

Data structures

Data structures are a way of organizing collections of data in the computer's memory

Data structures

Data structures are a way of organizing collections of data in the computer's memory

Examples of data structures we have seen so far

Arrays

Data structures

Data structures are a way of organizing collections of data in the computer's memory

Examples of data structures we have seen so far

Objects

Data structures

Data structures are a way of organizing collections of data in the computer's memory

Examples of data structures we have seen so far

Networks of cities (Assignment 4), a social network (last class)

Data structures

Data structures are a way of organizing collections of data in the computer's memory

Examples of data structures we have seen so far

Arrays
Objects
Networks of cities (Assignment 4), a social network (last class)
Linked Lists (today's class)
Hashtables (today's class)

Linked Lists

Linked Lists

This is a visual representation of a linked list using the Person objects from the social network

Linked Lists

This is a visual representation of a linked list using the Person objects from the social network

Linked Lists

This is a visual representation of a linked list using the Person objects from the social network

Linked Lists

This is a visual representation of a linked list using the Person objects from the social network

Linked Lists

This is a visual representation of a linked list using the Person objects from the social network

Linked Lists

This is a visual representation of a linked list using the Person objects from the social network

Linked Lists

This is a visual representation of a linked list using the Person objects from the social network

Linked Lists

This is a visual representation of a linked list using int values

Going through the components of a LinkedList

We need to define a class for each element in the list: the Node class

The Node class should have:

A pointer to some data. We will call it its value. For simplicity, we will hold int numbers in our LinkedList
A pointer to the next element in the list. Unsurprisingly, we will call it next

 public class Node{
 private int value;
 private Node next;

 // add a constructor here

 // add getter and setter methods here
 }

1
2
3
4
5
6
7
8
9

Going through the components of a LinkedList

We need to define a class for doing operations on the list: the LinkedList class

The LinkedLsit class should have:

A pointer to the first element in the list. We will call it start.
All the methods with the operations we want to make on lists

 public class LinkedList{
 private Node start;

 // add a constructor here

 // add Insertion, search and deletion methods here
 }

1
2
3
4
5
6
7
8

Inserting elements in a linked list

Inserting an element at the beginning

Inserting elements in a linked list

Inserting an element at the end

Inserting elements in a linked list

Inserting an element somewhere in the middle

Inserting elements in a linked list

Removing an element from the list

Inserting elements in a linked list

Removing an element from the list

Some remarks about LinkedList

A LinkedList allows us to add or remove elements without having to copy the whole data structure
In a LinkedList with n elements, all operations (search, insertion, deletion) take at most n comparisons

In big O notation

Operations in a LinkedList have a running time of ==>

To try for yourself

Based on the LinkedList and Node classes, implement a DoublyLinkedList
In a doubly linked list, all the nodes have a reference to its predecessor : the previous element in the list.

Implement all the insert, search and delete operations

Hash tables

Hash tables

Hash tables can be viewed as dictionaries

We use a hashing function to determine where an element should go

Implementing a Hashtable

We use an array to store the entries in our dictionary

We need to implement the hashing function to determine where an element should go

 public class Hashtable{
 /*
 * the entries could be of any type
 * here, we use the String entries, for example.
 */
 private String[] entries;

 // add a constructor here

 // add Insertion, search and deletion methods here

 /*
 * The hashing function an index in the entries
 * array for the given element
 */
 public int hashFunction(String name){
 // calculate an int (the hash values)
 // for the String name
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Hash tables

The hash function maps data to hash values (positions in the array)

In this case, the hashing function maps the first letter of a name to a position in the array

When two or more elements have the same hash value, a collision occurs.

Hash tables with multiple elements per entry

A first step to deal with collisions, is to make each entry point to another data structure; e.g. a
LinkedList

Implementing a Hashtable with LinkedLists for each position in the
array

We use an array to store the entries in our dictionary

 public class HashtableL{
 /*
 * the entries could be of any type.
 * here, we use a LinkedList to keep
 * multiple entries in each poistion
 * of the array.
 */
 private LinkedList[] entries;

 // add a constructor here

 // add Insertion, search and deletion methods here

 /*
 * The hashing function an index in the entries
 * array for the given element
 */
 public int hashFunction(String name){
 // calculate an int (the hash values)
 // for the String name
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Hash tables with multiple elements per entry

A first step to deal with collisions, is to make each entry point to another data structure; e.g. a
LinkedList

Some remarks about Hash tables

A Hashtable allows us to add or remove elements quickly by making use of a hash function
To deal with multiple elements in a single location in the dictionary, we combine the hashing function with a LinkedList

In big O notation

Operations in a Hash Table have a running time of ==> , where k is the

number of elements in each position of the entries array.

Operations in a Hash Table have a running time of ==>

Resources

Classes and Objects:
http://docs.oracle.com/javase/tutorial/java/javaOO/
The Shoelace Algorithm:
http://en.wikipedia.org/wiki/Shoelace_formula
Suggested reading:
How to think like a Computer Scientist, Chapter 11

← →

1 / 41

Go to slide:
Drawing Tools

