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Lecture 17: Linear Discrete-Time Systems; Reachability and Controllability

5.3 Reachability and Controllability for Discrete-Time Linear Systems

5.3.1 Time-Varying Case

Consider the discrete-time linear time-varying state-space system:

( 1) ( ) ( ) ( ) ( ), ( )

( ) ( ) ( ) ( ) ( )
rx j A j x j B j u j x r x

y j C j x j D j u j

+ = + =
= +

(5.12)

where ( ) , ( ) , ( )n m px j u j y j∈ ∈ ∈R R R . We found the state response to be

1

( ) ( , ) ( , 1) ( ) ( )
j

r
i r

x j j r x j i B i u i
−

=

= Φ + Φ +∑ . (5.13)

and the state transition matrix to be:

1

( , ) ( )
k

i r

k r A i
−

=

Φ =∏ . (5.14)

The definitions of reachability and controllability for (5.12) are entirely similar to the continuous-time

case. However, complete controllability, controllability at 0t , and reachability at jt  are not always

equivalent as was the case for continuous-time state-space systems. This is because ( , )j rΦ  is not

always invertible, e.g., ( )A i  may be singular for some 1m i j≤ ≤ − .

Similar to the continuous-time case, the admissible input functions ( )u ⋅  belong to the space

2 [ , ],
ml r k r j k≤ ≤ :

2: [ , ]m
ad l r k=U , (5.15)

i.e., the space of (finite-dimensional) square-summable sequences, which we will view as finite-

dimensional vectors in 1k r− +R

Definition: Controllability Operator

The controllability operator for the system (5.12) is the transformation

1

: , : ( , 1) ( ) ( )
k

n
ad

i r

u k i B i u i
−

=

→ = Φ +∑L U LR (5.16)

which maps admissible inputs into state vectors.



304-501 LINEAR SYSTEMS   

L17-  2/10

The Controllability Equation

The input which produces a terminal state nz∈R  from the zero initial state θ  is any solution of the
controllability equation:

( 1), ,m k r nu z u z− += ∈ ∈L R R (5.17)

More generally, the input u  produces a change in terminal state 1 ( , ) rz x k r x= −Φ  from what it

would be as a free trajectory starting at ( ),rx r .

The controllability equation can be expressed as:

[ ]

: ( , 1) ( ) ( ) ( , 2) ( 1) ( 1) ( , ) ( 1) ( 1)

( )

( 1)
( , 1) ( ) ( , 2) ( 1) ( , ) ( 1) ( 1)

( 1)
u

u k r B r u r k r B r u r k k B k u k

u r

u r
k r B r k r B r k k B k u k z

u k

= Φ + + Φ + + + + +Φ − −

 
 + = Φ + Φ + + Φ − − =
 
 − 

L

L �

�
����������������������������� �

�����

(5.18)

That is, the controllability operator is a matrix, with typically more columns than rows, and hence a

solution to the controllability equation is composed of a component { }1 spu S∈ L  and any component

in the nullspace { }u ∈N N L .

Lz

u

1{ } k r
ad

− += =D L U R

{ }N L

L
{ }R L{ }spS L

{ } n=C L R

L
{ }cR L

θU θV



304-501 LINEAR SYSTEMS   

L17-  3/10

Proposition:

The system (5.12) is CC ⇔  L  is onto.

• If the system is CC, then { }z∈R L  and there are many solutions to the controllability equation.

• If the system is not CC, and { }z∉R L  and there is no solution to the controllability equation.

So two problems of interest here would be:

1. Find { }R L , the space of attainable states, and

2. Find the smallest-norm input adu∈ U  that produces the state z .

Problem 1 can be solved by reduction of L , the matrix representation of L , into the echelon form.

To address Problem 2, we will use the adjoint ∗L  in the next section. But first, let us look at the LTI
case.

5.3.2 Time-Invariant Case

Consider the discrete-time linear time-invariant state-space system:

( 1) ( ) ( ), ( )

( ) ( ) ( )
rx j Ax j Bu j x r x

y j Cx j Du j

+ = + =
= +

(5.19)

The controllability equation is given by:

[ ]

1 2

( )

( 1)
( , 1) ( ) ( , 2) ( 1) ( , ) ( 1)

( 1)

( )

( 1)

( 1)

L

u

k r k r

L

u

u r

u r
u k r B r k r B r k k B k

u k

u r

u r
A B A B B z

u k

− − − −

 
 + = Φ + Φ + + Φ −
 
 − 

 
 +  = =   
 − 

L �
��������������������������� �

�����

�
��������������

�����

(5.20)

which we can rearrange by reversing the order of the input samples:
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1

( 1)

( 2)

( )

k r

u k

u k
u B AB A B z

u r

− −

− 
 −  = =   
 
 

L �
�

(5.21)

Starting from the initial time 0r = :

1

( 1)

( 2)

(0)
k

k

k

L

u

u k

u k
u B AB A B z

u

−

− 
 −  = =   
 
 

L �
������������

�����

(5.22)

Definition: Controllability Matrix

The controllability matrix of system (5.19) is defined as:

1: n n mn
nL B AB A B− × = ∈ � R (5.23)

Proposition:

The time-invariant system is reachable (or controllable-from-the-origin) iff the controllability matrix nL

has full row rank, i.e., { }rank nL n= .

Proof:

The reason for using nL  rather than ,kL k n>  to define the controllability matrix is because if a

transfer from the origin cannot be accomplished in n  time steps of the control sequence, it cannot be
accomplished by taking more than n  time steps. That is, it can be shown that:

{ } { },n kL L k n= ≥R R ,

but note that { } { },n kL L k n⊃ <R R .

It follows that it is possible to transfer the state from some vector 0(0)x x=  to some other vector

1( )x n x=  in n  time steps iff there exists an n -step input sequence { }(0), (1), , ( 1)u u u n−…  that

satisfies:

1 0
n n

nx A x L u− = . (5.24)
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which has a solution iff { }1 0
n

nx A x L− ∈R . Clearly, the LTI system is reachable from the origin,

implying that any 1x  can be reached from 0(0)x x=  in finite time iff { }rank nL n=  so that

{ } n
nL =R R .

Note that { }nLR  is called the reachable subspace of the system.

Example:

( 1) ( ) ( )

0 1 0
,

1 1 1

x j Ax j Bu j

A B

+ = +

   
= =   
   

(5.25)

• Controllability matrix: [ ]2

0 1

1 1
L B AB

 
= =  

 
 has { }2rank 2L = . Hence the system is

reachable.

• Any state, say 1

a
x

b

 
=  
 

, can be reached from the origin in 2n =  time steps:

2
2

0 1 (1)

1 1 (0)

(1)

(0)

a u
L u

b u

u b a

u a

     
= =     

     
−   

⇒ =   
   

Check:

0 1 0
( 1) ( ) ( )

1 1 1

0 1 0 0 0
(1) (0)

1 1 0 1

0 1 0 0 0
(2) (1)

1 1 1

x j x j u j

x u
a

a a
x u

a a b a b

   
+ = +   

   
       

= + =       
       
           

= + = + =           −           

• Since the system is reachable, it is possible to transfer the state from some vector 0(0)x x=  to

some other vector 1( )x n x=  in 2n =  time steps. Let 0

1

1
x

 
=  
 

 and 1

a
x

b

 
=  
 

. Then:
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2 2
1 0 2

0 1 (1)

1 1 (0)

0 1 0 1 1 0 1 (1)

1 1 1 1 1 1 1 (0)

2 (0)

3 (0) (1)

(1) 1

(0) 2

u
x A x L u

u

a u

b u

a u

b u u

u b a

u a

   
− = =    

   
           

− =           
           
     

− =     +     
− −   

⇒ =   −   

Notes:

• The system is controllable to the origin when { }0 0,n n
nA x L x∈ ∀ ∈R R .

• If { }rank A n= , the system is controllable when { }rank nL n=  (i.e., when the reachability

condition is satisfied) because then 0
n n

nA x L u− =  can be solved for any 0x . In this case,

1 1:n n n n mn
nA L A B A B A B− − − + − × = ∈ � R

is of interest, and the system is controllable iff { } { }rank rankn
n nA L L n− = = . If, however,

{ }rank A n< , then controllability does not imply reachability.

• The above example is controllable-to-the-origin. Let 1

0

0
x

 
=  
 

 and 0

a
x

b

 
=  
 

. Then:

2 2
0 2

0 1 (1)

1 1 (0)

0 1 0 1 0 1 (1)

1 1 1 1 1 1 (0)

(0)

2 (0) (1)

(1)

(0)

u
A x L u

u

a u

b u

a b u

a b u u

u b

u a b

   
− = =    

   
         

− =         
         

+   
− =   + +   

−   
⇒ =   − −   
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5.4 Solutions to the Discrete-Time Controllability Problem

5.4.1 Linear Time-Varying Case

Since the controllability operator L  is a map between finite-dimensional spaces, the pseudoinverse
solution

( ) 1optu z
−∗ ∗= L LL (5.26)

is a solution of the controllability equation u z=L .

This solution solves the problem with the minimum-norm input signal optu . Also of interest is the

corresponding state trajectory optu .

We know that the system in (5.12) is CC ⇔ L  is onto ( ) 1* −
⇔ LL  exists. Thus, complete

controllability is equivalent to the existence of the inverse operator ( ) 1* −
LL . In this case, optu  as given

in (5.26) exists, where

1

( , 1) ( ) ( )
k

i r

u k i B i u i
−

=

= Φ +∑L . (5.27)

The adjoint *
2: [ , 1]mn l r k→ −L R  is obtained as follows:

2 2

1 1

2[ , 1] [ , 1]

, ( , 1) ( ) ( ) ( ) ( ) ( , 1)

( ), ( ) ( , 1) ( ), [ , 1],

( ) ( , 1)

n

k k

i r i r

n

l r k l r k

u z k i B i u i z u i B i k i z

u B k z u z u l r k z

B k

∗− −
∗ ∗ ∗

= =

∗ ∗ ∗

− −

∗ ∗ ∗

 
= Φ + = Φ + 
 

= ⋅ ⋅ Φ ⋅+ = ⋅ ∀ ∈ − ∀ ∈

⇒ = ⋅ Φ ⋅+

∑ ∑L

L

L

�

� (5.28)

0( )x r x= ( )?

( )?

opt

opt

u

x

⋅

⋅

1( )x k x=

r
k
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Thus,

1

( , )

( , 1) ( ) ( ) ( , 1)

( , )

k

i r

M r k

z k i B i B i k i z

M r k z

−
∗ ∗ ∗

=

= Φ + Φ +

=

∑LL
��������������� (5.29)

Definition: Controllability Grammian

The matrix ( , ) n nM r k ×∈R  is the above equation is called the controllability grammian of the system.

It depends only on the time interval [ , ]r k , but it is constant once this interval is fixed.

Finally, the optimal, minimum-norm input is given by:

( )( )1 1( ) ( ) ( ) ( , 1) ( , )optu j z j B j k j M r k z
−∗ ∗ ∗ ∗ −= = Φ +L LL (5.30)

Recall that the norm is 
1

2

2
( )

k

i r

u u i
−

=

= ∑ .

5.4.2 Linear Time-Invariant Case

Consider the system

( 1) ( ) ( ), ( ) rx j Ax j Bu j x r x+ = + = . (5.31)

 Then,

1
1( ) ( )

k
k r k i

r
i r

x k A x A Bu i
−

− − −

=

= +∑ (5.32)

Assume the system is CC. Then, the controllability grammian is invertible:

1
11( , )

k
k ik i

i r

M r k A BB A
−

− −− − ∗ ∗

=

=∑ (5.33)

Fact:

The controllability grammian can be written in terms of the controllability matrix:

( , ) k kM r k L L ∗= (5.34)

We have the adjoint:

( ) 1k
B A

− ⋅ +∗ ∗ ∗=L (5.35)
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The optimal control input is:

1
( ) ( , )( )

k j k r
opt k ru j B A M r k x A x

− +∗ ∗ −= − (5.36)

and finally,

{ } { }( , )nL M r k=R R . (5.37)
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