MECH 573: Mechanics of Robotic Systems
Winter 2006: TR 11:35-12:55 ENGTR 1090
Prof. Hamid D. Taghirad

Consider the planar 3RPR manipulator shown in the following figure.

In this manipulator, the base points A_{i} 's are located on a circle with radius R_{A}, with an equivalent angle of 120°. Similarly, the moving platform points B_{i} 's are located on a circle with radius R_{B}. The fixed coordinate frame is located at the center of circle R_{A}, whose x axis is parallel to $A_{1} A_{2}$ and its y axis along A_{3}. The moving platform position and orientation is represented by the vector $\boldsymbol{x}=\left[x_{G}, y_{G}, \varphi\right]^{T}$, and the input joint variables are the extendible limb lengths d_{i} 's, $i=1,2$ and 3 . The joint variables vector is represented by $\boldsymbol{q}=\left[d_{l}, d_{2}, d_{3}\right]^{T}$ and the angle of each limb is denoted with θ_{i} 's. The vector E_{i} denotes the vector representation of $G B_{i}$.

1) Derive expressions for inverse kinematics, i.e. suppose $\left[x_{G}, y_{G}, \varphi\right]^{T}$ is given find d_{i} 's.
2) Solve the forward kinematics meaning d_{i} 's are given find expressions for $\left[x_{G}, y_{G,} \varphi\right]^{T}$.
3) Derive the Jacobian matrices J_{x} and J_{q}, and discuss on the inverse and direct kinematics singularities, the Jacobian matrices are defined as $J_{x} \dot{x}=J_{q} \dot{q}$.
4) Derive the stiffness matrix of the manipulator, assuming that the moving platform is at a central location. Under what conditions will the stiffness matrix become decoupled? Assume unit stiffness at each limb.
5) Develop a program in Matlab with the following numerical values for parameters, in which for a given moving platform trajectory $\boldsymbol{x}(\boldsymbol{t})$, the limb lengths $d_{i}(t)$'s are found, notice that due to multiple solution in inverse kinematics, the solution must be found in such a way that no jumps are observed in the manipulator trajectories. Then give the time trajectories found in the first part, and solve the forward kinematics of the manipulator. Compare the calculated $\boldsymbol{x}(\boldsymbol{t})$ with the original one to verify your programs. Submit your developed programs via WebCT, and provide the illustrative plots of $d_{i}(t)$'s, and possibly $\boldsymbol{x}_{\boldsymbol{d}}(\boldsymbol{t})-\boldsymbol{x}(\boldsymbol{t})$ in your project report, for verification purpose.
$R_{B}=1, R_{A}=10, x(0)=[0,0,0]^{T}, \delta x=-0.5, \delta y=0.5, \omega=0.25,0<t<1$.
$x_{d}(t)=\delta x(3-2 t) t^{2}, y_{d}(t)=\delta y(3-2 t) t^{2}, \varphi_{d}(t)=\omega t$.
6) For the above trajectories, evaluate the Jacobian matrix $J=J_{q}^{-1} J_{x}$ and its singular values (svd function in Matlab). Does the lowest singular value vanish in any configuration and the system experience any singularities? To further analyze the singularities of the mechanism, extend the trajectories, into a larger 3D workspace for the moving platform and give 3D plot of the locations where the system experience singularities, if any.
7) Try similar analysis as in (6) but examine the eigenvalues of the stiffness matrix instead of the singular values of the Jacobian matrix, what do you observe?

Project Pant I

1) Kinematic analysis o of $3 R P R$ manipulator

$$
\theta_{i}=\left[\theta_{0}, \theta_{0}+2 \pi / 3, \theta_{0}+4 \pi / 3\right]^{\top} \text { where } \theta_{0}=-5 \pi / 6
$$

$$
\theta_{n_{i}}=\theta_{h_{0}}+(i-1) * 2 \pi / 3 i
$$

$$
A_{i}=\left[R A \operatorname{Co}\left(\theta_{i}\right) ; R A \operatorname{Si}\left(\theta_{\mu}\right)\right]
$$

Loop closure: $\overrightarrow{A_{i} G}=\overrightarrow{A_{i} B_{i}}+\overrightarrow{B_{i} G}$

$$
\left\{\begin{array}{l}
x_{G}-x_{A_{i}}=L_{i} C \alpha_{i}-\left(R B \operatorname{Cos} \phi_{i}\right) \\
y_{G}-y_{A_{i}}=L_{i} S \alpha_{i}-\left(R B \operatorname{Si} \varphi_{i}\right)
\end{array}\right.
$$

in which $\phi_{i}=\theta_{B i}+\phi ; \theta_{B_{i}}=\theta_{B 0}+(i-1) * 2 \pi / 3 i$

Cancel α_{i} :

$$
\begin{aligned}
& \text { assume }\left\{\begin{array} { l }
{ x _ { i } = x _ { a - 1 } R B \operatorname { C o } \varphi _ { i } - x _ { A i } } \\
{ y _ { i } = y _ { 0 } + R B \operatorname { S i n } \varphi _ { i } - y _ { A i } }
\end{array} \rightarrow \left\{\begin{array}{l}
L_{i} C \alpha_{i}=x_{i} \\
L_{i} \operatorname{sos}=y_{i}
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array}{l}
L_{i}^{2}=x_{i}^{2}+y_{i}^{2} \rightarrow L_{i}=\sqrt{x_{i}^{2}+y_{i}^{2}} \\
\alpha_{i}=A \tan 2\left[y_{i}, x_{i}\right]
\end{array}\right.
\end{aligned}
$$

2) Forward Kinematics

$$
\begin{aligned}
& \text { Forward Kinematics } \\
& \left\{\begin{array} { l }
{ L _ { i } C \alpha _ { i } = x _ { G } + R B C \varphi _ { i } - x _ { A i } = x _ { G } + X _ { i } } \\
{ L _ { i } S \alpha _ { i } = y _ { G } + R B S \varphi _ { i } - y _ { A i } = y _ { G } + Y _ { i } }
\end{array} \quad \text { u which } \left\{\begin{array}{l}
X_{i}=R B C \varphi_{i}-x_{A i} \\
Y_{i}=R B S Q_{i}-y_{A i}
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Square e Sum } \\
& L_{i}^{2}=x_{G}^{2}+y_{G}^{2}+2 x_{i} x_{a}+2 y_{i} y_{G}+x_{i}^{2}+y_{i}^{2}
\end{aligned}
$$

this simplifies to

$$
x_{G}^{2}+y_{G}^{2}+r_{i} x_{G}+s_{i} y_{G}+u_{i}=0 \quad \text { fri } i=1,2,3
$$

in which

$$
\left\{\begin{array}{l}
r_{i}=2 x_{i}=2\left(R B \angle \varphi_{i}-x_{A_{i}}\right) \\
S_{i}=2 y_{i}=2\left(R B S \varphi_{i}-y_{A_{i}}\right) \\
u_{i}=x_{i}^{2}+y_{i}^{2}-L_{i}^{2}
\end{array}\right.
$$

$$
\left[\begin{array}{cc}
r_{1}-r_{2} & s_{1}-s_{2} \\
r_{2}-r_{3} & s_{2}-s_{3}
\end{array}\right]\left[\begin{array}{l}
x_{G} \\
y_{G}
\end{array}\right]=\left[\begin{array}{c}
u_{2}-u_{1} \\
u_{3}-u_{2} \\
u
\end{array}\right] .
$$

$$
\rightarrow v=\left[\begin{array}{l}
x_{4} \\
y_{6}
\end{array}\right]=R^{-1} \cdot U_{\text {use }}
$$

- use pine for robutnen
put bach in the above equation

$$
g_{i}=v_{1}^{2}+v_{2}^{2}+r_{1} v_{1}+s_{i} v_{2}+u_{i}=f(\varphi)
$$

Solve Res $=\sum_{i=1}^{3} g_{i}=0$ with fard function.
3) Jacobian Analysis Coop closure: $\overrightarrow{A_{i} G}+\overrightarrow{G B_{i}}=\overrightarrow{A_{i} B_{i}} \quad$ diffrectiate:

$$
\begin{aligned}
& \text { osee: } A_{i}+G B_{i}=A_{i} B_{i} \\
& v_{G}+\dot{\varphi}\left(k \times E_{i}\right)=\dot{L}_{i} \hat{S}_{i}+\dot{\alpha}_{i}\left(k \times \hat{S}_{i}\right) \cdot L_{i} \\
& v_{G}+\dot{\varphi}\left(k \times E_{i}\right)=\dot{L}_{i} \hat{S}_{i}+\dot{\alpha}_{i} L_{i}\left(k \times \hat{S}_{i}\right)
\end{aligned}
$$

Dot multiply w_{i} th \hat{S}_{i} to cancel $\hat{\theta}_{i}$

$$
\begin{aligned}
& \hat{S}_{i} \cdot \mathbb{O}_{G}+\dot{\varphi} k \cdot\left(E_{i} \times S_{i}\right)=L_{i} \\
\Rightarrow & J_{x}=\left[S_{i x} ; S_{i y} \mid E_{i x} S_{i y}-S_{i x} E_{i y}\right] ; J_{q}=I_{3 \times 3}
\end{aligned}
$$

Jr becomes Singular when $E_{i} \| \hat{S}_{i}$! this happens at central location of the manipulator! and when $\varphi=\pi \Rightarrow$ workspace is limited here
4) STiffen analysis

$$
K=k J_{x}^{T} J_{x}=1 \cdot J_{x}^{\top} J_{x}
$$

(accutral position
@curtal position $E_{i} \| S_{i} ; S_{i}=$ Symmetric

$$
\begin{aligned}
& S_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; S_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] ; S_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& J_{x}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 0
\end{array}\right] \Rightarrow K=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The stiffen matrix is decoupled but it is Sugular.
5) Note: that since the manipulator is singular at coral position, the ill conditioning may cause numerical probliunsat this con figuration; ils. better to start at $X_{0}=[0,0, \mathrm{Pi} / 4]$ instead of central location.
Programs are attached and can be found in the homepage of the course
6) The last part of the program uses plot $3 d$ to generate a 3D $l_{0} t$ for Sugular Conditions; check the attached programs \& figures
\% Copyright Hamid D. Taghirad 2006
\%
\% This program Verifies the solution of inverse and forward kinematic \% problem of a 3RPR manipulator. Furthermore it calculates the Jacobian \% and its singular configurations.
\%
\% Mechanics of Robotics Systems MECH 573
\% Project Part I
clear all
\% /initial values/
deg2rad=pi/180;
rad2deg=180/pi;
$\mathrm{dt}=0.01$;
Tf=1;
$N=T f / d t$;
\%
\% The coordinates of Ai's, Bi's, ai's and bi's at initial position
\% Consider the fixed coordinate is located at the center
\% at initial position

```
RA = 10; % the Ai's circle radius
RB = 1; % the Bi's circle radius
th0=-150*deg2rad; % The orientation of A1 in its circle
x(:,1)=[0;0;0]; % pos/orientation of the first moving platform center
alpha_old = [60;120;-90;]*deg2rad; % found from first iteration
x_old = x(:,1); % the initial position and orientation
for i=1:3;
        Ath(i)=th0+(i-1)*2*pi/3;
        A(:,i)=[RA*cos(Ath(i)); RA*sin(Ath(i))];
end
% The main loop
for i=2:N;
    t(i)=dt*(i-1); % generating time
% The desired trajectory of the end effector xd=3xN vector
% And its derivative dxd=3xN vector
    wd=-pi;
    deltax=0;
    deltay=0;
    xd(:,i)=[x(1,1)+(3-2*t(i))*t(i)^2*deltax;x(2,1)+...
            (3-2*t(i))*t(i)^2*deltay;x(3,1)+wd*t(i)];
    dxd(:,i)=[6*(1-t(i))*t(i)*deltax;6*(1-t(i))*t(i)*deltay;wd];
%----------------------------------------------------------------
% Solve the inverse kinematics
\%
\[
[L(:, i), \text { alpha(: i) }]=I n v K i n \_3 R P R(x d(:, i), A, R B, \text { th0, alpha_old); }
\]
```

$B=$ Geometry_3RPR(xd(:,i),RB,th0);
alpha_old=alpha(:,i);

\%
xc(:,i)=FK_3RPR(L(:,i),A,RB,Ath,x_old);
x_old=xc(:,i);
\% Generate the Jacobians, and examine the inverse Kinematics at
\% velocity level
\%
J=Jacobian_3RPR(xd(:,i), B, alpha(: i));
Sen(:,i)=rcond(J'*J); dL(:,i)=J*dxd(:,i);
end

```
figure(1)
clf
plot(t,xd-xc),grid
title('trajectory verification')
figure(2)
clf
plot(t(2:N),L(1,2:N)),grid
title('Limb lengths')
echo on
pause % Strike a key to continue
echo off
figure(1)
clf
plot(-xd(3,:)*rad2deg,Sen),
grid on
title('1/cond No. of the Jacobian')
xlabel('\phi degrees')
ylabel('rcond J(\phi)')
% 3D Workspace and singularity analysis
%
% Define a 3D woekspace
xg=-5:1:5;
yg=-5:1:5;
phi=-pi:pi/10:pi;
clear Z
NN=1;
alpha_old = [60;120;-90;]*deg2rad; % found from first iteration
for i=1:max(size(xg));
    for j=1:max(size(yg));
```

```
            for k=1:max(size(phi));
            Zi=[xg(i);yg(j);phi(k)];
            [Li, alphai]= InvKin_3RPR(Zi,A,RB,th0,alpha_old);
            Bi = Geometry_3RPR(Zi,RB,th0);
            alpha_old=alphai;
            Ji=Jacobian_3RPR(Zi,Bi,alphai);
                if rcond(Ji) < 1e-12 ;
            Z(:,NN)=[xg(i);yg(j);phi(k)];
            NN=NN+1;
            end
        end
    end
end
figure(2)
clf
plot3(Z(1,:),Z(2,:),Z(3,:)*rad2deg,'o')
axis square
grid on
xlabel('MP position x')
ylabel('MP position y')
zlabel('MP orientation phi (degrees)')
title('Locations where singularity occurs')
```

\% This concludes the program
\%

```
function [L,alpha]=InvKin_3RPR(X,A,RB,th0,alpha_old);
%
% Inverse Kinematics of the 3RPR parallel manipulator
%
% Input arguments:
% X : The position and orientation vector of the moving
% platform 1x3
% A : The position of the base coordinates: 2\times4
% RB : The circle radius of B'i's 1\times1
% th0 : The configuration angles of A1 and B1 1\times1
% alpha_old: The previous alpha to wrap the alpha 1x4
% Output argument:
% L : The limb lengths 1\times4
% alpha : The angle of the limbs 1x4
threshold = pi/6; % threshold to wrap alpha
xg=X(1);
yg=x(2);
phi=X(3);
for i= 1:3,
    Phi(i)=th0 + (i-1)*2*pi/3 + phi;
    x(i) = xg - A(1,i) + RB*cos(Phi(i));
    y(i) = yg - A(2,i) + RB*sin(Phi(i));
    L(i)=sqrt(x(i)^2+y(i)^2);
    alpha(i)=atan2(y(i),x(i));
    if abs(alpha(i) - alpha_old(i)) > threshold;
        if alpha(i) < alpha_old(i)
            alpha(i)=alpha(i) + 2*pi;
        else
            alpha(i)=alpha(i) - 2*pi;
        end
    end
end
L=L';
alpha=alpha';
```

```
function X=FK_3RPR(L,A,RB,Ath,x_old);
%
% Forward Kinematics of the 3RPR parallel manipulator
%
% Input arguments:
% L : The limbs length 1x4
% A : The position of Ai's 2\times3
% RB : The circle radius of Bi's 1\times1
% Ath : The configuration angles of Ai's 1\times3
% x_old: The previous X to wrap the phi 1x4
%
% Output argument:
% X = [Gx;Gy;phi]
% Gx:The x position of the center of the moving platform 1\times1
% Gy:The y position of the center of the moving platform 1\times1
% phi: The orientation of the moving platform 1x1
%
% Mechanics of Robotics Systems MECH }57
% Project Part I
% Copyright Hamid D. Taghirad 2006
%
x=x_old(3);
X(3)=fzero(@FKfun, x);
    function out=FKfun(x)
                phi=x;
                    for i=1:3;
                Phi(i)=Ath(i) + phi;
                    xx(i)=RB*}\operatorname{cos(Phi(i)) - A(1,i);
                    yy(i)=RB*sin(Phi(i)) - A(2,i);
                    r(i) = 2*xx(i);
                    s(i) = 2*yy(i);
                    u(i) = xx(i)^2 + yy(i)^2 - L(i)^2;
        end
        R=[r(1)-r(2) s(1)-s(2)
            r(2)-r(3) s(2)-s(3)];
        U=[u(2)-u(1)
            u(3)-u(2)];
        v=pinv(R)*U;
        out = v(1)^2+v(2)^2+r(1)*v(1)+s(1)*v(2)+u(1);
    % for i=1:3;
% g(i) = v(1)^2+v(2)^2+r(i)*v(1)+s(i)*v(2)+u(i);
%
% out=sum(g);
    end % End nested function
    %Calculates the X and Y coordinates
    x(1:2)=v;
end %end main function
```

```
function J = Jacobian_3RPR(X,B,alpha);
% Jacobian Matrix of the 3RPR parallel manipulator
% function J = MJacobian(X,B,alpha);
%
% Input arguments:
%
% X : The position/orientation of the Moving platform 3x1
% B : The Position of Bi's 2x4
% alpha: The limb absolute angles 4\times1
%
% Output argument:
% J : The Jx-Jacobian matrix of 3RPR manipulator 4x3
G=X(1:2,1);
for j=1:3,
    VE(:,j)=B(:,j)-G;
    VS(:,j)=[cos(alpha(j)); sin(alpha(j))];
end
E1=VE(:,1); E2=VE(:,2); E3=VE(:,3);
S1=VS(:,1); S2=VS(:,2); S3=VS(:,3);
ExS= [E1(1)*S1(2)-E1(2)*S1(1)
        E2(1)*S2(2)-E2(2)*S2(1)
        E3(1)*S3(2)-E3(2)*S3(1)
    ];
    J=[VS(1,:)', VS(2,:)', ExS];
```


