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Abstract

In this paper a range synthesis algorithm is proposed
as an initial solution to the problem of 3D environment
modeling from sparse data. We develop a statistical learn-
ing method for inferring and extrapolating range data from
as little as one intensity image and from those (sparse) re-
gions where both range and intensity information is avail-
able. Our work is related to methods for texture synthe-
sis using Markov Random Field methods. We demonstrate
that MRF methods can also be applied to general intensity
images with little associated range information and used
to estimate range values where needed without making any
strong assumptions about the kind of surfaces in the world.
Experimental results show the feasibility of our method.

1. Introduction

In this paper we presentan efficient algorithmfor ex-
trapolatingsparserangedatato provide a dense3D ervi-
ronmentmodel. The extractionof rangedatafrom inten-
sity imageshasbeenoneof the key problemsfor computer
vision, as addressedby numerous‘'shape-from”methods.
Marny of thesemethod9rovideincompletedata.More pro-
saically while laserrangesensorqfor examplebasedon
LIDAR) have becomewell-establishedechnologythey are
costly and often returndatathatis sparserelative to video
images(mosttypically providing only dimensional-stripes
of rangedata). In robotics,for example,the useof range
datafor navigationandmappinghasbecomeakey method-
ology, butit is oftenhamperedy thefactthatrangesensors
that provide complete(2-1/2D) depthmapswith a resolu-
tion akinto thatof acameraareprohibitively costly.

Using anintensityimageandincompleterangedatawe
develop a statisticallearning method that infers missing
rangedatafrom a partial depthmap, suchasoneobtained
by sweepingaone-dimensiondllD AR sensorOur method
is novel in thatit allows the estimationof the geometryof
thescenewith only anintensityimageandarelatively small
amountof rangedataandwithout stronga priori assump-
tions on either surface smoothnes®r surfacereflectance.

We baseour rangeestimationprocesson inferring a sta-
tistical relationshipbetweenintensity variationsand exist-
ing rangedata. This is elaboratedisinga Markov Random
Field (MRF) methodakin to thoseusedin texture synthe-
sis[6, 2, 17, 3, 7]. In thecontext of texture synthesisMRF
methodsmodel a texture basedon its local and stationary
properties. A new texture is generatecdpixel by pixel in
suchawaythatthesetwo propertiesaarepreseredin asmall
setof spatially neighboringpixels which characterizesv-
ery pixel onthetextureimage.

The organizationof this paperis asfollows. In the next
section,we review somerelatedwork. In Section3, we
describeour rangesynthesismethod. Someexperimental
resultsareshavn in Section4, and,finally, in Section5 we
give someconclusionsandsuggestion$or futureresearch.

2. Background

Theinferenceof 3D modelsof a scends a problemthat
subsumes large partof computervision researctover the
last 30 years.In the contet of this paperwe will consider
only afew representatie solutions.

Over the lastdecaddaserrangefinderhave becomeaf-
fordableandavailable but their applicationto building full
3D environmentmodels,evenfrom a singleviewpoint, re-
mains costly or difficult in practice. In particular while
laserline scannerbasedn eithertriangulationand/ortime-
of-flight are ubiquitous, full volume scannergend to be
much more complicatedand errorprone. As a result, the
acquisitionof dense, complete 3D rangemapsis still aprag-
matic challengeevenif the availability of laserrangescan-
nersis presupposed.

Much of the previous work on ervironmentmodeling
usesoneof eitherphotometricdataor geometricdata[l, 8,
5, 12] to reconstruca 3D modelof anscene For example,
Fitzgibbonand Zisserman5] proposeda methodthat se-
guentiallyretrievesthe projectie calibrationof a complete
image sequencéasedon tracking cornerand/orline fea-
turesover two or moreimages,andreconstructeachfea-
ture independentlyn 3D. Their methodsolvesthe feature
correspondencproblembasedon the fundamentamatrix
andtri-focal tensor which encodepreciselythe geometric



constraintsavailablefrom two or moreimagesof the same
scendrom differentviewpoints.Relatedwork includesthat
of Pollefeyset. al. [12]; they obtaina 3D modelof anscene
from imagesequenceacquiredrom afreely moving cam-
era. The cameramotion andits settingsare unknovn and
thereis no prior knowledgeaboutthe scene.Their method
is basedon a combinationof the projective reconstruction,
self calibrationand densedepthestimationtechniques.In
generalthesemethodglerivetheepipolargeometryandthe
trifocal tensorfrom point correspondenceddowever, they
assumehatit is possibleto run aninterestoperatorsuchas
a cornerdetectorto extract from one of the imagesa suf-
ficiently large numberof pointsthat can then be reliably
matchedn theotherimages.

Shape-from-shading relatedin spirit to what we are
doing, but is basedon a ratherdifferentsetof assumptions
andmethodologies Suchmethod[9, 11] reconstruct 3D
sceneby inferring depthfrom a 2D image;in general this
taskis difficult, requiringstrongassumptionsegardingsur
facesmoothnesandsurfacereflectanceroperties.Recent
work hasconsideredhe useof bothintensity dataaswell
asrangemeasurementsSeveralauthorg[13, 4, 14, 10, 15]
have obtainedpromisingresults.Pulli etal. [13] addresshe
problemof surfacereconstructiorby measuringooth color
andgeometryof realobjectsanddisplayingrealisticimages
of objectsfrom arbitraryviewpoints. They useastereacam-
erasystemwith active lighting to obtainrangeandintensity
imagesasvisible from onepointof view. Theintegrationof
therangedatainto asurfacemodelis doneby usingarobust
hierarchicabpacecarvingmethod.Theintegrationof inten-
sity datawith rangedatahasbeenproposed14] to helpde-
fine the boundarie®f surfacesextractedfrom the 3D data,
andthenasetof heuristicsareusedto decidewhatsurfaces
shouldbejoined. For thisapplicationt becomesecessary
to developalgorithmsthatcanhypothesizahe existenceof
surfacecontinuityandintersectioneamongsurfacesandthe
formationof compositefeaturesfrom the surfaces.

However, oneof the mainissuesn usingtheabove con-
figurationsis thatthe acquisitionprocessds very expensve
becausedenseand completeintensity and rangedataare
neededn orderto obtaina good 3D model. As far aswe
know, thereis no methodthatbasests reconstructiorpro-
cesonhaving asmallamounf intensityand/orangedata
and syntheticallyestimatingthe areasof missinginforma-
tion by usingthe currentavailabledata. In particular such
a methodis feasiblein man-madeervironmentswhich, in
generalhaveinherentgeometricconstraintssuchasplanar
surfaces.

3. The Algorithm

As notedabove our objective is to computerangevalues
whereonly intensityis known. We will do this by incre-
mentally computinga single rangevalue at a time by us-

ing neighboringocationswherebothrangeandintensityis
available. We assumethat the intensity andrangedatais
alreadyregistered:.

We useMarkov RandomFields (MRF) asa modelthat
capturescharacteristicof the relationshipbetweeninten-
sity andrangedatain a neighborhooaf a givenvoxel, i.e.
the datain a voxel aredetermineddy its immediateneigh-
bors(andprior knowledge)andnot on moredistantvoxels
(thelocality property).While this assumptions not strictly
valid, our resultsseemvery satishictory;theimplicationsof
this arediscussedater. The otherpropertythatwe exploit
is limited stationarityi.e. differentregionsof animageare
alwayspercevedto besimilar. This propertyis truefor tex-
turesbut not for moregeneralclasseof imagesrepresent-
ing scenegontainingoneor moreobjects.In ouralgorithm,
we synthesizea depthvalue sothatit is locally similar to
someregion not very far from its location. The procesds
completelydeterministic,meaningthat no explicit proba-
bility distribution needgo be constructed.

3.1. Synthesizing range

We focus on our developmentof a set of augmented
voxels 'V that contain intensity and range information
(wherethe rangeis initially unknovn for someof them).
Thus, V = (I,R), wherel is the matrix of known pixel
intensitiesand R denotesthe matrix of incompletepixel
depths.We areinterestedbnly in a setof suchaugmented
voxels suchthat one voxel lies on eachray thatintersects
eachpixel of the inputimagel, thusgiving us a registered
rangeimageR andintensityimagel.

Let Z,, = (z,y) : 1 < z,y < m denotethem x m in-
teger lattice (over which the imagesare described);then
I1={L,}, (z,y) € Z,, denotesthe gray levels of the
input image,andR = {R, ,}, (z,y) € Z, denotesthe
depthvalues. We model V asan MRF. Thus,we regardI
andR asarandomvariables For example, {R = r} stands
for {R,,y = 12,4, (z,y) € Z1}. Given a neighborhood
system N ={N,, € Z,}, where \,, C Z,, denotes
the neighborsof (z,y), such that, (1) (z,y)& Ny,
and (2) (z,y) € Npy <= (k,l) € N,y. An MRF over
(Zm,N) is astochastiqrocessndexed by Z,, for which,
for every (x,y) andevery v = (i, r) (i.e. eachaugmented
voxel depend®nly onits immediateneighbors),

P(Vay = vzy | Vig = v, (k1) # (z,9))
= P(Vz,y = Uz,y | Via = k1, (k1) € Nz,y)a (1)

The choice of N together with the conditional
probability distribution of P(I = 4) and P(R = r), pro-
videsa powerful mechanisnfor modelingspatialcontinu-
ity and other scenefeatures. On one hand,we chooseto

1In practicethis registrationcould be computedasa first step,but we
omit thisin the currentpresentation.



modelaneighborhoodV,, asasquaremaskof sizen x n
centeredat the voxel location (z,y). This neighborhood
is causal,meaningthat only thosevoxels alreadycontain-
ing both,intensityandrangeinformationareconsideredor
the synthesisprocess. On the other hand, calculatingthe
conditionalprobabilitiesin anexplicit form is aninfeasible
task sincewe cannotefficiently represenor determineall
the possiblecombinationsetweenaugmentedroxels with
its associatecheighborhoods.Therefore,we synthesizea
depthvalue R, , deterministicallyby selectingthe range
value Ry, ; from the augmenteodsoxel whosedatamostre-
semblethe (partial)datafrom location(z, y), i.e.,

argmin ||Vw,y - Vk,l”v (2)
(k1) € A

whereA is thesetof thoseaugmentedoxelslocatedat dis-
tanced to theaugmentedoxel to be synthesizedThe sim-
ilarity measurd|.|| is describecbver the partial dataabout
locations(z, y) and(k, ) andis calculatedasfollows,

> Glo, 7 —%)[(Is — I})* + (Rs — Rp)’),  (3)
TEN

where 7, is the voxel located at the center of the
neighborhoodV, ¥ is a neighboringvoxel of #, that con-
tains both intensity and rangeinformation. I and R are
theintensityandrangevaluesof the neighboringvoxels of
thedepthvalueR,, € o, to synthesizeandI’ and R’
aretheintensityandrangevaluesto be comparedvith and
in which, the centervoxel 7y hasalreadyassignech depth
value. GG is a 2-D Gaussiarkernelthat givesmoreweight
to thosepixels nearthe centerthanthoseat the edgeof the
window.

In ouralgorithmwe synthesizenedepthvalueatatime.
Theorderin which we choosethe next depthvalueto syn-
thesizewill reflectthefinal result.In ourexperimentsdepth
valuesareassignedn aspiral-scarordering,eithergrowing
inwardsor outwards,dependingpn the shapeof the areato
synthesize.

4. Experimental Results

We have testedour algorithm using syntheticand reall
data. The syntheticdatawere generatedvith the 3D ren-
dering packagePovRay using naturallighting conditions.
In the left side of Figure 1a, a syntheticintensityimageof
an empty bookshelfis shovn; the subwindav in the right
sideis the associatedangeimagetaken from the position
indicatedby theredrectanglan theintensityimage.These
imagesaregivenasaninputto our algorithm.For this case,
the size of the neighborhoods setto be 9 x 9 pixels. The
left sideof Figure1lb shavstherangesynthesigesults,and

to the right, asa way of visual comparisonthe complete
syntheticrangedatais showvn. It canbe seenthatthe algo-
rithm capturesmostof thechangesnvolvedin theintensity
informationandarereflectedn therangesynthesigrocess.

Range

Intensity

(a) Input.

The synthesised range image The complete ground truth range image

(b)

Figure 1. Results of rang e synthesis on syn-
thetic data. Panel (b) shows the comparison
of synthesiz ed range with ground truth for
this artificial scene.

Representate resultsbasedon dataacquiredin a real-
world ervironment are shawvn in Figures 2 through 6.
The real intensity (reflectance)and range imagesof in-
doorscenesvereacquiredby an Odeticslaserrangefinder
mountedon a mobile platform. Imagesare128 x 128 pix-
elsandencompass 60° x 60° field of view. As with the
syntheticdata,we startwith the completerangedatasetas
groundtruth andthenhold backmostof the datato simu-
latethe sparsesampleof arealscanneandto provide input
to our algorithm. This allow us to comparethe quality of
our reconstructiowith whatis actuallyin the sceneln the
following we will considertwo stratgiesfor subsampling
therangedata.

4.1. Limited denserange

Thefirst type of experimentinvolvestherangesynthesis
whentheinitial rangeis awindow of sizep x ¢ andat po-
sition (r,,r,) ontheintensityimage. Figure2ashows the
intensityimage(left) of size128 x 128 andtheinitial range
(right), awindow of size64 x 64, i.e. only the 25% of the
total rangeis known. Thesizeof theneighborhoods 5 x 5



pixels. The synthesizedangedataobtainedafter running
ouralgorithmis shavnin theleft sideof Figure2b; for pur-
posesf comparisonywe shav the completerealrangedata
(right side). It canbeseenthatthesynthesizedangeis very
similar to the real range. The OdeticsLRF usesperspec-
tive projection,sotheimagecoordinatesystemis spherical.
To calculatethe residualerrors,we first corvert the range
imagesto the Cartesiarcoordinatesystem(rangeunits) by
usingthe equationsn [16]. For this example,the average

residualerroris 7.98.

Range

Intensity

P

Synthesized range data Real range data

(b)
Figure 2. Results on real data. (a) Input. (b)
Results comparing synthesiz ed rang e data to
ground truth.

4.2. Spar se range measur ements

In thesecondype of experimenttheinitial rangedatais
asetof stripeswith variablewidth alongthez— andy—axis
of the intensityimage. We testedwith the sameintensity
imageusedin theprevioussectionin orderto compareboth
results. Two experimentsareshavn in Figure 3. Theini-
tial rangeimagesareshown in theleft column,andto their
right aresynthesizedesults.In Figure3a,the width of the
stripess,,, is 5 pixels,andtheareawith missingrangedata
(2 X T4,) 1525 x 25, i.€.,39%0f therangeimageis known.
For Figure3b,thevaluesares,, = 3, z,, = 28, in thiscase,
only 23% of the total rangeis known. The averageresid-
ualerror(in rangeunits)for thereconstructiorare2.37 and
3.07, respectiely. In Figure4 agraphof the densityof pix-
elsatdifferentdepthvalueqscalefrom 0 to 255)of theorig-
inal andsynthesizedangeof Figure 3a. Figure5 displays
two differentviews usingtherealrangeandthe synthesized

rangeresultsof Figure3.

2w Sy

(@) sw = 5, Tw = 25.

(b) s = 3, T = 28.

Figure 3. Results on real data. The left column
shows the initial range data and to their right
is the synthesiz ed result (the white squares
represent unknown data to be estimated).
Since the unkno wns are withheld from gen-
uine ground truth data, we can estimate our
performance .

“synthesised’
“real’

Depth

Figure 4. Histogram of pixels at diff erent
depth values (scale from 0 to 255) of the orig-
inal and synthesiz ed rang e of Figure 3a.

The resultsaresurprisinglygoodin both cases.Our al-
gorithm was capableof recovering the whole rangeof the
image.We note,hawever, thatresultsof experimentausing
stripesaremuchbetterthanthoseusingawindow astheini-
tial rangedata. Intuitively, thisis becausehe samplespans
a broaderistribution of range-intensiticombinationghan
in thelocalwindow case.

Our algorithm was testedon 30 imagesof common
scenedound in a generalindoor man-madeervironment.
Two casesof subsamplingvere usedin our experiments.
Casel is asone of the subsamplingoreviously described,
with r,, = 5 andz,, = 25, appliedalongz— andy—axis.



Ground truth range

=5, %,=25. F, =3, %,=28.

Figure 5. Results in 3D. Two views of the real
range (left column) and the synthesiz ed re-
sults (middle and right columns) of Figure 3.

Dueto spacelimitations, we are only shawving 3 more ex-
amplesof this casein Figure6a,theaverageresidualerrors
are,from top to bottom,2.84, 4.53 and 3.32. For Case2,
ry = 8 andz,, = 22, but appliedonly alongthe z—axis.
Figure6b shaws 2 examplesof this case.Herethe average
residualerrorsare4.17 and5.25, respectiely. Onceagain,
it canbe seenthat the resultsaregoodin both cases.The
maximumaverageresidualerrorsobtainedfrom all 30 test
imageswerefor Casel, 6.52 andfor Casell, 11.85.

It is importantto note,thattheinitial rangedatagivenas
aninputis crucial to the quality of the synthesisthatis, if
no interestingchangesxist in the rangeandintensity then
the taskbecomedlifficult. However, the resultspresented
heredemonstrat¢hatthisis aviableoptionto facilitateen-
vironmentmodeling.

5. Conclusions and Future Work

We have presentedin algorithmfor recovering 3D geo-
metric datagiven an intensityimagewith little associated
rangeinformation. The approachusesMarkov Random
Field methodsasa modelthatrelatescharacteristicef the
intensity andrangedata. Thereare a numberof parame-
tersthatcangreatlyinfluencethe quality of theresults:the
size of the neighborhoodusedin computingcorrelations,
the amountof initial rangeandthe characteristicgaptured
in thatinitial range. The characterizatiorf how thesepa-
rameterseffect theresultsis the subjectof ongoingwork.

Our approachasdescribedn this paperexploits the sta-
tistically obsenedrelationshipbetweerthe intensitiesin a
neighborhoodndrangedatato interpolate(or extrapolate)
therange.While this formalismcanexplicitly capturedocal
differential geometry we do not explicitly computelocal
surfacepropertiesnor doesthis approachmake substantre

assumptionsegardingsurfacereflectancdunctionsof sur

facegeometrysuchassmoothnessThe approactdoesas-
sumethatthe relationshipbetweenintensityandrangecan
beexpressedby astationarydistribution; anassumptiorthat
couldberelaxed. While avoiding strongassumptionsibout
the surfacesin the sceneallows greatergenerality it also
meanswve do not exploit potentiallyusefulconstraininfor-

mation. In ongoingwork, we areexaminingthe incorpora-
tion of moreelaboratepriorsandgeometricdnferences.

(b) Case2: 7, = 8, z,, = 22 alongthex-axis.

Figure 6. Examples on real data. The first and
second columns are the input intensity and
rang e data, respectivel y. White regions in the
input data are unkno wn data to be inferred
by the algorithm. The synthesiz ed results are
shown in the third column and, the real range
images are displayed in the last column for
visual comparison.

Anotherinterestingproblemwe areexploring on, is that
of inferring intensityfrom range,asopposedo rangefrom
intensity This would permitinferenceof intensity distri-
butionsin casesvheresurfacereflectancesveredifficult to
model(suchason texturedof patternedsurfacesandmight



sene asan adjunctto more corventionalreflectance-based

modeling. The approachdescribecheremay; in principle,
work well; however, difficulties arise becauseangedata
doesnot provide information aboutwhat kind of textures
arein theintensityimage,soadditionalinformationshould
be considered.The following examplesshavn in Figure7
illustratethis. The averageresidualerrors,consideringthe
graylevels(0to 255),are11.45 and12.70, respectiely.

&

Figure 7. Inferring intensity from range.
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