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Lecture 17: Linear Discrete-Time Systems; Reachability and Controllability

5.3 Reachability and Controllability for Discrete-Time Linear Systems
5.3.1 Time-Varying Case

Consider the discrete-time linear time-varying state-space system:

x(j+1D) = A()x()) +B(Nu()), x(r)=x,

) n . n . (5.12)
y(j)=C(Hx(j)+ D(ju())
where x(j) e R", u(j)eR", y(j)e R”.We found the state response to be
j-1
x(j) =D, r)x, + D D, i+D)B@)u(i). (5.13)
and the state transition matrix to be:
k-1

O(k,r) =] 4G). (5.14)

The definitions of reachability and controllability for (5.12) are entirely similar to the continuous-time
case. However, complete controllability, controllability at #,, and reachability at t; are not always

equivalent as was the case for continuous-time state-space systems. This is because ®(j,r) is not
always invertible, e.g., A(i) may be singular forsome m<i< j—1.

Similar to the continuous-time case, the admissible input functions u(:) belong to the space
L"[r. k], r<j<k:

uad = l2m[r’k]1 (515)

i.e., the space of (finite-dimensional) square-summable sequences, which we will view as finite-
. . . k—r+1
dimensional vectorsin R* ™"

Definition: Controllability Operator

The controllability operator for the system (5.12) is the transformation
k-1
L:U, >R, Lu=) O(,i+)B@)u(i) (5.16)

which maps admissible inputs into state vectors.
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The Controllability Equation

The input which produces a terminal state z € R" from the zero initial state 0 is any solution of the
controllability equation:

Lu=z, ueR" " zeR" (5.17)

More generally, the input u produces a change in terminal state z =x, —®(k,r)x, from what it

would be as a free trajectory starting at ( x,, 7).

The controllability equation can be expressed as:

Lu =Dk, r + )B@)u(r)+ ok, r +2)B(r + Du(r +1)+---+ O (k,k)B(k —Du(k —1)

u(r)
u(r+1)
:[®(k,r+l)B(r) O(k,r+2)B(r+1) --- (D(k,k)B(k—l)u(k—l)] : =z
‘ u(k —1)
u
(5.18)

That is, the controllability operator is a matrix, with typically more columns than rows, and hence a
solution to the controllability equation is composed of a component u, € S, {E} and any component

in the nullspace u,, € N {L}.

z = L
u
D{,C} — uad — Rk—rﬂ - -
CiLy=TR"
N} |
T i
0, 0,
Sy AL} > RIL}
L
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Proposition:

The system (5.12)is CC < L is onto.

o Ifthe systemis CC,then z € R {E} and there are many solutions to the controllability equation.

e Ifthe systemisnot CC,and z ¢ R {E} and there is no solution to the controllability equation.

So two problems of interest here would be:

1. Find R {ﬁ} , the space of attainable states, and

2. Find the smallest-norm input u € U, that produces the state z .
Problem 1 can be solved by reduction of L , the matrix representation of £ , into the echelon form.

To address Problem 2, we will use the adjoint £ in the next section. But first, let us look at the LTI
case.

5.3.2 Time-Invariant Case
Consider the discrete-time linear time-invariant state-space system:

x(j+1) = Ax(j) + Bu(j), x(r) = x,

. . . (5.19)
y(J) = Cx(j) + Du(j)
The controllability equation is given by:
u(r)
u(r+1)
Lu = [@(k,r +1)B(r) ®k,r+2)B(r+1) --- O(k,k)B(k - 1)] :
’ u(k -1)
\—ﬁ/_—J
! (5.20)
u(r)
_ [Ak—r—lB A2 p B] “(’”j‘ 1) _,
’ u(k —1)
\—ﬁ/_—J

u

which we can rearrange by reversing the order of the input samples:
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u(k —1)
k-2
Lu = [B AB - Ak’HB} u( . ) = (5.21)
u(r)
Starting from the initial time » =0 :
u(k—1)
u(k—2
Lu=|B AB - A"'B] ( , |- (5.22)
, - J :
u(0)
k
Definition: Controllability Matrix
The controllability matrix of system (5.19) is defined as:
L,=|B AB - A"'B|eR™™ (5.23)

Proposition:

The time-invariant system is reachable (or controllable-from-the-origin) iff the controllability matrix L,

has full row rank; i.e., rank{Ln} =n.

Proof:
The reason for using L, rather than L,, k >n to define the controllability matrix is because if a

transfer from the origin cannot be accomplished in 7 time steps of the control sequence, it cannot be
accomplished by taking more than n time steps. That is, it can be shown that:

but note that R{Ln} ) R{Lk}, k<n.

It follows that it is possible to transfer the state from some vector x(0) = x, to some other vector

x(n)=x, in n time steps iff there exists an 7 -step input sequence {u(O),u(l),...,u(n—l)} that
satisfies:

x—A"xy,=Lu". (5.24)

L17- 410



304-501 LINEAR SYSTEMS

which has a solution iff x, —A4"x, € R{Ln}. Clearly, the LTI system is reachable from the origin,

implying that any x;, can be reached from x(0)=x, in finite time iff rank{Ln} =n so that

R{L,}=R".

Note that R {Ln } is called the reachable subspace of the system.

Example:

x(j+1) = Ax(j)+ Bu(})

0 1
A=
{11

oo

(5.25)

01
«  Controllabilty matrix: L, =[B AB]z{1 J has rank{L,}=2. Hence the system is

reachable.

a
e Any state, say x, = LJ , can be reached from the origin in n = 2 time steps:

B
b 1 1| u(0)
b—a

a

Check:

- =
u(0)

x(j+)=

x(1)=

x(2)=

G G U GG w—y

_X(j){ﬂu(j)
o<l
el o=z %

e Since the system is reachable, it is possible to transfer the state from some vector x(0) = x, to

1 a
some other vector x(n) =x, in n=2 time steps. Let x, = L} and x, = LJ . Then:
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Notes:

e The system is controllable to the origin when 4"x, € R {Ln } , Vx, e R".

o |If rank{A} =n, the system is controllable when rank {Ln} =n (i.e.,, when the reachability

condition is satisfied) because then —4"x, = L u" can be solved for any X, . In this case,

A'L,=|4"B A"™B - A'B|eR"™
is of interest, and the system is controllable iff rank{AfnLn} =rank{Ln} =n. If, however,

rank {A} < n , then controllability does not imply reachability.

0 a
e The above example is controllable-to-the-origin. Let x, = {0} and x, = LJ . Then:

—Azxoszuz{O IMM(I)}
11| u(0)
0 1[0 1[a] [0 1][u()
Ll o)
a+b | u(0)
_L +2b} - L(O)m(l)}

o))
= =
u(0) —a—>b
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5.4 Solutions to the Discrete-Time Controllability Problem
5.4.1 Linear Time-Varying Case

Since the controllability operator £ is a map between finite-dimensional spaces, the pseudoinverse
solution

u,, =L (LE* )f1 z (5.26)

is a solution of the controllability equation Lu =z .

This solution solves the problem with the minimum-norm input signal Uy - Also of interest is the

corresponding state trajectory u,, .

x(r)=x, U ()?
° o x,0?

x(k)=x,

-1
We know that the system in (5.12) is CC < L is onto @(ﬁf ) exists. Thus, complete

1
controllability is equivalent to the existence of the inverse operator (EE ) . Inthis case, u

o @S given
in (5.26) exists, where
k-1

Lu =Y O%,i+1)B@)u(). (5.27)

The adjoint £ :R" — 1,"[r,k —1] is obtained as follows:
k-1 * k-1

(Lu,z),, = [Z O(k,i+ l)B(i)u(i)j z=Y u(i) BG) ®(k,i+1) z
= <u(-),B(-)*q>(k,- +1)*Z>zﬁ[r,k41 = <u(-),cz>lq[rm Yuel,[r,k—1],VzeR" (5.28)

= L =B() Ok, -+1)
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Thus,

k-1
LLz=Y ®(k,i+1)B(@)B(@) O(k,i+1) z
(5.29)

M(r.k)

=M(r,k)z

Definition: Controllability Grammian

The matrix M (r,k) e R™" is the above equation is called the controllability grammian of the system.
It depends only on the time interval [7, k], but it is constant once this interval is fixed.

Finally, the optimal, minimum-norm input is given by:

-1

u,,(j)= (t (cc) z)( 7)=B@) Ok, j+ 1) M (r,k)z (5.30)

k—
Recall that the norm is ||u||2 = /zlnu(i)”2 :

5.4.2 Linear Time-Invariant Case

Consider the system

x(j+1) = Ax(j)+ Bu(j), x(r)=x,. (5.31)
Then,
k-1
x(k)=A""x,+> A" Bu(i) (5.32)

i=r

Assume the system is CC. Then, the controllability grammian is invertible:

k-1 .
M(r,)=Y 47 BB 4" (5.33)

Fact:

The controllability grammian can be written in terms of the controllability matrix:
M(r,k)=LL, (5.34)
We have the adjoint:

* *k’(‘)Jrl

L =BA (5.35)
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The optimal control input is:
. s guk—j+1 k—r
U, ())=B"A4" = M(r,k)(x,—4""x,) (5.36)
and finally,

R{L,} =R{M(r,k)}. (5.37)
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