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Abstract

In this paper a range synthesis algorithm is proposed
as an initial solution to the problem of 3D environment
modeling from sparse data. We develop a statistical learn-
ing method for inferring and extrapolating range data from
as little as one intensity image and from those (sparse) re-
gions where both range and intensity information is avail-
able. Our work is related to methods for texture synthe-
sis using Markov Random Field methods. We demonstrate
that MRF methods can also be applied to general intensity
images with little associated range information and used
to estimate range values where needed without making any
strong assumptions about the kind of surfaces in the world.
Experimental results show the feasibility of our method.

1. Introduction

In this paper, we presentan efficient algorithmfor ex-
trapolatingsparserangedatato provide a dense3D envi-
ronmentmodel. The extractionof rangedatafrom inten-
sity imageshasbeenoneof thekey problemsfor computer
vision, asaddressedby numerous“shape-from”methods.
Many of thesemethodsprovideincompletedata.Morepro-
saically, while laserrangesensors(for examplebasedon
LIDAR) havebecomewell-establishedtechnologythey are
costly andoften returndatathat is sparserelative to video
images(mosttypically providing only dimensional-stripes
of rangedata). In robotics,for example,the useof range
datafor navigationandmappinghasbecomeakey method-
ology, but it is oftenhamperedby thefactthatrangesensors
that provide complete(2-1/2D) depthmapswith a resolu-
tion akin to thatof acamera,areprohibitively costly.

Usingan intensityimageandincompleterangedatawe
develop a statistical learning methodthat infers missing
rangedatafrom a partial depthmap,suchasoneobtained
bysweepingaone-dimensionalLIDAR sensor. Ourmethod
is novel in that it allows the estimationof the geometryof
thescenewith only anintensityimageandarelativelysmall
amountof rangedataandwithout stronga priori assump-
tions on either surfacesmoothnessor surfacereflectance.

We baseour rangeestimationprocesson inferring a sta-
tistical relationshipbetweenintensityvariationsandexist-
ing rangedata.This is elaboratedusinga Markov Random
Field (MRF) methodakin to thoseusedin texture synthe-
sis[6, 2, 17, 3, 7]. In thecontext of texturesynthesis,MRF
methodsmodela texture basedon its local andstationary
properties. A new texture is generatedpixel by pixel in
suchawaythatthesetwo propertiesarepreservedin asmall
setof spatiallyneighboringpixels which characterizesev-
ery pixel on thetextureimage.

Theorganizationof this paperis asfollows. In thenext
section,we review somerelatedwork. In Section3, we
describeour rangesynthesismethod. Someexperimental
resultsareshown in Section4, and,finally, in Section5 we
givesomeconclusionsandsuggestionsfor futureresearch.

2. Background

Theinferenceof 3D modelsof a sceneis a problemthat
subsumesa largepartof computervision researchover the
last30 years.In thecontext of this paperwe will consider
only a few representativesolutions.

Over the lastdecadelaserrangefindershave becomeaf-
fordableandavailablebut their applicationto building full
3D environmentmodels,evenfrom a singleviewpoint, re-
mainscostly or difficult in practice. In particular, while
laserlinescannersbasedoneithertriangulationand/ortime-
of-flight are ubiquitous, full volume scannerstend to be
muchmorecomplicatedanderror-prone. As a result, the
acquisitionof dense, complete 3D rangemapsis still aprag-
maticchallengeevenif theavailability of laserrangescan-
nersis presupposed.

Much of the previous work on environmentmodeling
usesoneof eitherphotometricdataor geometricdata[1, 8,
5, 12] to reconstructa 3D modelof anscene.For example,
FitzgibbonandZisserman[5] proposeda methodthat se-
quentiallyretrievestheprojectivecalibrationof a complete
imagesequencebasedon trackingcornerand/orline fea-
turesover two or moreimages,andreconstructseachfea-
ture independentlyin 3D. Their methodsolvesthe feature
correspondenceproblembasedon the fundamentalmatrix
andtri-focal tensor, which encodepreciselythe geometric



constraintsavailablefrom two or moreimagesof thesame
scenefrom differentviewpoints.Relatedwork includesthat
of Pollefeyset. al. [12]; they obtaina3D modelof anscene
from imagesequencesacquiredfrom a freely moving cam-
era. The cameramotion andits settingsareunknown and
thereis no prior knowledgeaboutthescene.Their method
is basedon a combinationof theprojective reconstruction,
self calibrationanddensedepthestimationtechniques.In
general,thesemethodsderivetheepipolargeometryandthe
trifocal tensorfrom point correspondences.However, they
assumethatit is possibleto run aninterestoperatorsuchas
a cornerdetectorto extract from oneof the imagesa suf-
ficiently large numberof points that can then be reliably
matchedin theotherimages.

Shape-from-shadingis relatedin spirit to what we are
doing,but is basedon a ratherdifferentsetof assumptions
andmethodologies.Suchmethod[9, 11] reconstructa 3D
sceneby inferring depthfrom a 2D image;in general,this
taskis difficult, requiringstrongassumptionsregardingsur-
facesmoothnessandsurfacereflectanceproperties.Recent
work hasconsideredthe useof both intensitydataaswell
asrangemeasurements.Severalauthors[13, 4, 14, 10, 15]
haveobtainedpromisingresults.Pulli etal. [13] addressthe
problemof surfacereconstructionby measuringbothcolor
andgeometryof realobjectsanddisplayingrealisticimages
of objectsfrom arbitraryviewpoints.They useastereocam-
erasystemwith active lighting to obtainrangeandintensity
imagesasvisible from onepointof view. Theintegrationof
therangedatainto asurfacemodelis doneby usingarobust
hierarchicalspacecarvingmethod.Theintegrationof inten-
sity datawith rangedatahasbeenproposed[14] to helpde-
fine theboundariesof surfacesextractedfrom the3D data,
andthenasetof heuristicsareusedto decidewhatsurfaces
shouldbejoined.For thisapplication,it becomesnecessary
to developalgorithmsthatcanhypothesizetheexistenceof
surfacecontinuityandintersectionsamongsurfaces,andthe
formationof compositefeaturesfrom thesurfaces.

However, oneof themainissuesin usingtheabovecon-
figurationsis that theacquisitionprocessis very expensive
becausedenseand completeintensity and rangedataare
neededin orderto obtaina good3D model. As far aswe
know, thereis no methodthatbasesits reconstructionpro-
cessonhaving asmallamountof intensityand/orrangedata
andsyntheticallyestimatingthe areasof missinginforma-
tion by usingthecurrentavailabledata. In particular, such
a methodis feasiblein man-madeenvironments,which, in
general,have inherentgeometricconstraints,suchasplanar
surfaces.

3. The Algorithm

As notedaboveourobjective is to computerangevalues
whereonly intensity is known. We will do this by incre-
mentallycomputinga single rangevalueat a time by us-

ing neighboringlocationswherebothrangeandintensityis
available. We assumethat the intensityandrangedatais
alreadyregistered1.

We useMarkov RandomFields(MRF) asa modelthat
capturescharacteristicsof the relationshipbetweeninten-
sity andrangedatain a neighborhoodof a givenvoxel, i.e.
thedatain a voxel aredeterminedby its immediateneigh-
bors(andprior knowledge)andnot on moredistantvoxels
(thelocality property).While thisassumptionis notstrictly
valid, our resultsseemverysatisfactory;theimplicationsof
this arediscussedlater. Theotherpropertythatwe exploit
is limited stationarity, i.e. differentregionsof animageare
alwaysperceivedto besimilar. Thispropertyis truefor tex-
turesbut not for moregeneralclassesof imagesrepresent-
ingscenescontainingoneor moreobjects.In ouralgorithm,
we synthesizea depthvalueso that it is locally similar to
someregion not very far from its location. The processis
completelydeterministic,meaningthat no explicit proba-
bility distributionneedsto beconstructed.

3.1. Synthesizing range

We focus on our developmentof a set of augmented
voxels

�
that contain intensity and range information

(wherethe rangeis initially unknown for someof them).
Thus,
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eachpixel of the input image
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The choice of 9 together with the conditional
probability distribution of

QR���H�]O^�
and
QR�@	��_6*�

, pro-
videsa powerful mechanismfor modelingspatialcontinu-
ity andotherscenefeatures. On onehand,we chooseto

1In practicethis registrationcouldbecomputedasa first step,but we
omit this in thecurrentpresentation.
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modelaneighborhood9 '*) + asasquaremaskof size ` � `
centeredat the voxel location

���������
. This neighborhood

is causal,meaningthat only thosevoxels alreadycontain-
ing both,intensityandrangeinformationareconsideredfor
the synthesisprocess.On the other hand,calculatingthe
conditionalprobabilitiesin anexplicit form is aninfeasible
tasksincewe cannotefficiently representor determineall
thepossiblecombinationsbetweenaugmentedvoxelswith
its associatedneighborhoods.Therefore,we synthesizea
depthvalue

1�'3) +
deterministicallyby selectingthe range

value
1 C ) D from the augmentedvoxel whosedatamostre-

semblethe(partial)datafrom location
�����
���

, i.e.,

argmin
VaV S�'3) +�bcS C ) D
VdV ,�TIJ�
KT�Z.8e (2)

where
e

is thesetof thoseaugmentedvoxelslocatedatdis-
tancef to theaugmentedvoxel to besynthesized.Thesim-
ilarity measure

VdVhgiVdV
is describedover the partialdataabout

locations
�����
���

and
�TIJ�
KT�

andis calculatedasfollows,

j
kl&m[npo
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where
rs u is the voxel located at the center of the

neighborhood9 ,
rs is a neighboringvoxel of

rs u that con-
tains both intensity and rangeinformation.

%
and
1

are
the intensityandrangevaluesof theneighboringvoxelsof
the depthvalue

1�'3) +~. rs\u to synthesize,and
% x

and
1 x

aretheintensityandrangevaluesto becomparedwith and
in which, the centervoxel

rs\u hasalreadyassigneda depth
value. o is a 2-D Gaussiankernelthat givesmoreweight
to thosepixelsnearthecenterthanthoseat theedgeof the
window.

In ouralgorithmwesynthesizeonedepthvalueatatime.
Theorderin which we choosethenext depthvalueto syn-
thesizewill reflectthefinal result.In ourexperiments,depth
valuesareassignedin aspiral-scanordering,eithergrowing
inwardsor outwards,dependingon theshapeof theareato
synthesize.

4. Experimental Results

We have testedour algorithm using syntheticand real
data. The syntheticdataweregeneratedwith the 3D ren-
dering packagePovRay using natural lighting conditions.
In the left sideof Figure1a,a syntheticintensityimageof
an emptybookshelfis shown; the subwindow in the right
sideis the associatedrangeimagetaken from the position
indicatedby theredrectanglein theintensityimage.These
imagesaregivenasaninput to ouralgorithm.For thiscase,
thesizeof theneighborhoodis setto be � � � pixels. The
left sideof Figure1bshows therangesynthesisresults,and

to the right, asa way of visual comparison,the complete
syntheticrangedatais shown. It canbeseenthat thealgo-
rithm capturesmostof thechangesinvolvedin theintensity
informationandarereflectedin therangesynthesisprocess.

(a) Input.

(b)

Figure 1. Results of rang e synthesis on syn-
thetic data. Panel (b) sho ws the comparison
of synthesiz ed rang e with ground truth for
this artificial scene .

Representative resultsbasedon dataacquiredin a real-
world environment are shown in Figures 2 through 6.
The real intensity (reflectance)and range imagesof in-
doorsceneswereacquiredby anOdeticslaserrangefinder
mountedon a mobileplatform. Imagesare

�2?*�R�c�2?*�
pix-

els andencompassa �-�-� � �3�7� field of view. As with the
syntheticdata,we startwith thecompleterangedatasetas
groundtruth andthenhold backmostof the datato simu-
latethesparsesampleof arealscannerandto provideinput
to our algorithm. This allow us to comparethe quality of
our reconstructionwith whatis actuallyin thescene.In the
following we will considertwo strategiesfor subsampling
therangedata.

4.1. Limited dense range

Thefirst typeof experimentinvolvestherangesynthesis
whentheinitial rangeis a window of size � ��� andat po-
sition

��� ' ��� + �
on the intensityimage.Figure2ashows the

intensityimage(left) of size
�&?3�Y���&?*�

andtheinitial range
(right), a window of size �*� � �*� , i.e. only the25%of the
total rangeis known. Thesizeof theneighborhoodis � � �
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pixels. The synthesizedrangedataobtainedafter running
ouralgorithmis shown in theleft sideof Figure2b; for pur-
posesof comparison,weshow thecompleterealrangedata
(right side).It canbeseenthatthesynthesizedrangeis very
similar to the real range. The OdeticsLRF usesperspec-
tiveprojection,sotheimagecoordinatesystemis spherical.
To calculatethe residualerrors,we first convert the range
imagesto theCartesiancoordinatesystem(rangeunits)by
usingthe equationsin [16]. For this example,the average
residualerroris � g � � .

(a)

(b)

Figure 2. Results on real data. (a) Input. (b)
Results comparing synthesiz ed rang e data to
ground truth.

4.2. Sparse range measurements

In thesecondtypeof experiment,theinitial rangedatais
asetof stripeswith variablewidth alongthe

��b
and
�Jb

axis
of the intensity image. We testedwith the sameintensity
imageusedin theprevioussectionin orderto compareboth
results. Two experimentsareshown in Figure3. The ini-
tial rangeimagesareshown in theleft column,andto their
right aresynthesizedresults.In Figure3a,thewidth of the
stripes�&� , is � pixels,andtheareawith missingrangedata
(
� � �X� � ) is

? � �U? � , i.e.,39%of therangeimageis known.
For Figure3b,thevaluesare � � �/� , � � �{?3� , in thiscase,
only 23% of the total rangeis known. The averageresid-
ualerror(in rangeunits)for thereconstructionare

?Bg � � and��g �7� , respectively. In Figure4 agraphof thedensityof pix-
elsatdifferentdepthvalues(scalefrom 0to 255)of theorig-
inal andsynthesizedrangeof Figure3a. Figure5 displays
two differentviewsusingtherealrangeandthesynthesized

rangeresultsof Figure3.

(a) �
���5� , �*�R�8��� .

(b) �
�R��� , �*���8��� .
Figure 3. Results on real data. The left column
sho ws the initial rang e data and to their right
is the synthesiz ed result (the white squares
represent unkno wn data to be estimated).
Since the unkno wns are withheld from gen-
uine ground truth data, we can estimate our
perf ormance .

Figure 4. Histogram of pix els at diff erent
depth values (scale from 0 to 255) of the orig-
inal and synthesiz ed rang e of Figure 3a.

Theresultsaresurprisinglygoodin bothcases.Our al-
gorithm wascapableof recovering the whole rangeof the
image.We note,however, thatresultsof experimentsusing
stripesaremuchbetterthanthoseusingawindow astheini-
tial rangedata.Intuitively, this is becausethesamplespans
a broaderdistribution of range-intensitycombinationsthan
in thelocal window case.

Our algorithm was testedon
� � imagesof common

scenesfound in a generalindoor man-madeenvironment.
Two casesof subsamplingwere usedin our experiments.
Case
�

is asoneof the subsamplingpreviously described,
with
� � � � and

� � ��? � , appliedalong
��b

and
�Jb

axis.
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Figure 5. Results in 3D. Two views of the real
rang e (left column) and the synthesiz ed re-
sults (mid dle and right columns) of Figure 3.

Due to spacelimitations,we areonly showing
�

moreex-
amplesof thiscasein Figure6a,theaverageresidualerrors
are,from top to bottom,

?Bg � � , � g � � and
��g �-?

. For Case
?
,� � ��� and

� � ��?3? , but appliedonly alongthe
��b

axis.
Figure6b shows

?
examplesof this case.Heretheaverage

residualerrorsare � ga� � and � g�? � , respectively. Onceagain,
it canbe seenthat the resultsaregoodin both cases.The
maximumaverageresidualerrorsobtainedfrom all

� � test
imageswerefor CaseI, � g � ? andfor CaseII,

�3�-g � � .
It is importantto note,thattheinitial rangedatagivenas

an input is crucial to thequality of thesynthesis,that is, if
no interestingchangesexist in therangeandintensity, then
the taskbecomesdifficult. However, the resultspresented
heredemonstratethatthis is a viableoptionto facilitateen-
vironmentmodeling.

5. Conclusions and Future Work

We have presentedanalgorithmfor recovering3D geo-
metric datagiven an intensity imagewith little associated
rangeinformation. The approachusesMarkov Random
Field methodsasa modelthat relatescharacteristicsof the
intensityandrangedata. Therearea numberof parame-
tersthatcangreatlyinfluencethequality of theresults:the
size of the neighborhoodusedin computingcorrelations,
theamountof initial rangeandthecharacteristicscaptured
in that initial range.Thecharacterizationof how thesepa-
rameterseffect theresultsis thesubjectof ongoingwork.

Our approachasdescribedin this paperexploits thesta-
tistically observedrelationshipbetweenthe intensitiesin a
neighborhoodandrangedatato interpolate(or extrapolate)
therange.While this formalismcanexplicitly capturelocal
differential geometry, we do not explicitly computelocal
surfaceproperties,nordoesthisapproachmakesubstantive

assumptionsregardingsurfacereflectancefunctionsof sur-
facegeometrysuchassmoothness.Theapproachdoesas-
sumethat the relationshipbetweenintensityandrangecan
beexpressedbyastationarydistribution;anassumptionthat
couldberelaxed.While avoidingstrongassumptionsabout
the surfacesin the sceneallows greatergenerality, it also
meanswe do not exploit potentiallyusefulconstraintinfor-
mation. In ongoingwork, we areexaminingtheincorpora-
tion of moreelaboratepriorsandgeometricinferences.

(a) Case1: �
�R��� , �*�R����� .

(b) Case2: � � ��� , � � ����� alongthex-axis.

Figure 6. Examples on real data. The fir st and
second columns are the input intensity and
rang e data, respectivel y. White regions in the
input data are unkno wn data to be inf erred
by the algorithm. The synthesiz ed results are
sho wn in the thir d column and, the real rang e
images are displa yed in the last column for
visual comparison.

Anotherinterestingproblemwe areexploringon, is that
of inferring intensityfrom range,asopposedto rangefrom
intensity. This would permit inferenceof intensitydistri-
butionsin caseswheresurfacereflectancesweredifficult to
model(suchasontexturedof patternedsurfaces)andmight
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serve asanadjunctto moreconventionalreflectance-based
modeling. The approachdescribedheremay, in principle,
work well; however, difficulties arisebecauserangedata
doesnot provide informationaboutwhat kind of textures
arein theintensityimage,soadditionalinformationshould
beconsidered.Thefollowing examplesshown in Figure7
illustratethis. Theaverageresidualerrors,consideringthe
graylevels(0 to 255),are

�3�3g �7� and
�&?�g �*� , respectively.

Figure 7. Inferring intensity from rang e.
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