|
float | kusanagi.examples.cartpole.cartpole_run_serial.dt = 0.1 |
|
dictionary | kusanagi.examples.cartpole.cartpole_run_serial.model_parameters = {} |
|
list | kusanagi.examples.cartpole.cartpole_run_serial.x0 = [0,0,0,0] |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.S0 = np.eye(4) |
|
list | kusanagi.examples.cartpole.cartpole_run_serial.maxU = [10] |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.measurement_noise = np.diag(np.ones(len(x0))*0.01**2) |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.plant = SerialPlant(model_parameters,x0,S0,dt,measurement_noise,state_indices=[0,2,3,1],maxU=maxU,port='/dev/ttyACM0') |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.draw_cp = CartpoleDraw(plant,0.033) |
|
list | kusanagi.examples.cartpole.cartpole_run_serial.angle_dims = [3] |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.policy = RBFPolicy(x0,S0,maxU,10, angle_dims) |
|
dictionary | kusanagi.examples.cartpole.cartpole_run_serial.cost_parameters = {} |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.cost = partial(cartpole_loss, params=cost_parameters) |
|
float | kusanagi.examples.cartpole.cartpole_run_serial.T = 4.0 |
|
int | kusanagi.examples.cartpole.cartpole_run_serial.J = 30 |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.learner = PILCO(plant, policy, cost, angle_dims, async_plant=False) |
|
list | kusanagi.examples.cartpole.cartpole_run_serial.X = [] |
|
list | kusanagi.examples.cartpole.cartpole_run_serial.Y = [] |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.n_episodes = len(learner.experience.states) |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.x = np.array(learner.experience.states[i]) |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.u = np.array(learner.experience.actions[i]) |
|
tuple | kusanagi.examples.cartpole.cartpole_run_serial.x_ = gTrig_np(x, learner.angle_idims) |
|