
ASSIGNMENT 5

COMP-202, Fall 2014, All Sections

Due: December 4thth, 2014 (23:59)

Please read the entire pdf before starting. You must do this assignment individually and, unless
otherwise specified, you must follow all the general instructions and regulations for assignments. Graders
have the discretion to deduct up to 20% of the value of this assignment for deviations from the general
instructions and regulations. These regulations are posted on the course website. Be sure to read them
before starting.

Question 1: 20 points
Question 2: 20 points
Question 3: 20 points
Question 4: 24 points
Question 5: 16 points

100 points total

It is very important that you follow the directions as closely as possible. The directions, while
perhaps tedious, are designed to make it as easy as possible for the TAs to mark the assignments by letting
them run your assignment through automated tests. While these tests will not determine your entire grade,
it will speed up the process significantly, which will allow the TAs to provide better feedback and not waste
time on administrative details. Plus, if the TA is in a good mood while he or she is grading, then that
increases the chance of them giving out partial marks. Marks can be removed if comments are missing, if the
code is not well structured, or if your solution does not follow the assignment specifications. Start early,
you won’t be able to finish this assignment on the last day.

Assignment

Part 1 (0 points): Warm-up

Exercise 1: Write a program that opens a .txt, reads the contents of the file line by line, and prints the
content of each line. To do this, you should use look up how to use the BufferedReader

class1. Remember to use the try and catch statements to handle errors like trying to open an
non-existent file.

Exercise 2: Modify the previous program so that it stores every line in an ArrayList of String objects.
You have to properly declare an ArrayList to store the results, and use add to store every line
that your program reads in the ArrayList.

Exercise 3: Finally, modify your program so that, after reading all the content in the file, it prints how
many words are inside the text file. To do this, you should use the split method of the String

class. Assume the only character that separates words is whitespace " ".

1The documentation of the BufferedReadder class is available at http://docs.oracle.com/javase/7/docs/api/java/

io/BufferedReader.html. You can find an example on how to use it at http://www.tutorialspoint.com/java/io/

bufferedreader_readline.htm

1

Part 2:

Question 1: Implementing a Doubly LinkedList (20 points)
For this question, you will implement a doubly linked list2. To do this we provide you the Dou-
blyLinkedList.java and the StringNode.java files. First, modify the StringNode class so that it
contains a reference to both the previous and next elements in the list. Then, you should complete the
DoublyLinkedList class by implementing the following methods:

1. find: This method receives a String value as input, and returns the first Node that matches the
value. It returns null otherwise.

2. insertStart: This method receives a String value, and insert a Node with the given value at the
beginning of the list.

3. insertEnd: This method receives a String value, and inserts a Node with the given value at the
end of the list.

4. remove: This method receives a String value, and removes all occurrences of the value in the list.

5. removeAtIndex: This method receives an int index, and removes from the list the element at the
position given by the index.

6. toStringReverse: This method returns a string containing all the elements in the list in reverse
order.

To test if your code works, use the main method in the DoublyLinkedList.java file.

Question 2: Playing music from notestrings (20 points)
In this part, you will write code to make your computer play simple melodies from a note string spec-
ification. Your task is to transform that given string into instances of notes. These instances will
be used to produce sounds out of your computer speakers using the provided interpreter. You will need
the following files for this question: MusicInterpreter.java, MidiTrack.java and MidiNote.java.

A notestring3 is a sequence of characters which encodes the order and timing of musical notes in a melody.
This is an example of a notestring: “<<3E3P2E2GP2EPDP8C<8B>”. The letters ‘A’, ‘B’, ‘C’, ‘D’, ‘E’,
‘F’, ‘G’ correspond to the notes on a musical scale, each one having a corresponding pitch. The letter
‘P’ represents a pause, or the absence of a note. The numbers represent the duration, measured in beats,
of the note or pause they precede. The symbols ‘>’ and ‘<’ will change how high or low a particular
note will sound like.

Here’s an overview of the purpose of each file (also detailed in Figure 2, at the end of this document).
The MusicInterpreter class takes care of all the sound generation. It uses a synthesizer to generate
sounds, and a sequencer to determine the order and timing of sounds. You don’t have to worry about
implementing this, it is already implemented for you. MidiTrack class stores all the information from a
notestring: it has an instrumentId, to determine which instrument sound should be used, and a list of
notes, implemented as an ArrayList of MidiNote objects. A MidiNote object stores two properties of
a single note: its pitch, its duration.

You have to implement the loadNoteString method of the MidiTrack.java file. This method receives
a String variable containing a notestring as input. Your method should process the notestring character
by character, creating MidiNote objects with the appropriate pitch and duration. The items a. to e.
describe this process in more detail.

In order to test your notestring parsing, use the loadSingleTrack and the play methods of the
MusicInterpreter class, in a similar way to the following code sample. Hint : place this code in a
main method and try running an instance of MidiTrack.java file.

2http://en.wikipedia.org/wiki/Doubly_linked_list
3This is inspired by http://www.danielzingaro.com/sound_proc/assignment.html.

Page 2

// Build the MidiTrack object
String notestring = "3C>3C<<3A>3A<3A#>3A#18P3C >3C<<3A>3A<3A#>3A#18P";
int instrumentId = 0;
MidiTrack newTrack = new MidiTrack(instrumentId);
newTrack.loadNoteString(notestring);

// Build a MusicInterpreter and set a playing speed
MusicInterpreter mi = new MusicInterpreter ();
mi.setBPM (1200);

// Load the track and play it
mi.loadSingleTrack(newTrack);
mi.play ();
// close the player so that your program terminates
mi.close ();

Make sure you test each item before moving to the next one. Hint: To process a notestring character
by character you need a loop and conditional statements for each of the following cases.

(a) Creating MidiNote objects: When processing a notestring, you must create a new instance of
MidiNote class each time you find any of the following characters ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’.
Every MidiNote that you create should be added to the notes attribute of the MidiTrack class.
Since notes is an ArrayList, use the add method to do this.

The constructor of a MidiNote object requires a pitch value, and a duration. To determine the
pitch value, you should use the noteToPitch Hashtable of the MidiTrack class. For example,
calling noteToPitch.get(‘C’) will return the value of 60. By default, the duration should be 1,
corresponding to one beat.

For instance, if you pass the notestring ‘‘CDEFGAB’’ to the loadNoteString method, your code
should add 7 MidiNote objects to the notes ArrayList of the MidiTrack object, with pitches
corresponding to 60, 62, 64, 65, 67, 69, and 71; and all of them with a duration of 1 beat.

(b) Pauses between notes:

Your code must support reading the character ‘P’ as a silence instead of playing a note. For
example, playing the MidiTrack corresponding to the notestring ‘‘CCCC’’ should sound as the
same note played 4 times, while ‘‘CPCPCPCP’’ should sound as the same note played 4 times, but
with a pause after each note. The duration of a pause is 1 beat. Use the setSilent method of the
MidiNote class to mark a note as a pause, and add this silent MidiNote each time you encounter a
‘P’.

As an example, if you pass the notestring ‘‘CPC’’ to the loadNoteString method, your code
should add 3 MidiNote objects to the notes ArrayList of the MidiTrack object all of them with
a duration of 1 beat. The first and third MidiNote will have pitch equal to 60, and the silent

attribute equal to false. The second one can have any pitch value, as long as its silent attribute
is equal to true.

(c) Note durations:

This reader supports notes of different durations. When a number N appears before a note or
pause, then it means that the note or pause should have a duration of N beats. For example, the
following ‘‘CCCC’’ should sound like 4 separate notes, where are ‘‘4C’’ should sound like a single
longer note. On the other hand ‘‘C2C4C8C’’ should sound like 4 notes of increasing duration. You
code should support a duration N that spans over multiple digits, e.g. ‘‘18C’’ should sound like
a note that last for 18 beats.

(d) Octaves:

In the notestring notation, the character ‘>’ stands for increasing the pitch of all subsequent
notes by 1 octave, while the ‘<’ character stands for decreasing the pitch of all subsequent notes
by 1 octave. Your code must support reading these two characters.

Page 3

When you increase/decrease the pitch of a note by one octave, it sounds like the same note but
with a higher/lower pitch. With the MidiNote class, going an octave up corresponds to increasing
the pitch by 12, while going an octave down corresponds to decreasing the pitch by 12. Thus, every
time the reader encounters the ‘>’ character, you should add 12 to the pitch of all subsequent
notes. Conversely, when your code processes a ‘<’ character, you should subtract 12 from the pitch
of all subsequent notes.

For example, in the notestring ‘‘CDE>CDE<CDE’’ the first three notes will be the same as the last
three, but the middle three will have a higher pitch. The notestring ‘‘4E>4E>4E>4E<<<4E’’, will
sound like 4 E notes with increasing pitch, and a fifth E note with the same pitch as the first one.
Take a look at at http://newt.phys.unsw.edu.au/jw/notes.html to see the pitch numbers of
notes at different octaves.

(e) Flat and Sharp notes:

The final requirement are the sharp modifier, which increases the pitch by 1, and flat modifier,
which decreases the pitch by 1. We will use the ‘#’ symbol for sharp notes and the ‘!’ symbol
for flat notes. This will work differently from the octave change. The flat and sharp symbols apply
only to the single note that is immediately before the flat/sharp symbol. For example, ‘‘C#’’ is a
C sharp note, ‘‘B!" is a B flat note and ‘‘FF#’’ corresponds to a regular F note followed by an F
sharp. The pitch values of the previous examples are 61, 70, 65 and 66, respectively.

Visit this webpage http://cs.mcgill.ca/~cs202/2014-09/web/a5/notestrings.html for a list of
example notestring and sample sounds, to compare the result from your code.

Question 3: Loading multiple notestrings from a text file. (20 points)
For this part, you will need the file Song.java, in addition to the files from Question 3. We provided you
some text files inside the data folder to test your code. An object of the Song class contains information
about the speed at which the song will be played, the instrument sounds that will be available for the
MusicInterpreter synthesizer, and a list of tracks to be played.

The speed of the Song is stored in its myBeatsPerMinute attribute. The attribute mySoundbank, defines
a location of a soundbank file, which contains a collection sounds for the synthesizer. The attribute
myTracks is an ArrayList of MidiTrack objects. This will allow us to play polyphonic tunes, by playing
multiple notestrings at the same time.

You will write code to open a Song file similar to the one shown in Figure 1, load its contents to create
an object of Song class, and play it using the MusicInterpreter class. The following items describe
what you need to do in more detail.

(a) Opening a Song file:

In the Song.java file, implement the loadSongFromFile method. This method receives a file path
as an input, which corresponds to the location of a Song file. Each line in a Song file consists of a
property name followed by a property value, separated by the ‘‘=’’ symbol. Figure 1 depicts an
example of one such Song file.

name = SimpleTune
bpm = 100
soundbank = ./data/Famicom.sf2
instrument = 0
track = CDEFGAB
instrument = 1
track = GABCDEF

Figure 1: An example of a Song file, with two tracks played with two different instruments

Page 4

Inside a Song file, we define the following properties of a Song object:

• name: The song name

• bpm: The speed of the song in beats per minute, this value should be interpreted as an integer
number

• soundbank: The path to a file containing a collection of sounds that will be available to the
MusicInterpreter class, this value should be interpreted as a String

• track: A sequence of symbols corresponding to a notestring, This value should be interpreted
as a String.

• instrument: When this element appears before a track, it defines the instrument from the
soundbank that will be used for playing the track, this value should be interpreted as an
integer number

You will have to write the code that opens the file at the specified path, and use a BufferedReader

to process it line by line. For determining the property name and value of each line, you might
want to use some of the following methods of the String class: replace, startsWith, split, and
trim.

The lines specifying the name, bpm and soundbank properties must be used to set the myName,
myBeatsPerMinute and mySoundbank attributes of the Song class. The lines specifying the track
and instrument properties must be used to construct a new MidiTrack object. Each MidiTrack

object that you create has to be added to the myTracks ArrayList of the Song class.

If the file that your method is trying to open does not exist, or if it cannot be opened, the code will
throw an IOException. You must NOT catch the exception, but pass it to the caller. To do this,
add throws IOException to the declaration of your method. This will postpone the error handling
to the next part, where the loadSongFromFile method will be used.

(b) Creating and playing a Song object:

In the PlaySong.java, modify the main method, so that it creates a Song object, and calls the
loadSongFromFile with a input filename String (song file path in the example below).

After the file has been loaded, call the loadSong and play methods of a MusicInterpreter object.
Your main method should look similar to the following code snippet

String song_file_path = "./data /07. txt";

Song mySong = new Song ();

/*
* call loadSongFromFile , handling the Exeptions correctly
*/

MusicInterpreter mi = new MusicInterpreter ();

// Load the Song and play it
mi.loadSong(mySong);
mi.play ();
// close the player so that your program terminates
mi.close ();

Remember to handle the exceptions that might arise when opening a file; e.g. exceptions
of the IOException type. Print a meaningful message when you catch an Exception; i.e. something
short that tells the user what the error was (‘‘Could not open the file’’, ‘‘The file does

not exist’’, etc.).

If all goes well, when you execute the main method of an instance of type PlaySong class with
song file path ‘‘./data/07.txt’’, you should be listening to something similar to the Mario
Underworld Theme 4.

4http://youtu.be/c0SuIMUoShI

Page 5

(c) Bonus marks - 5 pts:

Create a new Song file that reproduces a simplification some tune that you like. It should have at
least 10 notes and 2 tracks. In the name property of the Song file, you should put an URL pointing
to a Youtube video of the tune that you are reproducing. We will use your own code to test your
creation.

Question 4: Writing a Reverse Song File (24 points)
In the previous part you wrote a class that would open a file for reading, and build a Song object using
the properties specified inside a Song file. In this part, you will write code that works in the opposite
direction, you will create a class named SongWriter, that will take Song objects, and convert them into
text files with the correct format. To do this, you will have to complete the following tasks inside the
SongWriter.java file.

a. The noteToString method:

This part consists of converting a single note into its notestring representation. Implement the
noteToString method, which takes as input a MidiNote object and returns a String representation
of the note in the notestring format of the previous question. You should use the pitchToNote

Hashtable which translates pitch numbers to note names.

For example, if the MidiNote has a duration of 12 beats and a pitch equal to 65, then the method
returns the string ‘‘12F’’. If the isSilent() method of such object returns true, then the method
returns ‘‘12P’’ instead.

This method ignores octaves; e.g. if the MidiNote has a duration of 12 beats a pitch equal to 89
(corresponding to an F note, two octaves up) the method returns ‘‘12F’’. Use the getOctave()

method of the MidiNote class, to get the number of octaves that you need to add or subtract to
find the corresponding note symbol in the pitchToNote Hashtable. You don’t have to worry about
a note being sharp or flat, since the pitchToNote Hashtable has entries for those pitch values.

b. The trackToString method:

Implement the trackToString method, which takes a MidiTrack object as input, and returns a
valid notestring representation of the MidiTrack. In this method, use the noteToString method
to get the notestring representation of each MidiNote in the track. You should handle octave
changes by checking the octave difference of consecutive MidiNote objects in the MidiTrack. Add
the correct number of octave change symbols, ‘<’ or ‘>’, depending of the octave difference.

For example, if a note with pitch equal to 48 (corresponding to a C, with octave = -1) is followed
by a note with pitch equal to 89 (corresponding to an F note, with octave = 2), then the resulting
notestring should look like ‘‘...C>>>F...’’. Use the getOctave() method of the MidiNote class,
to compute this difference.

You can test this method by loading a Song file using the code from the Question 3, and checking
if the strings returned by the trackToString method are equivalent to those in the Song file.

c. The writeToFile method:

Implement the writeToFile method. This method receives as input a String filename and a Song

object to write. This method will open a file with the given filename inside the data folder, and
write its content using the format of the Song files of Question 3.

Use the Filewriter and BufferedWriter to open and write the contents of the file. Your code
should write one line for each of the myName, myBeatsPerMinute, and mySoundbank attributes of
the Song object. These lines correspond to the name, bpm, and soundbank properties of the
Song file format.

Your code should write a pair of lines for the instrumentId and the notestring representation
of each MidiTrack in the myTracks attribute of the Song object. Use trackToString to get the

Page 6

notestring representation of each track. These lines correspond to the instrument and track
properties of the Song file format.

If the path that your method is trying to open is not valid or if the file cannot be opened, the code
throws an IOException. You should NOT catch the exception, but pass it to the caller. To do
this, add throws IOException to the declaration of your method.

d. The main method in SongWriter.java:

Inside the Song class, we provided you with a revert method. This method reverses the notes
order of every track, by calling the revert method of each MidiNote class.5 What you need to do
is to write the main method in the SongWriter.java file, so that it performs the following steps:

• Load a Song file into a Song object.

• Call the revert method of the Song object.

• Use the writeToFile method of a SongWriter object to write the new Song file. The name
of the new file should be the name of the Song followed by ‘‘ reverse’’. For example, if you
load the file ‘‘07.txt’’, which has the line name = underworld, then the name of the new
file will be ‘‘underworld reverse.txt’’.

Remember to handle the exceptions that might arise when opening a file; e.g. exceptions
of the IOException type. Print a meaningful message when you catch an Exception. If your code
generates a correct Song file, then this file will be playable by the code you wrote on Question 3.
Try it out with the ‘‘07.txt’’ file from the data folder. The resulting sound should be similar to
the one on this video http://youtu.be/lOT19KIwN_o (the Mario Underworld theme in reverse).

Question 5: Programming questions (16 points)

(a) Let d(n) be defined as the sum of the divisors of n (numbers less than n which divide evenly into
n). If d(a) = b and d(b) = a, where a 6= b, then a and b are an amicable pair and each of a and b
are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; and d(220) is
284. The proper divisors of 284 are 1, 2, 4, 71 and 142, their sum is 220, hence d(284) = 220.

Evaluate the sum of all the amicable numbers under 10,000.

Be careful in your solution not to double count numbers. For example, the sum of amicable numbers
under 500 is 504 - the only amicable numbers under 500 are 220 and 284.

(b) For this problem you will define two arrays, a and b. Each array contains 10,000 random integers
from zero (inclusive) to 10,000 (inclusive). Use the random generator Random ran1 = new Ran-
dom(1337) to generate the integers for array a, and Random ran2 = new Random(5443) to generate
the integers for array b.

Find the number of times each element in array a appears in array b. If an element appears in
array a more than once, do not double count it in array b. What is the sum of each element
multiplied by the number of times it appears in this intersection?

For example: If we are using smaller arrays and
a = [0, 4, 8, 1, 9, 0, 8, 10, 2, 5]

b = [3, 6, 7, 10, 0, 1, 10, 7, 8, 9]

The intersection using this definition would look like:
{10=2, 9=1, 8=1, 1=1, 0=1}
And so the sum of each element multiplied by its count is
10× 2 + 9× 1 + 8× 1 + 1× 1 + 0× 1 = 38

5You don’t have to implement the revert methods, we already did it for you.

Page 7

What To Submit
You have to submit one zip file with all your files in it to MyCourses under Assignment 5. If you do not
know how to zip files, please ask any search engine or friends. Google might be your best friend with this,
and a lot of different little problems as well.

DoublyLinkedList.java, StringNode.java

MidiTrack.java

Song.java, PlaySong.java

SongWriter.java

——————————–
question5.txt

The complete Java code for question 1
The complete Java code for question 2.
The complete Java code for question 3.
The complete Java code for question 4.
——————————–
Your answers for question 5.

Marking Scheme
Up to 20% of points can be removed from each question for bad indentation of your code as well as omitted
comments, missing files, or just generally not following instruction. Marks will be removed as well if the
class or method names are not respected.

Question 1
Added the reference to a previous node in the StringNode class 2 points

The find method in the DoublyLinkedList class works correctly 3 points
The insertStart method in the DoublyLinkedList class works correctly 3 points

The insertEnd method in the DoublyLinkedList class works correctly 3 points
The remove method in the DoublyLinkedList class works correctly 3 points

The removeAtIndex method in the DoublyLinkedList class works correctly 3 points
The toStringReverse method in the DoublyLinkedList class works correctly 3 points

20 points

Question 2
Reading notes (‘A’, ‘B’, ‘C’, ‘D’ , ‘E’, ‘F’ ,‘G’) 4 points

Processing the pause ‘P’ character 4 points
Reading notes and pauses with varying durations 4 points

Correctly applying octave changes (the ‘>’ and ‘<’ characters) 4 points
Reading flat and sharp notes correctly (the ‘#’ and ‘!’ characters) 4 points

20 points

Question 3
Setting the myName, myBeatsPerMinute and mySoundbank attributes 5 points

Correctly constructing a MidiTrack object for every track line 5 points
Implemented main method in PlaySong.java 5 points

When exceptions are caught, the program prints a short message 5 points
20 points

Question 4
Correctly implemented the noteToString method 5 points

Correctly implemented the trackToString method 5 points
Opening a file and writing the name, bpm and soundbank lines 3 points

Writing the instrument and track for each MidiTrack 3 points
Implemented main method in Songwriter.java 5 points

When exceptions are caught, the program prints a short message 3 points
24 points

Question 5
5.1 8 points
5.2 8 points

16 points

Page 8

MidiTrack

Attributes:
Hashtable<Character,Integer> noteToPitch
ArrayList<MidiNote> notes
int instrumentId

Constructor:
MidiTrack(int instrumentId)

Methods:
void initPitchDictionary()
ArrayList<MidiNote> getNotes()
int getInstrumentId()
void revert()
void loadNoteString(String notestring)
static void main(String[] args)

(a) The MidiNote class

MidiNote

Attributes:
int pitch
int duration
boolean silent

Constructor:
MidiNote(int pitch, int duration)

Methods:
public int getPitch()
public int getDuration()
public boolean isSilent()
public void setPitch(int pitch)
public void setDuration(int duration)
public void setSilent(boolean value)
public int getOctave()
public String toString()

(b) The MidiTrack class

Song

Attributes:
String myName
int myBeatsPerMinute
String mySoundBank
ArrayList<MidiTrack> myTracks

Constructor:
Song()

Methods:
String getName()
String getSoundbank()
int getBPM()
void getTracks()
void loadFromFile(String file_path)
void revert()

(c) The Song class

Songwriter

Attributes:
Hashtable<Character,Integer> pitchToNote

Constructor:
SongWriter()

Methods:
String noteToString (MidiNote note)
String trackToString (MidiTrack track)

void writeToFile(Song s, String path)
static void main(String[] args)

(d) The SongWriter class

MusicInterpreter

Attributes:

Constructor:
MusicInterpreter()

Methods:
void loadSingleTrack(MidiTrack track)
void loadSingleTrack(MidiTrack track,
 int instrumentId)
void loadSong(Song song)
void setBPM(int bpm)
void play()

(e) The MusicInterpreter class

Figure 2: An overview of the classes used in this part.

Page 9

