

What is a class?

Classes allow us to create complex data types, using primitive types

Encapsulating related data in a single "type"
i.e. pieces of information that belong together

A representation of a Student

Syntax of a class

Use the class keyword

The public keyword, let's us access the properties of Student from outside the class
definition

Declaring variable of type Student

s1 is an instance of the Student class

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;
 //define class METHODS here
 }

 Student s1 = new Student();

1
2
3
4
5
6
7
8
9

1

Objects are reference types

Memory Address Variable Type Variable name Value

@1001 Student s1 @1100

...

@1100 int id 0

@1101 String first_name ""

@1102 String last_name ""

@1103 String major_program ""

We are reserving new memory space for s1

 Student s1 = new Student();1

Accessing properties of a class

Put a . after the variable name

 Student s1 = new Student();

 s1.id = 260412905;

 s1.first_name = "A";
 s1.last_name = "B";

 s1.major_program = "Math";

1
2
3
4
5
6
7
8
9

Null references

You can make a reference type point to nowhere in your memory

I.e. you can declare a reference type without the new statement

Memory Address Variable Type Variable name Value

@1001 Student s1 null

@1001 int[] array null

No new memory gets reserved for s1 or array

 Student s1 = null;

 int[] array = null;

1
2
3
4

Using a class in Arrays

We can now use Student as any other type

Declaring an array of elements of type Student

Each element in comp202_students points an instance of the Student class, in the
computer's memory

Each position in the array is null by default
We need to initialize each position in the array before using it

 Student[] comp202_students = new Student[200];

 Student[] comp202_students = new Student[200];

 // initialize each position in the array so that it points
 // to the data of a new Student
 for (int i=0; i < comp202_students.length; i++){
 comp202_students[i] = new Student();
 }

1
2

1
2
3
4
5
6
7
8

The constructor method

The constructor method

Defines some default code that is executed when we create a variable of our class

Declaring variable of type Student calls the constructor method of Student

s1 is an instance of the Student class

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 //define class METHODS here

 public Student(){
 // initialize properties and execute other code by default
 }
 }

 // this is calling the constructor method!
 Student s1 = new Student();

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2

Class methods

What are class methods?

We can execute code that depends on the properties of an object

A representation of a Student

What are class methods?

We can execute code that depends on the properties of an object

A representation of a Student

Class method syntax

Remove the keyword static, from the method declaration

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 //define class METHODS here
 public void printProperties(){
 // some code to print stuff
 }

 public int compareTo(Student s2){
 // put some code this student with s2
 }

 // the constructor method
 public Student(){
 // initialize properties and execute other code by default
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Class method syntax

Remove the keyword static, from the method declaration

An object instance can access its class attributes inside a class method

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 //define class METHODS here
 public void printProperties(){
 // Each instance can acces its own properties from a class method
 System.out.println("My student id is: "+id);
 System.out.println("My student first_name is: "+first_name);
 }

 public int compareTo(Student s2){
 // put some code this student with s2
 }

 // the constructor method
 public Student(){
 // initialize properties and execute other code by default
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Method overloading

Method overloading

Declaring multiple class methods with the same name and return type

Must have different input arguments

E.g multiple constructors

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 // A constructor method
 public Student(){
 // initialize properties and execute other code by default
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13

Method overloading

Declaring multiple class methods with the same name and return type

Must have different input arguments

E.g multiple constructors

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 // A constructor method
 public Student(){
 // initialize properties and execute other code by default
 }

 // Another constructor method
 public Student(int new_id){
 // initialize properties and execute other code by default
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Method overloading

Declaring multiple class methods with the same name and return type

Must have different input arguments

E.g multiple constructors

 public class Student{
 //define class PROPERTIES here
 public int id;
 public String first_name;
 public String last_name;
 public String major_program;

 // A constructor method
 public Student(){
 // initialize properties and execute other code by default
 }

 // Another constructor method
 public Student(int new_id){
 // initialize properties and execute other code by default
 }

 // Yet another constructor method
 public Student(int new_id, String new_first_name, String new_last_name, String new_program){
 // initialize properties and execute other code by default
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

An example - Creating a Course class

The Course class
A Course has an course name, a course number, and an instructor name
A Course has a list of registered students
Write a method that assigns to each student a random major_program from { "B.A.", "B.Eng.", "B.Sc.", "B.Comm.", "M.Sc", "Ph.D" }
Write a method that counts how many students are enrolled in each program

A simple exercise - Creating a 2D Point Class

The Point class
A Point has two coordinates: call them x and y
The coordinates should be real numbers (double type)
Write a class method that computes the distance to another Point

A harder exercise - Creating a 2D Point Class, and using in a
Polygon class

The Polygon class
A Polygon has a list of Point objects; its vertices.
Write a class method that adds a new vertex to a polygon
Write a class method that returns true if the Polygon is equilateral
Write a class method that returns true if the Polygon is regular
Write a class method that returns the area of a polygon using the Shoelace Algorithm

Resources

Classes and Objects:
http://docs.oracle.com/javase/tutorial/java/javaOO/
The Shoelace Algorithm:
http://en.wikipedia.org/wiki/Shoelace_formula
Suggested reading:
How to think like a Computer Scientist, Chapter 11

