MECH 573: Mechanics of Robotic Systems

Winter 2006: TR 11:35-12:55 ENGTR 1090
Prof. Hamid D. Taghirad

1) For the Five-bar, 4R1P manipulator introduced in assignment No. 3 whose schematic diagram are given in figure 1, derive the Jacobian matrices J_{x} and J_{q}, and discuss on the inverse and direct kinematics singularities.
Note that the end effector position is denoted by vector $\boldsymbol{x}=\left[q_{x}, q_{y}\right]^{\mathrm{T}}$ and joint variable vector is defined as $\boldsymbol{q}=\left[d_{1}, \theta_{2}\right]^{\mathrm{T}}$. The Jacobian matrices to be found are defined as $J_{x} \dot{x}=J_{q} \dot{q}$.

Figure 1. Five-bar, 4R1P manipulator.
2) For the 3UPU platform manipulator illustrated in Figure (2) find the Jacobian matrices J_{x} and J_{q}, and discuss on the inverse and direct kinematics singularities. For this manipulator the end effector position is denoted by vector $\boldsymbol{x}=\left[p_{x}, p_{y}, p_{z}\right]^{\mathrm{T}}$ and joint variable vector is defined as $\boldsymbol{q}=\left[d_{1}, d_{2}, d_{3}\right]^{\mathrm{T}}$

Figure 2. The schematics of a 3 DOF 3U3P parallel manipulator.
3) Derive the conventional Jacobian matrices of the $3 x 3$ Stewart Gough Platform shown in figure (3) by the velocity vector loop method. Does this manipulator possess any inverse kinematics singularities?

Figure 3. The schematics of a 3×3 Stewart Gough Platform.
4) Formulate the Jacobian matrices of the 3×3 Stewart Gough Platform shown in figure (3) by the method of reciprocal screws.

