

What we know so far about objects and classes

Classes allow us to create complex data types, using primitive types

Encapsulating related data in a single "type"
i.e. pieces of information that belong together

A representation of a Student

What we know so far about objects and classes

Objects are reference types

We are reserving new memory space for s1

s1 is an instance of the Student class

 // this is calling a constructor method
 Student s1 = new Student();
 // this is calling another constructor method
 Student s1 = Student(260412905, "Lucien", "Vil", "Library Science");

 // here s2 is a "null" reference
 Student s2 = null;
 // here s2 and s1 are references to the same object!
 s2 = s1;

1
2
3
4

1
2
3
4

What we know so far about objects and classes

To access or modify a property of an object, put a . after the variable name

We call these properties attributes of a class

 Student s1 = new Student();

 s1.id = 260412905;

 s1.first_name = "A";
 s1.last_name = "B";

 s1.major_program = "Math";

1
2
3
4
5
6
7
8
9

What we know so far about objects and classes

We can use the Student class as any other type

Declaring an array of elements of type Student

Each element in comp202_students points an instance of the Student class, in the
computer's memory

Each position in the array is null by default
We need to initialize each position in the array before using it

 Student[] comp202_students = new Student[200];

 Student[] comp202_students = new Student[200];

 // initialize each position in the array so that it points
 // to the data of a new Student
 for (int i=0; i < comp202_students.length; i++){
 comp202_students[i] = new Student();
 }

1
2

1
2
3
4
5
6
7
8

What we know so far about objects and classes

We can define methods inside a class. Inside class methods, we have acces to class attributes

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 //define class METHODS here
 // A constructor method, notice it does not declare a return type
 public Student(){
 // initialize properties and execute other code by default
 }

 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14

What we know so far about objects and classes

We can define methods inside a class. Inside class methods, we have acces to class attributes

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 //define class METHODS here
 // A constructor method, notice it does not declare a return type
 public Student(){
 // initialize properties and execute other code by default
 }

 // Another constructor method, notice it does not declare a return type
 public Student(int new_id, String new_first_name, String new_last_name, String new_program){
 // initialize properties and execute other code by default
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

What we know so far about objects and classes

We can define methods inside a class. Inside class methods, we have acces to class attributes

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 //define class METHODS here
 // A constructor method, notice it does not declare a return type
 public Student(){
 // initialize properties and execute other code by default
 }

 // Another constructor method, notice it does not declare a return type
 public Student(int new_id, String new_first_name, String new_last_name, String new_program){
 // initialize properties and execute other code by default
 }

 public void printProperties(){
 // Each instance can acces its own properties from a class method
 System.out.println("My student id is: "+id);
 System.out.println("My student first_name is: "+first_name);
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

What we know so far about objects and classes

We can define methods inside a class. Inside class methods, we have acces to class attributes

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 //define class METHODS here
 // A constructor method, notice it does not declare a return type
 public Student(){
 // initialize properties and execute other code by default
 }

 // Another constructor method, notice it does not declare a return type
 public Student(int new_id, String new_first_name, String new_last_name, String new_program){
 // initialize properties and execute other code by default
 }

 public void printProperties(){
 // Each instance can acces its own properties from a class method
 System.out.println("My student id is: "+id);
 System.out.println("My student first_name is: "+first_name);
 }

 public int compareTo(Student s2){
 // put some code to comapre this student with s2
 // s2 is a reference to another instance
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

The toString method

All objects in java share the toString method. By default it returns the Memory Address of
the object.

 public class Student{
 //define class PROPERTIES here
 ...

 //define class METHODS here
 ...

 public String toString(){
 // This method will be called when we try to PRINT this object
 }
 }

1
2
3
4
5
6
7
8
9
10
11

An example - Creating a Course class

The Course class
A Course has an course name, a course id, and an instructor name
A Course has a list of registered students
Write a method that assigns to each student a random major_program from { "B.A.", "B.Eng.", "B.Sc.", "B.Comm.", "M.Sc", "Ph.D" }
Write a method that counts how many students are enrolled in each program

The this keyword

The this returns a memory reference to the current class

 public class Course{
 String course_name;
 String course_id;
 String instructor_name;
 Student[] registered_students;

 // A constructor method, notice it does not declare a return type
 public Course(String course_name, String course_id, String instructor_name){
 // initialize properties and execute other code by default

 this.course_name = course_name;
 this.course_id = course_id;
 this.instructor_name = instructor_name;
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A simple exercise - Creating a 2D Point Class

The Point class
A Point has two coordinates: call them x and y
The coordinates should be real numbers (double type)
Write a class method that computes the distance to another Point

A simple exercise - Creating a 2D Point Class

The Point class
A Point has two coordinates: call them x and y
The coordinates should be real numbers (double type)
Write a class method that computes the distance to another Point

sqrt((x1 - x2)2 + (y1 - y2)2)

Public vs Private

Methods and variables declared as public are accessible from any other java file

 public class Point{
 //define class PROPERTIES here
 public double x;
 public double y;

 // A constructor method, notice it does not declare a return type
 public Point(int x, int y){
 // initialize properties and execute other code by default
 this.x = x;
 this.y = y;
 }

 public distanceTo(Point p2){
 double dx = this.x - p2.x;
 double dy = this.y - p2.y;

 return Math.sqrt(dx*dx + dy*dy);
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Public vs Private

Methods and variables declared as private are accessible from within the class instance only

 public class Point{
 // this variable can only be accessed by the instace reference by "this"
 private double x;
 private double y;

 // A constructor method, notice it does not declare a return type
 public Point(int x, int y){
 // initialize properties and execute other code by default
 this.x = x;
 this.y = y;
 }

 public distanceTo(Point p2){
 double dx = this.x - p2.x;
 double dy = this.y - p2.y;

 return Math.sqrt(dx*dx + dy*dy);
 }

 // getter methods
 public getX(){
 return x;
 }

 public getY(){
 return y;
 }

 public setX(double x){
 this.x = x;
 }

 public getY(double y){
 this.y = y;
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

private methods and variables (members) can only be accessed through getter/setter methods

Public vs Private

Why do we care about declaring things as private

private methods and variables allow the designer of the code to control how the class is used (
to check for correct input, to allow for future modifications of the class, to give different values
depending on the state of the program, etc)

Anoter exercise - Creating a 2D Point Class, and using in a Polygon
class

The Polygon class
A Polygon has a list of Point objects; its vertices.
Write a class method that adds a new vertex to a polygon
Write a class method that returns true if the Polygon is equilateral
Write a class method that returns true if the Polygon is regular
Write a class method that returns the area of a polygon using the Shoelace Algorithm

Using Point in Polygon

The Polygon class

A Polygon has a list of Point objects; its vertices.

Adding a new Point to vertices

The Polygon class
A Polygon has a list of Point objects; its vertices.
Write a class method that adds a new vertex to a polygon

Adding a new Point to vertices

The Polygon class
A Polygon has a list of Point objects; its vertices.
Write a class method that adds a new vertex to a polygon

Completing the Polygon class

The Polygon class
A Polygon has a list of Point objects; its vertices.
Write a class method that adds a new vertex to a polygon
Write a class method that returns true if the Polygon is equilateral
Write a class method that returns true if the Polygon is regular
Write a class method that returns the area of a polygon using the Shoelace Algorithm

Resources

Classes and Objects:
http://docs.oracle.com/javase/tutorial/java/javaOO/
The Shoelace Algorithm:
http://en.wikipedia.org/wiki/Shoelace_formula
Suggested reading:
How to think like a Computer Scientist, Chapter 11

