
Three Prototypes of a Force-Sensing Device for the
GuitarAMI System

Hyejin Lee
∗

McGill University
Montreal, Canada

hyejin.lee2@mail.mcgill.ca

Kathleen "Ying-Ying" Zhang
McGill University
Montreal, Canada

kathleen.zhang@mail.mcgill.ca

ABSTRACT
The device proposed in this paper is meant to become part
of the greater GuitarAMI ecosystem for augmented instru-
ments. Though the word ”guitar” is a prominent part of the
name, we consider a force-sensing device to be an asset for
any performer and as such discuss three possible builds for
this device: two for seated musicians and a third for a stand-
ing musician. These three prototypes were constructed using
high-load force-sensitive resistors and evaluated using simple
effects mapped to their output values. These preliminary
use-cases show that these three module builds are promising
proof of concept for future development and deployment as
musical interfaces.

1. INTRODUCTION
The goal of this project is to provide proof of concept for
a force-sensing device that could become part of the Gui-
tarAMI ecosystem. The GuitarAMI is a nylon-string guitar
with sensors attached to the body of the instrument, making
it an augmented musical instrument [5][6]. The particular
device we have propose, however, does not take information
from the instrument but the the musician. By creating a
force-sensing layer, we wish to gather gestural data from
a musician’s shift in movement. Thus, it can be used by
guitarists, but also by other musicians connected to the Gui-
tarAMI system. The data is by nature time-based and could
be an intentional musical gesture, or an ancillary gesture
that does not produce sound, but nonetheless accompanies
a musician’s sound-producing performance gestures [9]. For
an example relevant to our evaluation, body posture is an
important aspect of expression for cellists, even though it
is not sound producing [7]. That is not to say that we are
only interested in ancillary gestures. The movements sensed
by this particular device are necessarily restricted to the
shift of a musician’s trunk (with apologies for the under-
foot module, which is designed for someone standing). As
such, we wanted to pair it with ancillary gestures that may
already exist, but the force seat could also be used with
musical intention. As such, we have created a preliminary
mapping structure for a couple of simple effects (a delay
and an octaver) to be used for evaluation. The mapping for

∗

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

the octaver in particular is designed to piggy-back off of a
cellist’s ancillary gestures. When the cellist leans forward
to apply more force to their playing, the amplitude of the
synthesized tone also increases. When the cellist leans right
to play a low note, the octaver introduces a higher octave
accompaniment, and vice versa. In this way, the cellist may
play naturally, but also with intention. Eventually, our de-
vice will be wirelessly compatible with the Raspberry Pi
(more in Section 4, Future Work), but for our initial designs
we experimented with three different build types that were
implemented in SuperCollider via Arduino Uno.

2. METHODS
The creation of the force-sensing seat can be split into three
sections: prototyping, which involves the creation of the
physical hardware of the device, data acquisition, and map-
ping this data to a few simple effects.

2.1 Prototyping
Three prototypes were created in order to test three different
performance data acquisition methods. Initially, it was
proposed that there be a single board that could be placed
under the chair of a seated performer or under the feet of a
standing one. This evolved into three different modules that
could be compared by use-case: two for a seated performer,
and one for a standing one. The general design of each
module is similar, as each uses four sensors to gather data
about force distribution. In fact, the main change is from
where these data are gathered.
The current idea is that all three of these modules can be
swapped from the same microprocessor.

2.1.1 Circuit
As all modules used the same sensor and microprocessor,
the circuit used is very simple. The sensors we used were
Tekscan Flexiforce high-load force sensitive resistors (FSRs)
that were rated for 100 pounds. These sensors were received
as analog inputs by an Arduino Uno.
At first we used the Tekscan recommended circuit for a volt-
age divider, which is pictured in Figure 1 [8]. Note that the
Tekscan recommendation did not include a specific amount
of resistance, we experimented until we found a level that
seemed to work well for our purposes.
However, this gave us issues with floating values when mul-
tiple sensors were connected to the same microprocessor.
The first solution we attempted was to add a very small
capacitor in parallel with our voltage divider to smooth the
data. However, after some debate and input from members
of IDMIL, it was determined that the best course of action
was to change the circuit to one that would read as con-
stantly high when the pin received no input. The revised
circuit is shown in Figure 2.



Figure 1: Original circuit diagram (showing one
FSR) which lead to floating pins when more FSRs
were added.2

Figure 2: Revised circuit diagram (still only show-
ing one FSR) which employed a pull-up resistor to
fix floating pin issue.2

2.1.2 The under-chair module
This module consists of four separate FSR units that fit
under the legs of a chair or piano bench. The idea here is to
measure the shift in force of a seated musician. Our main
concerns with this particular design was the amount of force
that would be concentrated on the relatively small surface
area of the FSR. Concerns were even raised that this would
break the relatively thin sensor. In order to distribute some
of the weight and protect the sensor, it was padded first
with craft foam on both sides and then attached to a silicon
cup-like structure for both further padding and to keep it
from slipping out from under chair legs. A pocket was sewn
into foam in order to keep the FSR in place. Figure 3 shows
this prototype.

2.1.3 The small seat module
An issue we thought of for the under chair module is that
many musicians tend to sit on the edge of their seat, in par-
ticular cellists and often pianists. In this case, we considered
the option of creating a seat that would be more central to
a musician’s position to more finely measure changes. The
small seat measures 30 cm x 17 cm, has an FSR in each
corner, and is made of MDF that is covered by a cushion
on the top side, while craft foam protects the sensors on the
bottom. One element of concern was that the bodies of the
sensors do overlap in this use case. Evaluation found that
the noise created by this was fairly negligible once a body
was seated. Figure 4 presents two views of this module.

2.1.4 The underfoot module
Seen in Figure 5, the underfoot module is quite similar to
the small seat, excepting that is 43 cm x 30 cm. It is large
enough that sensors do not touch at all, and since it is meant
to be stood on the top is bare. However, there is still a layer

2Created using circuit-diagram.org

Figure 3: Bottom view and side view of the under-
chair module

Figure 4: Sensor view and cushion view of the small
seat module



Figure 5: Underfoot module: close-up and with hu-
man for scale

of craft foam to protect the sensors from the floor on its
bottom.

2.2 Data Acquisition
2.2.1 Data Transfer

To transfer our analog data from the Arduino microprocessor
to the computer, we installed the Arduino Uno board man-
ager and driver to enable the data acquisition via USB port.
Then, we received the four analog values from the specified
analog pins (A0, A1, A2, A3) and transformed them into
digital values using the AnalogRead function, which is a
multi-channel, 10-bit analog to digital converter built into
the Arduino system. The values manipulated from this point
on were integers between 0 and 1023 that were mapped from
the zero to five volts received by the analog pins.

2.2.2 Data Validation
As the raw data started from 1023 and decreased as the
weight pressure increases, we subtracted 1023 from the initial
values and multiplied them by minus one. By importing
this operation at the beginning of the program, we could
handle the sensor data in a way that increases from 0 with
more pressure, which facilitates an easier manipulation of
the data.

2.3 Mapping and Effects
2.3.1 Continuous Mapping Strategy for a Coordi-

nate Plane
On a plane of X-Y coordinates, we mapped the two parame-
ters—amplitude of delayed signal and delay time—into each
axis as illustrated in Figure 6. Four sensors were mapped
into each quadrant on the plane. With the input values of
each sensor, the change of values in X axis facilitated the
function on SuperCollider to modify the amplitude and Y
axis to affect the delay time of the sound.
To determine when to operate the functions, we subtracted
B (The sum of the sensor 2’s value and the sensor 4’s value)

Figure 6: Mapping on a X-Y coordinate plane

from A (The sum of the sensor 1’s value and the sensor
3’s value), and increased or decreased the amplitude by the
difference. In the same way, we subtracted D from C and
modified the delay time by the value. In this way, we could
give a longer delay to the sound when the musician leaned
forward and a shorter delay when backward. We also ad-
justed the sound larger when the musician leaned to the
right side and softer to the left side.

2.3.2 Discrete Mapping Strategy for a Coordinate
Plane

The other mapping strategy we considered was to modify the
frequency along with the amplitude to add different sound
effects such as octave doubling or chord progression. Values
on the X-axis remained the same to affect the amplitude of
the sound. However, values on the Y-axis were processed
discretely to add a note that is one octave higher or lower,
depending on whether the player leans forward or backward.
With this mapping strategy, we implemented a subsystem
of this project that modifies the above two parameters of a
procedurally-generated sound.

2.3.3 Generation of Sound Effects on SuperCollider
The software program of this project was implemented in
SuperCollider Version 3.10.3 under the GNU General Public
License. Two functions were executed simultaneously on
SuperCollider to provoke the sound effects.
In the first function, we used the SoundIn object[2] to read
the audio input from the external microphone placed adja-
cent to the player. At the same time, in the main function,
we retrieved the four sensor values from Arduino and gener-
ated each sound effect in four different conditional branches,
each representing the four quadrants on the plane as in
Figure 6. Values to change the amplitude and the delay
time were sent as arguments from the main function to the
first function, and used to synthesize the input signal in
the SynthDef class, an inherent class for customized sound
synthesis.[4]
Afterwards, the synthesized signal was sent to the output
bus, which resulted in the sound being played from the con-
nected speaker. The source code of this project is available
at a open-source repository on Github.[3]

2.3.4 Data Calibration
The four sensors had subtle fluctuations in their values,
which varied from zero to ten without pressure. Thus, the
amplitude and delay time repeatedly increased or decreased
regardless of the input value when we simply calculated



the subtraction and applied changes to the parameters. To
avoid the frequent and meaningless changes, we adjusted
the threshold of starting functions during the calibration.
We gave changes in amplitude or delay time only when the
difference between A and B, or C and D was bigger than 10,
which could be further adjusted to detect the input pressure
more accurately.

3. EVALUATION
We are currently in the process of both qualitative and quan-
titative evaluations. Qualitative evaluation was conducted
with a cellist use-case and the delay effect for instrument
augmentation. Because cello is one of the instruments we
had particularly in mind when designing the mapping, it
made sense to use it in order to test the seated measures.

3.1 Initial qualitative assessment
Because there were concerns that the prototypes, notably
the under-seat module, would even work given the use of
FSRs, we are happy to report usable data from all three
modules with no clipping of the analog signal from the resis-
tors.
There were instances when, after a long period of testing,
one of the sensors would seem to get stuck in a ”high” state,
however that seems to be a physical issue with the design
of the under-seat module in particular, as over time the
craft foam discs covering the FSR become compressed. By
contrast, the silicone cup seems to have much less by the way
of memory, and is less prone to compression while springing
back to its original state sooner. As such, the future redesign
of this particular module should be made with a similarly
robust material, perhaps also over a hard surface.
We found that it was possible for a seated performer to ma-
nipulate the delay effect by shifting their weight on the seat.
However, we found that our mapping scheme was ultimately
disruptive to the musician and will need to be adjusted to
be usable. While the concept of creating the effect was to
piggy-back off of a musician’s existing ancillary gestures in
order to create musical meaning, we found that the musician
would have to lean unreasonably far in each direction in
order to make a meaningful difference. The forward and
backward leaning control in particular will need to be ad-
justed, as cellists and pianists tend to sit very far forward
on their seats anyway, so the action of leaning backwards to
turn an effect off is especially outside of the normal trunk
movement of a seated musician.
We found this effect to be especially bad in the under-seat
module where the activating the back sensors would require
fully sitting back into the seat of the chair, but even with
the much smaller surface area of the small seat module we
experienced similar issues.
Thus, we propose the creation of a center (0,0) position
more in line with a musician’s natural center of gravity and
measure forward displacement from that point in order to
activate the effect. This would be more in line with how a
musician would move to begin with, and would not neces-
sitate leaning all the way back. It could also be used as a
displacement point for left and right leaning that could be
more subtle.
Although this discussion point is most evident in the applica-
tion of the seat-based modules, the underfoot module could
also do with a serious reassessment, as a similar issue exists
where the performer is forced to the margins of the device.
Whether a similar re-mapping will be beneficial for this
particular application as well will await further evaluation.

3.2 Initial quantitative assessment

Figure 7: Under-chair module with the Bertec force
plate

A pilot quantitative assessment is underway that compares
the output of the our device with that of a force plate.
Initial measurements have been taken at the Center for
Interdisciplinary Research in Music Media and Technology
(CIRMMT) using a Bertec Force Plate. Initially, we will
attempt to calculate two discrete points of force, using part
of the under-chair module as pictured in Figure 7. Data
was gathered from the Arduino IDE and from the force
plate’s digital output, as well as by using Bertec’s own
data gathering application and force calculations [1]. After
calculating the correct data from the force plate’s output,
a comparison over time (both outputs were time stamped)
of data fluctuation as a force is applied to the chair can be
mapped.

4. CONCLUSIONS AND FUTURE WORK
Through the design and evaluation process, we learned about
transducing a musician’s movements to mappable data that
would be both musically interesting and possible to control
for the performer. Further development of the device would
include concluding the evaluation process by trying out the
new mapping strategy outlined above, as well as completing
our pilot assessment with the information from the force
plate. The FSRs have proven to be more resilient and useful
than many thought they would be, but they are perhaps not
an ideal sensor for this application. As such, we will also be
repeating the prototyping process with strain gauges and
comparing them our current sensors. If FSRs still prove to
be a good design choice, replacing them with a more suitable
shape may be the next step after that.
Switching our current microprocessor with one that can com-
municate wirelessly with the Raspberry Pi is the next critical
step in becoming actually integrated into the GuitarAMI
ecosystem. Now that we have proof of concept, designing
better enclosures is another critical step, as well.
In addition, we could revisit mappings and effects. Placing
the octave doubling effect on a pre-generated sound instead
of the microphone input as described in 2.3.1 could make it
an interesting controller. Future work that employs the pitch
detection of the audio input and adds the corresponding
octave or chord to it in a real time may result in having
more abundant musical effects for the players and their per-
formance. Panning would also be a rather intuitive way for
a musician to be able to spatialize their sound, and could
even be implemented in quad across the X-Y plane using
the current mapping scheme.

References
[1] B. Corporation. Bertec Force Plates. Bertec.

[2] E. F. Supercollider tutorial: 20. microphones



and soundin. https://www.youtube.com/watch?v=

3vu4UbS2NMw, 2018.

[3] H. Lee. Github repository of the guitarami project.
https://github.com/ty1279/guitarAMI, 2019.

[4] J. McCartney. Synthdef, client-side representation of
a synth definition. https://doc.sccode.org/Classes/

SynthDef.html.

[5] E. Meneses. Guitarami: Development and use of an
augmented musical instrument as an artistic creative
tool. NICS Reports, (18), 2017.

[6] E. R. Miranda and M. M. Wanderley. New digital musical
instruments: control and interaction beyond the keyboard,
volume 21. AR Editions, Inc., 2006.

[7] J. Rozé, M. Aramaki, R. Kronland-Martinet, T. Voinier,
C. Bourdin, D. Chadefaux, M. Dufrenne, and S. Ystad.
Assessing the influence of constraints on cellists’ postural
displacements and musical expressivity. In International
Symposium on Computer Music Multidisciplinary Re-
search, pages 22–41. Springer, 2015.

[8] Tekscan. Best practices in electrical integration of
the flexiforceTM sensor. https://www.tekscan.com/

flexiforce-integration-guides, 2018.

[9] M. M. Wanderley, B. W. Vines, N. Middleton, C. McKay,
and W. Hatch. The musical significance of clarinetists’
ancillary gestures: An exploration of the field. Journal
of New Music Research, 34(1):97–113, 2005.


