

Linked Lists

Linked Lists

This is a visual representation of a linked list using int values

Linked Lists vs Arrays

This is a visual representation of a linked list using int values

Why would we want to use it instead of an Array?

Operations with LinkedLists

A LinkedList allows us to add or remove elements without having to copy the whole data structure
In a LinkedList with n elements, all operations (search, insertion, deletion) take at most n comparisons

In the worst case you'll want to reach the end of the list. This is only possible by following the next pointer of every node.

In big O notation

Operations in a LinkedList have a running time of ==>

Operations with Arrays

In a array with n elements, you cannot change the size of the array without creating a new one and copying its contents (recall the addVertex of the Polygon
class, or the addFriend method of the Person class)
But if you know what you are looking for, accessing an element from the array requires only 1 operation

To get the n-th element of a LinkedList we need to follow the next pointer n times
To get the n-th element of an array we just need to type: myArray[n]

How can we get both fast access and variable size?

If access is fast on an array, can we do something similar for search, insertion and deletion?

Hash tables

Hash tables

You can think of hash tables as doing the inverse operation that you do with an array.

In an array you use an value (e.g. an int number) and you get a key (e.g. a String)

In a HashTable you use a key (e.g. a String) to get an value (e.g. an int number)

Hash tables

Hash tables will allow us to combine some good things about arrays, with some good things
about LinkedLists

In a HashTable you use a key (e.g. a String) to get an value (e.g. an int number)

To do this we will use a hashing function

Hashing function

A hashing function maps input data of arbitrary size to output data of fixed size

We call the input a key. We call the output a Hash Value

We can use the has value as an index to find data, e.g., in an array

Hashing function

A hashing function maps input data of arbitrary size to output data of fixed size

Arbitrary size: Person names in English, Fixed Size: Groups of names by their first letter

In our example, we only have 26 possible values. But there are more than 26 possible person names
Inevitably, multiple elements will have the same same hash value.

Implementing a HashTable

A hash table will consist of a collection of entries, a hashing function, and methods to
insert and remove data from it

We will use an array to store the entries in our data structure

Implementing a HashTable

A hash table will consist of an collection of entries, a hashing function, and methods to
insert and remove data from it

We use an array to store the entries in our data structure

 public class Hashtable{
 /*
 * the entries could be of any type
 * here, we use the String entries, for example.
 */
 private String[] entries;

 // add a constructor here

 // add Insertion, search and deletion methods here

 /*
 * The hashing function an index in the entries
 * array for the given element
 */
 public int hashFunction(String name){
 // calculate an int (the hash values)
 // for the String name
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Collision in Hash Tables

When two elements have the same has value, we will have to put them in the same entry

We call this situation a collision

How do we deal with collisions

Option 1: Change the hash function so that we have more possible hash values? (E.g. Use the first two letters of a name to compute its hash value.)
If the input data is larger than the output data, we will always have collisions

Option 2: Replace each entry in the hash table with a LinkedList

Hash tables with multiple elements per entry

Replace each entry in the hash table with a LinkedList

Hash tables with multiple elements per entry

Replace each entry in the hash table with a LinkedList

 public class HashtableL{
 /*
 * the entries could be of any type.
 * here, we use a LinkedList to keep
 * multiple entries in each poistion
 * of the array.
 */
 private LinkedList[] entries;

 // add a constructor here

 // add Insertion, search and deletion methods here

 /*
 * The hashing function an index in the entries
 * array for the given element
 */
 public int hashFunction(String name){
 // calculate an int (the hash values)
 // for the String name
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Hash tables with multiple elements per entry

Replace each entry in the hash table with a LinkedList

Some remarks about Hash tables

A Hashtable allows us to add or remove elements quickly by making use of a hash function
To deal with multiple elements in a single location in the dictionary, we combine the hashing function with a LinkedList

In big O notation

Operations in a Hash Table with n elements have a running time of ==>

k is size of the longest LinkedList in the HashTable.

Operations in a Hash Table with n elements have a running time of ==>

When k is considerably smaller than n

You can view a HashTable as a Dictionary

We map names (keys) to Nodes in the HashTable (values)

But you could use this data structure to map arbitrary types of data

Names to phone numbers
Phone numbers to names
English words to their definitions
English words to words in French
Musical note letters to their pitch frequency

HashTables in Java

Java has a generic implementation of a HashTable

 Hashtable<key, value> dictionary = new Hashtable<key, value>();
 //This creates a hash table that will be
 //indexed by variables of type key and
 //contain values of type value.
 //We can add entries using the .put() method.
 name.put(key, value);
 //We can obtain values using .get() method.
 name.get(key);

1
2
3
4
5
6
7
8
9

To try for yourself

Try to implement an English to French dictionary using a HashTable<String,String> object

 Hashtable<String, String> englishToFrench = new Hashtable<String, String>();
 //This creates a hash table that will be
 //indexed by variables of type key and
 //contain values of type value.
 //We can add entries using the .put() method.
 englishToFrench.put("Good morning", "Bonjour");
 //We can obtain values using .get() method.
 englishToFrench.get("Good morning");

1
2
3
4
5
6
7
8
9

Resources

http://en.wikipedia.org/wiki/Hash_table
http://www.tutorialspoint.com/java/java_hashtable_class.htm

← →

1 / 38

Go to slide:
Drawing Tools

