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Lecture 30: Frequency Response of Second-Order Systems
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A general second-order system has a transfer function of the form
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It can be stable, unstable, causal or not, depending on the signs of the coefficients and the
specified ROC. Let's restrict our attention to causal, stable LTI second-order systems of this type.
It can be shown that a necessary condition for stability is that the coefficients ai  be all positive, or

all negative (this is also true for higher order systems). Let's also assume that b b2 1 0= = , i.e. we
basically have a lowpass system. Under these conditions the transfer function can be expressed
as
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where ς is the damping ratio ω n  is the undamped natural frequency of the second-order system.
Systems such as the mass-spring-damper system or a lowpass second-order filter can be
modeled by this transfer function.

Example: Consider the second-order transfer function
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Its undamped natural frequency is ω n = 3 2 2, and its damping ratio is
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Since the damping ratio is less than one, the two poles are complex. The poles are
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There are three cases of interest for the damping ratio that lead to different pole patterns and
frequency response types.
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In this case, the system is said to be overdamped. The step response doesn't exhibit any ringing.
The two poles are real, negative and distinct:

p pn n n n1
2

2
21 1= − + − = − − −ςω ω ς ςω ω ς, . The second-order system can be seen as

a cascade of two standard first-order systems (lags).
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The Bode plot of H j A j
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 can then be sketched using the technique

presented in the previous lectures for systems with real poles and zeros.
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In this case, the system is said to be critically damped. The two poles are negative and real, but

they are the same. We say that it’s a repeated pole; p j pn n n1
2

21= − + − = − =ςω ω ς ςω . In

this situation, the second-order system can also be seen as a cascade of two first-order transfer
functions having the same pole.
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����� &DVH ς < 1

In this case, the system is said to be underdamped. The step response exhibits some ringing,

although it really becomes visible only for ς < =1 2 0 707. . The two poles are distinct, complex

conjugates of each other: p j p jn n n n1
2

2
21 1= − + − = − − −ςω ω ς ςω ω ς, .

The magnitude and phase of
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are given by:
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Notice that the denominator in Equation (9.31) was written in such a way that its dc gain is 1. The
break frequency is simply the undamped natural frequency. At this frequency, the magnitude is
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For example, with ς = 01.  and A = 1, the magnitude at ω n  is 13.98dB. Note that this is not the

maximum of the magnitude as it occurs at the resonant frequency ω ω ςmax = −n 1 2 2  which is

close to ω n  for low damping ratios. At the resonant frequency, the magnitude of the peak
resonance is given by
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and thus for our example 20 20 0 2 1 0 4 16 2010 10log ( ) log . . .maxH j dBω = − − => C .

The Bode plot for the case ς < 1 can be sketched using the asymptotes, but at the price of an

increasingly large approximation error around ω n  that increases as the damping ratio decreases.

The roll-off rate past the break frequency is -40dB/decade. The phase starts at 0 and tends to
−π  at high frequencies.

(rd) ω (log) ωn 

−π/2 

−π 

0.1ωn  10ωn  

ω (log) (dB) 

-40 

-80 

ωn 10ωn 100ωn 

0 

20 10log ( )H jω

∠H j( )ω



4

The Bode plot approximation using the asymptotes does not convey the information of the
resonance in the system caused by the complex poles. That is, the damping ratio was not used to
draw the asymptotes for the magnitude and the phase plot. The peak resonances in the
magnitude produced by different values of ς < 1 are shown in Figure 6.23 in the textbook. This

figure also shows that the phase drop around ω n  becomes steeper as the damping ratio is
decreased.
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In the field of communications, the underdamped second-order filter has played an important role
as a simple frequency-selective bandpass filter. When the damping ratio is very low, the filter
becomes highly selective due to its high peak resonance at ω max . The quality Q of the filter is
defined as
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The higher the quality, the more selective the filter is. To support this claim, the −3dB  bandwidth
(frequency band between the two frequencies where the magnitude is 3dB lower than

20 10log ( )maxH jω ) of the bandpass (not really considered as lowpass for high Q) second-order

filter can be shown to be
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In the transition from a second-order system without resonance and one that starts to exhibit a
peak that is higher than the dc gain, there must be an optimal damping ratio ς  for which the
magnitude stays flat over the widest possible bandwidth before rolling off. It turns out that this

occurs for ς < =1 2 0 707. . For this damping ratio, the real part and imaginary part of the two
poles all have the same absolute value, and the poles can be expressed as
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We recognize the poles of a lowpass second-order Butterworth filter with cutoff at ω n . Thus, a
Butterworth filter is optimized to be maximally flat.
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