

Course Evaluations in Miverva

File Input/Output

Reading a text file

You need the FileReader and BufferedReader classes

The FileReader handles the opening and reading of text files, character by character
The BufferedReader allows you to read the file line by line instead.

This code will throw an exception if the file cannot be opened, or if it does not exist

 // Open a file for reading
 FileReader fr = new FileReader("someFile.txt");

 // Create a BufferedReader so you can read it line by line
 BufferedReader br = new BufferedReader(fr);

 // Initialize a variable that will hold the latest line that you read. Initialize it to the first line .
 String currentLine = br.readLine();

 // Read lines until there are no more line (br.rea dLine()returns null in taht case)
 while ((currentLine != null){
 // print the line
 System.out.println(currentLine);

 // Read the next line
 currentLine = br.readLine();
 }

 // VERY IMPORTANT: this closes the file, so other p rograms can read or write to it
 br.close();
 fr.close();

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Writing a text file

You need the FileWriter and BufferedWriter classes

The FileWriter handles the opening and writing of text files, character by character
The BufferedWriter allows you to write multiple characters at once.

This code will throw an exception if the file cannot be opened, or if it does not exist

 // Open a file for writing, character by character
 // This erases any previous file with the same name
 FileWriter fw = new FileWriter("someOtherFile.txt");

 // Create a BufferedWriter, so you can write multip le characters at once
 BufferedWriter bw = new BufferedWriter(fw);

 bw.write("is this real life?");

 // VERY IMPORTANT: this closes the file, so other p rograms can read or write to it.
 // AND MORE IMPORTANTLY: it writes the file to your harddrive
 bw.close();
 fw.close();

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Writing a text file

You need the FileWriter and BufferedWriter classes

The FileWriter handles the opening and writing of text files, character by character
The BufferedWriter allows you to write multiple characters at once.

This code will throw an exception if the file cannot be opened, or if it does not exist

 // Open a file for writing, character by character
 // If the file exists, the new text will be appende d at the end
 boolean append = true ;
 FileWriter fw = new FileWriter("someOtherFile.txt" , append);

 // Create a BufferedWriter, so you can write multip le characters at once
 BufferedWriter bw = new BufferedWriter(fw);

 bw.newLine();
 bw.write("is this just fantasy?");

 // VERY IMPORTANT: this closes the file, so other p rograms can read or write to it.
 // AND MORE IMPORTANTLY: it writes the file to your harddrive
 bw.close();
 fw.close();

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

The static and final keywords

Static

We use the static keyword when we want a variable or method to be accesible without
creating an instance of a class

A static variable will have the same value for all of the instances of a class

Only one copy of the static variable exists in the computer's memory.
If you change the value of a static variable, this change will be seen in all instances of the class.

 public class Node{
 // non static variables are unique to each instance of this class
 private String data;
 private Node next;

 // static variables are the same for every instance of this class
 private static numberOfNodes = 0;

 public Node(String input_data){
 this.data = input_data;
 this.next = null ;

 // we can access static variables inside non static methods
 numberOfnodes += 1;
 }
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Static

We use the static keyword when we want a variable or method to be accesible without
creating an instance of a class

A static method can be called without creating an instance of a class

Inside the class file where they are declared, you can call static methods directly by their name
Outside that file, you should call them as ClassName.staticMethodName(arguments)
Only one copy of the static method exists in the computer's memory.

 public class Node{
 // non static variables are unique to each instance of this class
 public String data;
 public Node next;

 // static variables are the same for every instance of this class
 public static numberOfNodes = 0;

 public Node(String input_data){
 this.data = input_data;
 this.next = null ;

 // we can access static variables inside non static methods
 numberOfnodes += 1;
 }

 // static methods of this class can be called as No de.static_method_name
 public static int NumberOfNodesSoFar(){
 return numberOfNodes;
 }
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Static

Some rules for using static methods and variables

A non-static method can access: static methods and variables
A non-static method can access: non-static methods and variables
A static method can access: static methods and variables
A static method cannot access: non-static methods and variables. It doesn't have access to the this reference.

Static + Final

The final keyword is used when we want the value of a static variable to be constant

This is usually useful when you want to precompute certain numbers and keep them constants during the
execution of your program.

 // The values of the following variables will remai n unchanged over the execution of the program
 static final double PI = 3.141592653589793 ;

 static final double PLANCK_CONSTANT = 6.62606896e - 34;

 // The values of the following variables will remai n unchanged over the execution of the program
 static final double PI = precomputePi();

 public static double precomputePi(){
 // execute some algorithm for computing pi
 }

1
2
3
4
5

1
2
3
4
5
6
7

How a Hashtable works

Hashtable

Think of a Hashtable as a dictionary

We use a Hastable to associate a key to a value

Hashtable

Keys, as well as values, can be of any type

Hashtable

A hash table is a generalization of the simple fixed-size array

In a fixed size array, you access elements by their index, which is a number between 0 and the size of the array minus 1

This is called direct addressing, since we can access an element of an array with just one operation
A hash table uses a similar idea, we want to access a value directly using its key

 // Declaring a string array
 String[] someArray = { "514 398 2186" , "438 887 1414" ,
 "609 234 7564" , "555 567 9876" };

 // Accesing the value at index 2
 System.out.println(someArray[2]);

 // This is not valid java code, just an example

 // We would like to do something like:

 // Accesing the value at index "John"
 String phoneNumber = someHashTable["John"];

 // Accesing the value at index "Anita"
 System.out.println("Anita's phone number is " +someHashTable["Anita"]);

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9

10

Hashtable

To get direct access, a hash table uses a fixed-size array to store data.

We would associate each key to a position in the array, and store the data in the corresponding slot in the array.

We could try and have one slot in the array for every possible key; i.e. map each possible
name to a number in the array

This is not feasible if the number of keys is very big (How many possible names are there?)

Furthermore, we might not even need all of the possible positions in the array to store data

Hashing

Instead, we use a fixed-size array with a small size. For example, we could use just 26 slots
for all possible names in a phone book.

We need to compute an index for every key. This is called hashing .

Hashing function

A hashing function maps input data of arbitrary size to output data of fixed size; i.e. The
set of all possible person names to 26 slots

For a key k , we store its value in the slot given by the hashing function f(k)

We say that f(k) is the hash value of the key k

A good hashing function would give different hash values to every key

Hashing function

But since we are limiting the size of the fixed-size array (the number of slots available) ...

.. multiple keys will have the same hash value. This is called a collision

In our example, the hash function maps the first letter of a name to a number from 0 to 25; representing its position in the alphabet
Inevitably, as we add more elements to the hash table, multiple elements will have the same same hash value.

Collisions in hashing functions

Collisions happen when more than two keys have the same hash value

We can resolve collisions by

Increasing the size of the array that holds the content, and finding a better hashing function
Chaining multiple values in the same slot, using a LinkedList

Collisions in hashing functions

Collisions happen when more than two keys have the same hash value

We can resolve collisions by

Increasing the size of the array that holds the content, and finding a better hashing function
Chaining multiple values in the same slot; e.g. using a LinkedList

Collisions in hashing functions

We can resolve collisions by

Increasing the size of the array that holds the content, and finding a better hashing function

Picking a good hashing function is a good idea: In our example, there are a lot more people with a name
starting with J, than there are people with a name starting with Q

But as long as there are more keys than available slots (hash values), there will be collisions.

Collisions in hashing functions

We can resolve collisions by

Chaining multiple values in the same slot; e.g. using a LinkedList

We lose some of the benefit of direct addressing. But this is: 1) faster than a Linked list on average 2) More
flexible than a fixed-size array

An implementation of a HashTable

See the provided code in the course website

An exercise for you:

Download the baby-names.csv file from the course website

Using a Hashtable, count how many times each name appears on the list . See how popular your name is
Compute the percentage of baby names with a given starting letter; e.g. how what is the percentage of names starting with a J
Can you come up with a hashing function that maps baby names to 100 slots? Try loading the names in the baby-names.csv file to your Hashtable. Can
you change your hashing function so that every slot has more or less the same number of elements?

Resources

Exceptions:
https://docs.oracle.com/javase/tutorial/essential/exceptions/
Reading and writing files:
http://www.homeandlearn.co.uk/java/read_a_textfile_in_java.html
Static and Final:
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

