perception of voices. To the best of our
knowledge, no study has demonstrated the alteration of voices by
retrieving quantifiable acoustic qualities from the high-dimensional
feature vector and evaluated its effects by human listeners. Beyond
learning from input speakers, our work investigates new strategies
to optimize the feature vector and produce user’s desired voice.

The authors note that, when extracting embeddings from speaker
recordings, it is possible that other acoustical factors, such as speaker-
distance from the microphone, or extraneous environmental sound,
influence the resulting representation. Some work in speaker recog-
nition attempts to capitalize on this fact [21]. In a related sense, it
may be desirable to model and replicate the acoustic environment
of the imagined target speaker by the well-established process of
so-called room modelling [37]. However, we are unaware of any
research on the interaction between the acoustic environment and
its effectiveness in avatar therapy; such pursuits fall outside of the
scope of the current study.

2.2 Voice Morphing Software for End Users
Apart from research-based technologies to morph one’s speech,
commercial voice morphing tools appear to be an accessible ap-
proach to the general public. However, existing commercial tools
are difficult to use, limited in their ability to attain satisfactorily
close matches to target voices, and often result in significant distor-
tion or output voices that sound mechanical. This is because such
tools mainly focus on generating alien or non-human audio effects
for entertainment purposes. Tools such as Voicemod Pro [43] and
MorphVOX Pro [30] allow for easy manipulation of basic features
such as pitch and some elements of timbre, but are not capable of
transforming one voice into that of another person without turning
the voice into a robotic voice. The AV Voice Changer Software
Diamond [4] provides a built-in voice library with approximately
100 preset voices added on the basic control, however, it still suffers
from the samemechanization or degradation in audio quality.While
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many of these tools do not disclose their signal processing methods,
they may make use of classic techniques such as pitch-synchronous
overlap add [31] and phase-vocoding [35] to manipulate pitch and
formant structure; these may be used in tandem with standard
processing technique that requires domain-specific knowledge like
dynamic compression and equalization.

2.3 Dimensionality Reduction for Speech
Transformation

Principal component analysis (PCA) is a dimensionality reduction
technique that projects high-dimensional data on a lower dimen-
sion such that most of the information is efficiently contained in a
small set of dominant features. Using this technique, previous work
introduced the concept of eigenvoice, a combination of basis vectors
extracted from Hidden Markov Models trained on speech data [26].
The basis vectors are determined using PCA, and each component
reflects an important dimension of variation in the timbre of the
reference voices.

The eigenvoice approach has been expanded upon in numerous
speech-related tasks such as speaker recognition, in which the
span of subspaces specific to different speakers was characterized
[46], and a speaker diarization approach that identifies speakers
from a recorded conversation [13]. Beyond speaker recognition,
applications were also found in speech reconstruction, in which
the goal is to enhance the quality of the input audio with minimum
distortion in the original signal by removing the least important
eigenvoices, resumed to be associated with noise components [7].
In the application of vocal synthesis for avatar therapy [23], authors
took a composite approach by applying dimensionality reduction
to GMMs trained on speech data. The principal components permit
the direct manipulation of spectral mappings in voice conversion,
however, this trend has moved away from brute-force spectral
manipulation, leaving the subtleties of voice conversion to more
expressive neural networks.

Along with a range of applications based on the eigenvoice, our
work investigates the effects of voice feature adaptation, assisted
by PCA, and the corresponding user experience in supporting the
creation of new speaker identities. This research topic is relatively
less explored than the areas of speaker recognition or speech re-
construction, yet represent an interesting research problem, with
numerous possible applications of manipulation of the acoustic
features and design of voice personas.

3 VOICE MODELLING INTERFACE
PARADIGM

The design of our interface (Figure 2) is intended to support voice
exploration and manipulation without requiring any specialized
knowledge in the audio domain. Our focus is therefore on facilitat-
ing control of perceptually meaningful qualities of human voices,
based on terminology that is accessible to non-experts.

3.1 System Overview
Figure 3 illustrates the pipeline of selecting an initial voice and ap-
plying techniques to transform the vocal features. The voice gener-
ation process begins with a voice similarity map, a low-dimensional
representation of 2484 existing voice samples collected from the

LibriSpeech corpus.1 The map interface visualizes the set of voices
and allows users to search for one or more samples similar to their
target, selecting them for playback on demand. Once suitable sam-
ples have been selected, the system allows for manipulating the
selected voices, by an additional fine-tuning of the latent param-
eters computed by PCA or by voice mixing. In voice mixing, the
system further automatically synthesizes a number of new voices,
interpolated in the latent feature space between any two selected
voices, thereby expanding the diversity of voice characteristics
available. After users have selected and refined their target voice,
an external TTS module, such as the Wavenet neural vocoder [32]
can be used to render arbitrary speech input in that voice. Users
may also save the output voice samples for later use in conjunction
with other tools.

3.2 Navigating the Voice Space
To create an initial voice space with sufficient diversity, we trained
256 speaker feature vectors (i.e., speaker embeddings) from raw
waveforms of 2484 speakers by using the encoder of a multispeaker
TTS system [24], as shown in Figure 3. The encoder extracts a
sequence of log-mel spectrograms from multiple time frames of
each audio sample, which is then provided to a 3-layer long short-
termmemory (LSTM) network of 768 hidden nodes and a projection
of size 256. This outputs a 256-dimensional vector per time frame,
and all these vectors are then L2 normalized to obtain the speaker
embedding that represents the unique timbre of each individual’s
voice, independent of speech content and background noise [44].
We then applied the Uniform Manifold Approximation Projection
(UMAP) [29] on the resultant speaker embeddings and created a
2D projection. The obtained manifold was used as an initial map to
search for an approximation of a target voice within the large pool
of voice samples, using conventional panning and zoom interaction
techniques. The displayed voices are played automatically onmouse
hover and saved on mouse click to minimize the required user
interaction.

The constructed map was organized primarily by pitch, progress-
ing from high-pitched voices on the left to low-pitched voices on
the right, approximately forming two clusters of female and male
voices. Interestingly, the map formed a few local clusters that con-
tained abstract qualities of the voices such as hoarseness or the
speaker’s age. Hoarse voices were often found on the top regions
of both clusters, and were inferred to be uttered by older speakers.
According to such observations, we marked the map with five dif-
ferent color labels as local indicators of the speaker clusters. The
clusters included high-pitched female voices, low-pitched older
female voices, low-pitched younger female voices, high-pitched
male voices, and low-pitched male voices.

3.3 Latent Parameter Editing
To parameterize particular qualities of a voice and enable control-
ling them, we performed PCA to obtain a manageable, small set of
the most important latent variables from the speaker feature vec-
tors of the Librispeech corpus voice samples. Based on a literature
review of measurement and perceptual evaluation of voice param-
eters [9], and our perception of the effects of these parameters in
1Librispeech: https://www.openslr.org/12
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Figure 2: The GUI of overall interface. The voice map exploration is displayed on the left side and latent parameter editing is
on the right side. The map is represented as a lower-dimensional manifold of a large set of voice samples. In theory, the axes
do not have any physical meaning, but indicate the relative proximity of the timbre of the voices based on Euclidean distance.
However, we observed that the x-axis was primarily associated with pitch.

Figure 3: The overall procedure of voicemodelling through latent parameter editing (Section 3.3) and voicemixing (Section 3.4).

naming of these parameters, three non-author team members com-
pleted a brief questionnaire, assessing how helpful these names
were for understanding the variables, and in conducting the voice
editing task. Given the unanimous agreement between these team
members, we included sliders for adjusting these top four principal
components in the user interface.

3.4 Voice Mixing
The mixing technique recommends new design directions with a
minimal amount of user effort (Figure 4). Once the user selects two
voices from the map, the system automatically calculates speaker
feature vectors of five interpolated points between these selected

preliminary synthesis experiments, each author proposed several
descriptive names for the first four latent parameters. The identified
parameters included pitch (high-low), resonance (resonant-shrill),
hoarseness (clear-hoarse), and certain characteristics of prosody.
“Pitch” relates to the perceived frequency of the voice. “Resonance,”
also attributed terms such as “deepness” or “thickness,” agrees with
an established dimension of variation in voices, given that voice
depth is perceived differently based on its resonance inside a vocal
tract of which the shape differs across individuals [16, 41]. “Hoarse-
ness” refers to the speaker’s voice quality, in line with a raspy,
husky voice [9], and the prosodic qualities may be described as
“confidence” [8, 38]. These features correlated with findings from
the prior literature regarding the characteristics most important to
human perception of voice [18, 19, 28]. To validate the suggested
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Figure 4: The GUI of the voice mixing interface

voices, based on the L2 norm (See Figure 3). Specifically, we in-
terpolate in L2 space in a two-step process: first we calculate the
element-wise linear interpolation between the 256-dimensional
vectors, and then normalize the resulting vector so that it has unit
magnitude in L2 space. Elements of the two original voices deter-
mine the upper and lower bounds of the timbre properties to be
interpolated, whereas the timbre of the middle (third) interpolated
voice is half-way between the two selected voices. We opted to
generate this number of interpolated voices as a compromise be-
tween distinctiveness of outputs, computation time to generate the
interpolated samples, and the demands on short-term memory of
the user to keep track of the differences between the samples.

4 USER STUDIES
We investigate the effectiveness of our proposed approaches to
support voice generation to match the user’s assessment of their de-
sired voice. Although usability of the interface is also an important
factor, our focus in this work is on the perceptual domain and the
performance of the system, rather than the interface itself. Accord-
ingly, for our first study, we compared the perceptual performance
of the proposed voice synthesis methods, and then evaluated the
impact of latent parameters. In the second study, we assessed the
performance of our system through a comparative research with
an external voice morphing tool. The studies were conducted under
the approval of McGill University’s Research Ethics Board, REB
#20-08-023.

4.1 Study 1: Latent Parameter Editing vs.
Mixing

4.1.1 Participants. We recruited twelve participants (6F, 6M) with
an average age of 26.7 (σ = 2.6) from the university population via
online advertisement. All participants provided informed consent,
and received monetary compensation of $10 for their time.

4.1.2 Procedure. The sessions took place by video conference, with
audio and screen recording for later analysis. Participants were
shown a brief tutorial video on how to interact with the UI com-
ponents, and were then instructed to select as targets one male
and one female celebrity with a North American English accent,
with whose voices they were familiar. The experiment involved a
comparison between strategies to create synthesized approxima-
tions to these target voices. First, participants carried out voice
map exploration to select an initial voice sample for each celebrity,
since this was a prerequisite to both of the refinement techniques.
Participants were then presented with the latent parameter editing
(LPE) and voice mixing refinement conditions in counterbalanced
order.

Following the experiment, participants completed a post-test
questionnaire, evaluating the usability of the interface and their

judgement of similarity between the target voices and samples they
were able to produce using the different experimental conditions.
The study concludedwith a debriefing interview to elicit participant-
specific information regarding their observed behavior. The post-
test questionnaire consisted of the following questions (Q1-Q8:
5-point Likert scale, Q9: ranking question, Q10: open-ended):

Q1. (Map) How easy was it to understand the arrangement of
the map?

Q2. (Map) How useful were the color labels to understand the
arrangement of the map?

Q3. (Map) How close was your final voice to the celebrity’s
voice with regard to the overall similarity?

Q4. (LPE, for each of the four sliders) How effective was the
[n-th] slider for morphing the voice to match your target
celebrity’s voice?

Q5. (LPE) How close was your final voice to the celebrity’s
voice with regard to the overall similarity?

Q6. (Mixing) How effective was this feature for obtaining the
voice that is more similar to your celebrity’s voice?

Q7. (Mixing) In your perception, did the five voices possess
reasonably mixed qualities of the voices you mixed?

Q8. (Mixing) How close was your final voice to the celebrity’s
voice with regard to the overall similarity?

Q9. Please rate your overall preference.
Q10. Please share any other comments on your experience

with our tool.

4.1.3 Statistical Analysis. We compared the performance within
the three conditions: latent parameter editing (Section 3.3), voice
mixing (Section 3.4), and not applying any syntheses. We evaluated
both subjective preferences and subjective similarities between the
target and synthesized voices, the latter as ranked by participants on
a Likert scale, ranging from 1 (voices did not sound at all identical)
to 5 (voices were completely indistinguishable). Since the data did
not follow a normal distribution, we applied the Kruskal-Wallis
H Test, with effect size indicated by the eta-squared ( 2η [H ]) value.
Given the non-normal data distribution, we performed post-hoc
analysis with Dunn’s Test with Bonferroni correction (significance
at α = 0.05/2), finding statistically significant differences between
the three conditions.

4.2 Study 1: Results
4.2.1 Overall Performance. Our results show that both refinement
techniques significantly improved the fidelity of the voices selected
from map exploration, with a medium effect size ( 2η ≈ 0.1). As
seen in Figure 5, without applying any refinements, the selected
voices were evaluated as moderately similar to the targets (x̄ =
3.0,σ = 0.82) on the 5-point Likert scale. After applying the latent
parameter editing, the mean score significantly improved (x̄ =
3.83,σ = 1.03). Similar improvements were observed from the voice
mixing refinement (x̄ = 3.63,σ = 0.95). Dunn’s test suggests that
only the improvement from the latent parameter editing condition
was significant (p = 0.007, Z = 2.835), while that of mixing condition
was not (p = 0.045, Z = 2.167, α = 0.025). No significant difference
was observed between the mixing and latent parameter editing
conditions (p = 0.756, Z = 0.668).
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Figure 5: Comparison of three groups of voices on how sim-
ilarly they matched to the target voices of participants.

Figure 7: The number of adjustments made on each param-
eter in the experimental trials.

the mixing technique to achieve better matches to their mental
representation (x̄ = 4.0,σ = 0.7).

4.2.4 Time and User Preference. The computation time to trans-
form a 5 s speech sample was within 12 s during the experiment
sessions. As seen in Figure 8, despite this delay, three quarters of the
participants preferred using the voice mixing approach to obtain
a similar voice to their target, and approximately a further 17%
preferred latent parameter editing, compared to the condition in
which they could not modify the voices they selected from the map.

Figure 6: Comparison of effectiveness of the four latent pa-
rameters in reproducing target voices of participants.

4.2.2 Latent Parameter Editing. We recorded the number of times
participants optimized the four attributes. On average, participants
moved the sliders 4.67 times (σ = 4.83) for pitch, 3.67 times (σ =
2.56) for resonance, 2.7 times (σ = 1.46) for hoarseness, and 3 times
(σ = 1.62) for prosody, for each target voice. Figure 7 illustrates
the overall tendency of participants adjusting the four parameters
at each trial. It was observed that most adjustments were made
less than five times and a few participants explored the features
between five to ten times, which led to increased standard deviation.
We did not find a statistically significant difference in the number
of adjustments of the four latent parameters (p = 0.39). Participants’
evaluation on the importance of the parameters also did not show
a significant difference (p = 0.09), however, was observed to have a
large effect size ( 2η [H ] = 0.42) (See Figure 6).

4.2.3 Voice Mixing. Participants’ responses indicated that they
considered the synthesized voices to exhibit suitable qualities, rep-
resenting a mixture of the two original voices (x̄ = 4.5,σ = 0.65
on a 5-point Likert scale). Based on the generation of such voices,
participants also had positive assessments of the effectiveness of

Figure 8: Comparison of participants’ preference among the
three approaches.

4.2.5 User Behavior and Experience. Direct observations of user
experience with our tool were made during remote studies. Our
findings regarding user behaviour using the latent parameter edit-
ing include:

Pitch. A high degree of pitch adjustment sometimes resulted
in change of gender. This was utilized by a user who opted
for an initial voice of different gender but similar timbre to
their target speaker

Resonance. Some users required a few trials to understand
the concept of resonance. They tended to test two opposite
ends of the slider space to explore the permitted range of
manipulation.
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Hoarseness. Some users used this feature to reproduce the
hoarseness of their target voice, while others considered the
level of intelligibility of speech.

Prosody. Although the number of adjustments did not dif-
fer significantly from other parameters, participants only
created speech of a neutral or slightly tweaked emotion to
reproduce the identity of their celebrity, rather than making
a dramatic alteration in prosody.

Since all voices presented on the map were synthesized by the
computer, users occasionally encountered unnatural voices, describ-
ing them as the sound of a “ghost” or a “turkey”. Additionally, users
found that younger voice samples were more sparse in the female
group than in the male group presented on the map. This made
it particularly challenging for our users to recreate young female
celebrities’ voices, as we describe in Section 5.1.2.

4.2.6 User Interview. Our user interview suggested that partici-
pants appreciated the ease and straightforwardness of the voice
mixing approach. One participant remarked that the technique
was easy to use since it only required selecting two voice samples.
According to another participant, blending voices provided an ad-
ditional benefit; it was helpful to make a decision between two
voices.

With regard to the latent parameter editing, participants were in
favour of having control on particular features of voices. However,
this approach was perceived to be more difficult than expected by
most users, with one participant mentioning that it was hard to
capture which characteristics are being changed when adjusting
multiple parameters back and forth.

4.3 Proposed Voice Editing Approaches vs.
Commercial Software

In this study, we evaluated the voices generated from our two
synthesis techniques and a commercial voice morphing tool with
respect to their ability to generate similar matches to the target
voice. To select the commercial tool, we initially compared five com-
mercially available options: Voicemod,2 MorphVOX Pro,3 Skype
Voice Changer,4 ClownFish Voice Changer,5 and AV Voice Changer
Software Diamond.6 We eliminated from consideration three tools
that did not support uploading of a voice file, but rather, real-time
recording of the user’s own voice by microphone, since these were
unsuitable for our intended use case. This left us with two tools
that were evaluated by three non-author members of our research
team. The evaluation criteria were expressivity to enable a variety
of modulations, and minimization of sound distortion. In these re-
spects, we found the AV Voice Changer to be the most compelling;
this tool features a 2D pitch-timbre plane and supports adjustment
of other elements such as frequency ranges by using bandpass fil-
tering. Although we did not consider product price in our criteria,
the selected system appeared to be the most expensive among those
we evaluated. MorphVOX Pro offered limited capacity to modify
features beyond pitch and a small degree of timbre adjustment, and

2Voicemod: https://www.voicemod.net/
3MorphVOX Pro: https://screamingbee.com/morphvox-voice-changer
4Skype Voice Changer: https://skypevoicechanger.net/
5Clownfish Voice Changer: https://clownfish-translator.com/voicechanger/
6AV Voice Changer: https://www.audio4fun.com/voice-changer.htm

was therefore excluded from the formal experiment we describe
below.

4.3.1 Preliminary Sessions. Six researchers from the project team
were involved in the preliminary session, each reproducing voices
of two celebrities, OprahWinfrey and Justin Bieber. Samples of both
celebrities’ voices were extracted from the VoxCeleb7 data set, with
each sample approximately 4 s in duration. To reproduce the given
speech files, each member generated two pairs of voices under three
counterbalanced conditions: latent parameter editing (Section 3.3),
voice mixing (Section 3.4), and AV Voice Changer Diamond. To
avoid potential bias, every voice that could be explored or generated
through these interfaces was adjusted to output the same content
with the speech of the celebrities. This procedure resulted in two
pairs of 18 synthesized voices for the two target celebrities, which
were then evaluated in the following experiment.

4.3.2 Participants. Twelve participants (6F, 6M) with an average
age of 24.7 (σ = 2.6) were recruited from the general population. All
participants volunteered to participate in this study and provided
both oral and written consent. No participant reported any hearing
impairment or cognitive disorders.

4.3.3 Procedure. We conducted cluster analysis to evaluate voices
from the preliminary session based on multidimensional scaling
(MDS). A Windows application (Figure 9) was developed for this
purpose, which participants ran on their personal computers. Par-
ticipants were provided with a brief user manual for how to in-
teract with the system. The main task involved classification of
19 voice samples for each celebrity—the 18 voice files selected by
team members from the previous session, plus the original speech
file of the celebrity—into different numbers of bins (3, 5, 7, and 9),
randomly ordered throughout four trials. Participants were not pro-
vided with any specific features as evaluation criteria but instructed
to judge similarity as they saw fit. No limits were placed on the
number of times a voice sample could be replayed. The study took
approximately one hour and concluded with a post-test question-
naire investigating the main factors that impacted evaluation of the
voices.

4.3.4 Perceptual Dissimilarity Analysis. To evaluate the perceptual
similarity of voice samples, we follow the general methods of cluster
analysis and multidimensional scaling (MDS). These methods are
often used to quantify and visualize similarity of different sensory
stimuli in the perceptual domain such as sound, taste or haptic
sensations [2, 33, 40].

First, we calculated a pairwise similarity matrix S based on the
results of voice clustering. At each trial, every item in each bin
received a pairwise similarity score of which the value was equal
to the number of bins of the trial. For example, if the 1st and 2nd
voice were classified in the same bin from a trial with five bins, five
was added to the (1, 2) cell of the similarity matrix. Since there were
four trials, with three, five, seven, and nine bins, respectively, the
theoretical maximum value of similarity was 24 (= 3 + 5 + 7 + 9).
We then inverted the similarity matrix to calculate the dissimilarity
matrixD for every non-diagonal component, as in Equation 1. Every

7VoxCeleb, A large scale audio-visual data set of human speech: https://www.robots.
ox.ac.uk/~vgg/data/voxceleb/

https://www.voicemod.net/
https://screamingbee.com/morphvox-voice-changer
https://skypevoicechanger.net/
https://clownfish-translator.com/voicechanger/
https://www.audio4fun.com/voice-changer.htm
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
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Figure 9: The GUI of theWindows application developed for
conducting the cluster sorting task.

diagonal component was set to zero.{ }
D(i, j) = 1000 × 1

S(i, j)
− (1)

24

These dissimilarity scores, for each cell of the matrix, were aver-
aged over the twelve participants. We then conducted MDS on the
resulting pairwise dissimilarity matrix D to project the values onto
a two-dimensional diagram, representing the relative similarity of
the auditory stimuli; nearby voices were perceived as similar, while
distant voices were perceived as different.

4.4 Study 2: Results
4.4.1 Evaluation Criteria. Results from our open-ended post-test
questionnaire (Figure 10) show the main factors that affected partic-
ipants’ metrics to classify voices. A set of common characteristics
were found in the responses, including the primary vocal char-
acteristic (pitch), human-like expression, and the level of audio
distortion.

Figure 10: Main factors considered in the voice classification
task reported by participants

(a) Justin Bieber

(b) Oprah Winfrey

Figure 11: Two-dimensional MDS results for reproducing
the voices of the two celebrities, Justin Bieber (left) and
Oprah Winfrey (right), with samples marked as P, M,
C, O for the latent (P)arameter editing, voice (M)ixing,
(C)ommercial tool (AV Voice Changer Diamond), and the
(O)riginal speech samples. The X and Y axes are dimension-
less; the Euclidean distance between points indicates per-
ceived dissimilarity calculated from the study, e.g., in Fig-
ure 11b, M4 is perceived to be roughly twice as similar to O3
as M3.

4.4.2 Multidimensional Scaling Results. The two-dimensional MDS
results show that both latent parameter editing and voice mixing
yielded significantly higher similarity than the commercial tool
(Figure 11). In general, the two synthesized voices from our two
methods are observed to be closest to the original speech sample,
while voices from the commercial tool are further away. For Justin
Bieber’s voice (left plot), latent parameter editing appeared to result
in the closest matches, while for Oprah Winfrey’s (right), voice
mixing performed better. On the left plot, a small cluster of a few
samples (P3, P2, M2, C2) is formed in a distant location from the
original voice due to their low intelligibility of speech caused by
the TTS synthesis. Kruskal’s stress of MDS was found to be 0.19
for Oprah Winfrey and 0.20 for Justin Bieber’s voice.
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4.4.3 Statistical Tests on Dissimilarity. Our results showed that
both techniques outperformed the commercial voice morphing tool.
We ran a two-way repeated measures ANOVA on the averaged
dissimilarity scores compared to the original speech, D(i,Oriдinal),
with two independent variables of Method and Voice. The values
passed the Shapiro-Wilk Normality test (W = 0.965, p = 0.303) and
Mauchly’s sphericity test (W = 0.807, p = 0.651 for Method and
W = 0.691, p = 0.478 for Method×Voice). As seen in Table 1, the
effect ofMethod was significant on the similarity scores, while Voice
and the interaction term were not significant. Tukey’s HSD posthoc
test indicated that both voice mixing and latent parameter editing
showed significantly smaller average dissimilarity values compared
to the commercial tool’s average (voice mixing and commercial tool:
x̄ = 110.8 and p = 0.003, Latent parameter editing and commercial
tool: x̄ = 104.2 and p = 0.005). There was no significant difference
of dissimilarity values between the two synthesis techniques (voice
mixing and latent parameter editing: x̄ = −6.65, p = 0.974).

Table 1: Two-way ANOVA results of dissimilarity values to
the original voice.

Factor tisticsSta p-value Effect size (η2)
Voice F (1, 5) = 0.001 0.971 0.0004

Method∗
Voice×Method

F (2, 10) = 8.387 0.0128∗ 0.3340
F (2, 10) = 1.715 0.197 0.0683

4.5 Summary of Results
Both the quantitative measures from the MDS analysis, using per-
ceptual dissimilarity metrics, and the qualitative responses to the
post-test questionnaire indicate advantages of our approaches to
voice synthesis. The synthesized voices generated by latent param-
eter editing and voice mixing approaches were judged to be more
similar to the target than were the outputs of a traditional voice
manipulation tool.

Although our participants had access to samples of the target
voices, as necessary for a within-subjects design, the ability to find
reasonably close matches to these targets suggests the possibility
of also doing so in the absence of such references, i.e., when the
voice exists only in the user’s mind. We also observed that the
participants spent most of their time adjusting parameters they felt
had the most influence and importance.

5 DISCUSSION
5.1 Voice Space Exploration
5.1.1 Integration of Voice Exploration and Voice Editing. Existing
voice morphing tools have shown to be successful in offering a va-
riety of audio effects. Despite their success, several areas remain for
potential improvement. First, these tools do not provide a strategy
for searching among potential voice recordings, nor do they support
exploration over a wide array of vocal characteristics. Second, they
are prone to introduce distortion or “mechanical sounding” voices,
unless the user is skilled and knowledgeable in the manipulation
of the relevant controls. This results in two main limitations: the
large number of required adjustments for users to change a voice
that differs significantly from their own and the cognitive effort

this entails; and the resulting distortion or mechanization of the
output voices. To resolve the first issue, some tools allow users
to provide recorded speech of a target speaker, as an alternative
to searching or exploring within a vocal database. This approach
works when the target voice can be recorded, but this is not always
the case. We overcome these limitations by integrating a similarity
map of voices that can be explored, and then operated on with
synthesis techniques. Our results demonstrate that it was possible
to select voices directly from the similarity map that were perceived
to be reasonably close to the target, and subsequently, to improve
upon the quality of vocal match using either of the two types of
modification interfaces.

5.1.2 Demographic Imbalance. Our voice similarity map was built
on Librispeech, a massive speech database derived from the Librivox
project, which contains approximately 8000 audiobooks recorded
by volunteer readers [42]. Although this database ensures a rea-
sonable gender balance (52% M, 48% F), we observed an imbalance
in speaker age, which skewed towards older volunteers. Indeed,
two participants from Study 1 mentioned that it was difficult to
search for their younger target celebrity, reporting that there were
more “old woman voices” than younger voices. This result suggests
a potential benefit from using a speech database with a higher
demographic diversity and well-documented speaker metadata.

5.2 Synthesis Techniques
5.2.1 Degree of Human Likeness. In the post-experiment question-
naire of Study 2, we investigated the main factors determinative
of how participants sorted the voices. After the primary factor
of pitch, paralinguistic expression (e.g., stress, fluctuation, or emo-
tional prosody) and distortion of sound were considered as the most
significant factors, appearing in 60% and 41.7% of the responses,
respectively. This is consistent with previous findings that paralin-
guistic expression is the primary acoustic cue to infer the emotional
state and personality of a speaker [12, 38]. In our system, expression
is modulated to a certain extent by the last latent parameter (named
“strength/prosody”); changes in the positive direction produced
faster, louder, and more powerful speech. Along with naturalness
of sound, paralinguistic features often determine the degree of hu-
man likeness of synthetic speech, since they mimic various human
emotions and identities [5, 6, 27]. In light of these factors, partici-
pants evaluated voices generated from our interface as more similar
to the original speech of celebrities than the voices from an existing
voice morphing tool, as demonstrated by the MDS analysis and
statistical tests on dissimilarity. Our results suggest that the system
not only matches the vocal characteristics of the target speaker,
but also creates a more convincing artifact that is closer to natural
human speech and real-world expressions.

5.2.2 Perceptual Importance of Latent Parameters. In Study 1, we
investigated the number of times participants adjusted each latent
parameter and the subjective importance of the parameters. Al-
though we did not find a statistically meaningful result, the effect
size appeared to be very large ( 2η [H ] = 0.42). During the observa-
tion, we found several factors that were difficult to control. For
example, participants expressed different levels of satisfaction with
their output and some participants interacted with the interface
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much more than others. Another factor was the perceptual gap
between target and initial voices that the participants had selected
from the map. Indeed, we observed a large variation in the number
of adjustments by participants as shown in Figure 7. Based on the
given factors, the large effect size may imply a reasonable corre-
lation between each parameter’s subjective importance and the
number of adjustments made on the parameter.

5.2.3 Potential Harm and Implication of Voice Replication. The
rapid technological advances of “deep fakes”, able to produce per-
suasive reproductions of the appearance and vocal characteristics
(“voice cloning”) of arbitrary individuals, raises several ethical prob-
lems that society must confront. The most obvious concern is the
potential violation of one’s identity by generating fake speech in
that person’s voice. The utilization of copyright protection tech-
nologies such as audio watermarking [22] represents a possible
safeguard. These techniques were originally designed to secure and
authenticate digital audio by adding a signal—imperceptible to the
human ear—to an audio file that enables a computer to identify the
result by analyzing its spectrogram. However, this has its limita-
tions in that it is subject to voluntary adoption by those producing
the deep fakes.

We note several limitations of our present system. First, a conse-
quence of our latent parameter editing approach is that a single
controllable parameter can affect several characteristics of the re-
sulting output voice. Additionally, due to a comparatively small
corpus of international speech samples, the system is currently
limited to text-to-speech (TTS) synthesis with a North American
English accent. This limitation arises from the dependency of of the
TTS model on the dataset on which it was trained. To expand the
usage of the proposed techniques, model training may be required
as a future task to accommodate different accents or languages.

5.3.1 Multidimensionality of Human Voice Perception. Modelling a
human voice involves consideration of multiple acoustic features
that are unavoidably intertwined with one another. Humans infer
the speaker’s age based on a multitude of cues such as pitch, speech
rate, and hoarseness: a low, hoarse voice with a slow speech rate
is often perceived as older [20]. The impression of extroversion or
perceived charisma of the speaker arises from a collective judge-
ment of speech rate, pitch variation, and loudness [8, 34]. Moreover,
changes of any single characteristic may affect how another char-
acteristic is perceived: speech produced with a high-pitched voice
is often considered faster than a low-pitched voice uttered for an
identical duration [15].

We observe this phenomenon in the entangled latent variables
extracted from PCA of speaker embeddings. This occurs because a
dominant pattern obtained from dimensionality reduction is not
always perceived by the listener as a single feature. This is particu-
larly evident for the latent parameter of emotional prosody, which
subsumes the changes of speech rate, intensity, and intonation,
jointly represented in one dimension. Due to this entanglement, the
manipulation of a single variable may result in undesired changes
of other (coupled) qualities.

5.3.2 Accent Variations. The neural network that we used for TTS
synthesis was trained with two public speech databases, VCTK8

and Librispeech,9 in which the predominant accent is American (ap-
proximately 1200 speakers) followed by British (100 speakers) [24].
Given this training data, the model was not capable of reproducing
the wide variety of accents of non-American, non-British speakers.
To render multiple accents with synthetic speech, related work
ntroduced a new system called language embedding [47], a three-
dimensional vector that represents the way words are pronounced
n different accents. This does not involve any adaptation in the
speaker feature vectors, but simply concatenates the language em-
bedding to the speaker embedding. It also creates speech in multiple
anguages in the same way it facilitates various accents, contain-
ng language-specific information i.e., tone embedding for certain
anguages such as Mandarin and stress embeddings for English
or Spanish. Future work might include combining the language
embedding technology with speaker feature vectors that can be
optimized from our system through the two proposed synthesis
techniques.

5.3.3 Computation Time. The main computational bottleneck of
the current system at present is in the vocoding portion of the
speech synthesis. The vocoder performs batched sampling to gener-
ate a series of time segments of audio waveforms, where the number
of segments increases the computation time. As future work, we
plan to pre-synthesize every possible combination of latent parame-
ters with particular intervals at which the current latent parameter
editing is being performed. This may require a simple retrieval of
the stored data upon user interaction, significantly reducing the
response time, enabling the voice editing experience to be closer to
real time.

Generating artificial speech in a particular voice often requires
one or more reference recordings to learn the voice identity. In
this work, we developed a novel approach to externalize a voice
that only exists in the user’s head, and synthesize new speech in
that voice without any reference data. We combined speaker em-
bedding technology with a dimensionality reduction algorithm on
an existing set of voices, and provided a direct manipulation on
the low-dimensional representation of feature vectors through two
voice editing techniques. The editing techniques, in conjunction
with a voice exploration map, allowed our users to either create
fictitious voice identities or manifest perceptually meaningful char-
acteristics of a selected voice. Through user studies, we evaluated
the performance of our two techniques and compared them with
an external voice morphing tool that we found the most promising
from our literature review. Our results demonstrated that the sys-
tem is capable of generating a convincing match to a target voice
with both techniques significantly enhancing the level of fidelity
of voices compared to the existing technology. Returning to the
motivating use case, our hope is that this system will lower the
barriers for schizophrenic patients to engage actively in the avatar
creation step, reproducing a convincing emulation of the sound of
hallucinations they hear.

5.3 Limitations and Future Work

i

i

l
i
l

6 CONCLUSION

8CSTR VCTK Corpus: https://datashare.ed.ac.uk/handle/10283/3443
9Librispeech Corpus: https://www.openslr.org/12
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