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1 Introduction

It is quite common, in real-world situations, that a decision maker is faced with the problem of

allocating limited available resources to a number of competing projects. For example, machine

job scheduling, project management, and clinical trials are all concerned with the reallocation

of limited available resources to competing jobs, projects, or trials. These examples belong

to a class of sequential resource allocation problems known as Multi-armed bandit (MAB)

problems. From a paradigmatic point of view, MAB problems highlight the fundamental

con�ict between exploitation (choosing the best decision to maximize the immediate expected

payo�) and exploration (trying other decisions to better understand their expected payo�).

In fact, the name, multi-armed bandit, was traditionally motivated by the single-arm bandit

(the slot machine). In the MAB case, the slot machine has several arms and the gambler is

faced with the decision of whether to pull the best arm, based on current knowledge, or try

other arms in hope to maximize future payo�s. The report will focus on the classical MAB

problem and its optimal solution.

2 The Classical MAB Problem

First, we de�ne the trivial case of a single-armed bandit process and then extend it to the

multi-armed bandit process. Next, the MAB problem is stated as a maximization problem.

2.1 A Bandit Process

A bandit process refers to a single-armed bandit problem. The arm is selected (pulled) re-

peatedly generating two random sequences,

(X(0), X(1), X(2), ... )

(R(X(0)), R(X(1)), R(X(2)), ... )

where X(n) ∈ R refers to the state of the bandit process after being selected n times, and

R(X(n)) ∈ R+ refers to the reward obtained as a result of being in state X(n) after the nth

selection. We will assume the bandit process is a time homogeneous Markov process and thus,

the state transition is modeled as

X(n+ 1) = f(X(n),W (n)) ∀n = 0, 1, 2, ...
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where f(·) is given and W (n) ∈ R is a sequence of independent random variables that are also

independent of X(0).

2.2 Extension to MAB process

A k-armed bandit process consists of k independent single arms where only one arm is played

at every decision time. This generates k independent single-armed bandit processes as de-

scribed earlier. When the decision maker selects an arm, the other arms are frozen and their

corresponding processes are frozen as a result. Only the process of the selected arm is con-

tinued, leading to a state change and a reward being obtained. The whole system evolves

according to the following model:

Xi(n+ 1) =


f(Xi(n),Wi(n)) if Ui(n) = 1

Xi(n) if Ui(n) = 0

(1)

Ri(n) =


Ri(Xi(n)) if Ui(n) = 1

0 if Ui(n) = 0

(2)

where i ∈ {1, 2, ..., k} denotes the ith arm and Ui is the decision to select (= 1) or freeze (= 0) the

ith arm. Therefore, the sequence {U(0), U(1), U(2), ...}, where U(n) := (U1(n), U2(n), ... , Uk(n)), is

a time homogenous Markov decision policy of the form:

U(n) = g(X(n))

where X(n) := ((X(n), X2(n), ... , Xk(n)). Here, it is su�cient to con�ne our search within the set

of Markov decision policies, as a result of assuming a Markov MAB process. In other words,

the optimal policy is going to be a Markov decision policy. The sequence {U(0), U(1), U(2), ...}

is referred to as a scheduling policy.

2.3 The MAB Problem Statement

The problem can be stated as the following:
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Determine a scheduling policy, g, that maximizes

Jg := E

[ ∞∑
t=0

βt
k∑
i=1

Ri(Xi(t), Ui(t))

∣∣∣∣∣X(0)

]
(3)

subject to 1 and 2. B ∈ (1, 1) is a discount factor which guarantees convergence of the summa-

tion over in�nite time horizon.

3 Solving The MAB Problem

The MAB problem involves sequential decision making and therefore, it can be solved via

stochastic dynamic programming (backward induction). Albeit being intractable, stochastic

dynamic programming was the only known approach and presented a limited understanding

of the structure of the optimal solution, until Gittins was able to formulate and prove the

optimal solution to be simple and of an index type via forward induction. We will show the

intractability of backward induction formulation and proceed to forward induction formulation

in deriving the index-type optimal solution.

3.1 Stochastic Dynamic Programming Solution

(Backward Induction)

The standard in�nite horizon dynamic programming formulation can be applied to the MAB

problem. The value function can be written as following:

V (x) = sup
u

E [R(X,U) + βV (f(X,W,U))|X = x, U = u] (4)

where x ∈ Rk, and ui ∈ {0, 1}.

We've assumed earlier that the MAB process is a time homogenous Markov process. We add

a second assumption that the reward function, R(n), is bounded. The result is a controlled

Markov decision problem for which the in�nite horizon dynamic program converges to a unique

�xed point solution that is optimal. The resulting optimal policy is also a Markov decision

policy as mentioned earlier.

Unfortunately, the dynamic program su�ers from the curse of dimensionality, in which the

size of the program grows exponentially with number of states of each arm. So, if we have k
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arms and each arm can occupy N number of states, then the size of the dynamic program is

kNpossible states. The curse of dimensionality makes the dynamic program computationally

infeasible and hence, o�ers little information about the structure of the optimal solution. Next,

we present the approach of forward induction to tackle this problem.

3.2 Gittins Index Theorem

(Forward Induction)

Stochastic dynamic programming solution proceeds backward on induction and hence, leads to

no loss of optimality at the expense of computational complexity. On the other hand, forward

induction reduces the computational complexity at the expense of possible loss of optimality.

To begin with, we consider a myopic policy which maximizes the conditional expected reward

over the next stage (i.e. one-step-look-ahead). Although myopic policies are much simpler to

compute, they are generally not optimal.

Next, we can improve upon myopic policies by maximizing the conditional expected total

reward over the next T stages. In other words, we consider T -step-look-ahead policies where T

is a �xed number. As T increases, the optimality of the T -step-look-ahead policies improves at

the expense of computational simplicity. Nonetheless, such policies are generally suboptimal.

Furthermore, the notion of T -step-look-ahead policies can be extended by varying number of

look-ahead stages; call it τ . In this case, it does not make sense to maximize the conditional

expected total reward, because τ will grow arbitrarily large and make the comparison among

the decision rules meaningless; in addition to worsening computation feasibility. Instead, we

maximize over τ the conditional expected total reward rate. Then, we pick the decision rule

with the best reward rate and select it to runτ times. The maximization is repeated at the

end of τ runs. Policies generated by this procedure are called forward induction policies, and

they are generally suboptimal, except for certain stochastic decision problems to which our

de�ned classical MAB problem belongs to.

In order to have an intuitive understanding of why forward induction policies may be subopti-

mal, consider the example of a car traveling in one direction, and there are several intersecting

routes along that direction. Each route has a certain speed limit, and we are interested in

maximizing the total discounted distance traveled over an in�nite time horizon. Rationally,
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we would want to maximize the immediate distance traveled by picking the fastest road before

the discount factor becomes smaller and smaller with time. So, a forward induction policy

would pick the route with the highest distance rate (speed limit) as long as we do not intersect

a route with a higher speed limit. It is possible to run into a situation where we prefer our

route over a slower route that leads later on to a route much faster than ours. Moreover,

it is also possible that our route ends later on at an intersection which provides alternative

routes that are much slower than our route and the previous routes we rejected. Overall, it is

possible that picking the fastest route via forward induction policy lead to accumulating less

discounted distance, especially when the discount factor is closer to unity. Hence, the forward

induction policy may be suboptimal.

On the other hand, there is one situation where we are guaranteed to always accumulate

the most traveled distance by always picking the fastest route. We would require to always

have access to the slower routes we rejected earlier at each intersection. If we compare this

example to the MAB bandit and equate the intersecting routes to the arms of the bandit and

traveling speed to reward rate, then the forward induction policy is optimal for the classical

MAB problem, due to the following assumptions we made:

1. Only one arm is played at each decision time

2. Frozen arms that we rejected are always available for continuation at next decision time

3. The freezing time does not a�ect the state and reward sequence after continuing a frozen arm

4. Frozen arms contribute no rewards while frozen

Therefore, a forward induction policy is optimal for the MAB problem and can be enumerated

as follows:

1. At time t, for each arm i = 1, ..., k, maximize over τ the conditional expected reward rate

vi(xi(t)) = max
τ

E
[∑t+τ−1

s=t βsRi(Xi(t+ s))
∣∣∣xi(t)]

E
[∑t+τ−1

s=t βs
∣∣∣xi(t)] (5)

2. Pick the arm with the highest reward rate

i∗ = max
i

vi(xi(t)) (6)
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3. Run the process for the duration of τ∗ by repeatedly playing arm i∗

4. Repeat 1-3 at next decision time t+ τ∗

The value vi(xi(t)) is called dynamic allocation index or Gittins index of arm i at state xi(t).

The above result can be restated by what is known as Gittins Index Theorem:

Reward is maximized by always continuing the bandit having greatest value of dynamic

allocation index.'

3.3 Advantage of Gittins Index Theorem

Gittins index theorem, based on forward induction, simpli�es the computational complexity

signi�cantly when compared to backward induction. Recall that under backward induction,

the computational complexity grows exponentially and the size of the problem is exponential

in N . Under Gittins index theorem, the problem reduces to a size that is linear in N (i.e.

k ·N), where k is the number of arms and N is the number of states. Moreover, Gittins index

theorem exposes the nature of the optimal policy to be of an index-type.

4 Proof of Gittins Index Theorem

Over the last 40 years, Gittins index theorem had been proven and reproved several times.

These proofs vary in di�culty and interpretation of the multi-armed bandit problem. Here,

we present a simple intuitive proof based on an interchange argument [2], and then proceed

to a more rigorous proof by Tsitsiklis [3].

4.1 An Intuitive Proof via Interchange Argument

The intuition behind the interchange argument is that it is optimal to select earlier the arm

with greatest Gittins index (conditional expected reward rate), because this allows us to

accumulate more rewards as soon as possible before the discount factor increases geometrically

with time. The proof goes as follows:

Let there be two arms which belong to a 2-armed bandit process. At a decision time t, arm

B1 has a Gittins index v(B1) and an optimal stopping time τ , and arm B2 has a Gittins index

v(B2) and an optimal stopping time σ. Suppose Gittins index of arm B1is greater than Gittins
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index of arm B2 (i.e. v(B1) > v(B2)). There are two possible decision rules: give priority to arm

B1 followed by playing arm B2, or give priority to arm B2 followed by playing arm B1. This

is illustrated by the following diagram where each arm is run for the duration of its optimal

stopping time.

Then the conditional expected total reward over the duration of τ +σ for the policy that gives

priority to arm B1 is Rτ (B1) + EβτRσ(B2), whereas the conditional expected total reward for

the policy that gives priority to arm B2 is Rσ(B2) + EβσRτ (B1). Rτ (B1) and Rσ(B2) are the

numerators of the Gittins index of arm B1and arm B2 respectively. We have assumed that

arm B1 has a greater Gittins index than arm B2. Therefore,

v(B1) > v(B2) =⇒
E
[∑τ−1

s=0 β
sRB1

(XB1
(s))

∣∣∣xB1
(0)
]

E
[∑τ−1

s=0 β
s
∣∣∣xB1(0)

] >
E
[∑σ−1

s=0 β
sRB2

(XB2
(s))

∣∣∣xB2
(0)
]

E
[∑σ−1

s=0 β
s
∣∣∣xB2(0)

]
=⇒ Rτ (B1)

1−Eβτ
1−β

>
Rσ(B2)
1−Eβσ
1−β

(7)

=⇒ Rτ (B1) + EβτRσ(B2) > Rσ(B2) + EβσRτ (B1)

This implies that giving priority to the arm with the greater Gittins index (i.e. arm B1) yields

higher conditional expected total reward.

4.2 A Rigorous Proof by Tsitsiklis

The following proof by Tsitsiklis is complete as it addresses the bandit problem for multiple

arms and compares policies in terms of the conditional expected total reward over an in�nite

horizon. In order to simplify the calculations, Tsitsiklis assumes that the MAB process is a

semi-Markov process in continuous time with an exponential discount rate. He also assumes

that the arms have disjoint �nite state spaces. The process is time homogenous and the arms
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are independent. All these assumptions conform to out de�nition of the classical multi-arm

bandit problem.

We are interested in maximizing the conditional expected total reward:

E

[ ∞∑
i=0

e−αtiRi

∣∣∣∣∣X(0)

]
(8)

where α > 1 and e−αti is the discount factor as a function of continuous time. Ri is the reward

received as a result of the ith play. The discrete time expected discounted reward resulting

from the ith play is

e−αtiE [R(xi)|xi] (9)

where xi is the state of the arm played at the ith play. Tsitsiklis introduced a reward structure

in continuous time which yields that same expected discounted reward of the ith play as 9.

The structure relies on de�ning a continuous reward rate over interval between the ithand

(i+ 1)thplay. Call this interval T (xi) which is random and uncontrolled by the decision maker.

The continuous time reward rate is

r(x) =
E [R(x)]

E
[´ T (x)

0
e−αtdt

] (10)

Under the new reward structure, the expected discounted reward of the ithplay is

E

[ˆ ti+T (xi)

ti

e−αtr(xi)dt

∣∣∣∣∣xi
]

= e−αtiE [R(xi)|xi] (11)

by substituting 10.

Tsitsiklis states the following theorem:

If the discrete state space of each arm is �nite, then there exists a priority rule which is

optimal.

The proof goes by induction on the joint state space of all the arms. Let N be the cardinality

of the joint state space of all arms. If N = 1, then there exists trivially a priority rule as the

only available arm will be played repeatedly. Assume there exists a priority rule for N = K,

we will consider the case of N = K+1 and show that there exists a priority rule. The following
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interchange argument shows that such priority rule exists and selects the arm to which belongs

the state s∗with the highest reward rate, r(s∗); call this arm i ∗ .

Consider two policies, π and π′. Let policy π choose to play arm i∗at timeτ (i.e. not a priority

policy). Let policy π′choose to play arm i∗at t = 0 (i.e. a priority policy) and thereafter mimic

policy π except at t = τ. In other words, we are only interchanging arm i∗at t = τ with a non

optimal arm at t = 0. Let the reward rate be r̄(t) = r(x(t)) a function of time, then r̄(t) ≤ r(s∗)

for all t. The expected discounted reward J(π) under policy π is

J(π) = E

[ˆ τ

0

r̄(t) e−αtdt+

ˆ τ+T (s∗)

τ

r(s∗) e−αtdt+

ˆ ∞
τ+T (s∗)

r̄(t) e−αtdt

]
(12)

and the expected discounted reward J(π′) under policy π′ is

J(π′) = E

[ˆ T (s∗)

0

r(s∗) e−αtdt+

ˆ τ+T (s∗)

T (s∗)

r̄(t) e−αtdt+

ˆ ∞
τ+T (s∗)

r̄(t) e−αtdt

]
(13)

The exponential discount factor and integrating in continuous time simpli�es the above two

expressions such that showing J(π′) ≥ J(π) is equivalent to showing that

E

[
(1− e−ατ )

ˆ T (s∗)

0

r(s∗) e−αtdt

]
≥ E

[
(1− e−αT (s∗))

ˆ τ

0

r̄(t) e−αtdt

]
(14)

which is true because r̄(t) ≤ r(s∗). Therefore, the priority rule under policy π′ is optimal at

t = 0 and any later decision time because of the stationarity of the problem.

The above argument assumes that arm i∗is at state s∗and therefore the priority rule is optimal.

Now assume that arm i∗is at a state x 6= s∗and is played. If this play causes a transition to

state s∗, arm i∗will be played repeatedly until eventually the arm transitions to some state

di�erent from s∗; say y. This succession of plays can be viewed as a single play which cannot

be interrupted due to applying a priority policy that selects s∗ repeatedly. This single play

has a random duration T̂ (x) equal to the sum of random durations of the repeated plays. We

can de�ne an equivalent reward rate for the composite play under the new reward structure

10 as follows

r̂(t) =
E
[´ T̂ (x)

0
e−αtr(t)dt

]
E
[´ T̂ (x)

0
e−αtdt

] (15)
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which will be received throughout the duration of the composite play, T̂ (x). This composite

play allows us to rede�ne arm i∗by removing s∗and replacing T (x) and r(x) with T̂ (x) and r̂(x).

We also modify the state transition probabilities to transition from state s to state y directly.

The modi�ed problem is now a new MAB problem with one less state (i.e. N = K) which we

have already assumed to have an optimal priority policy, say π̂, in the induction process. Thus,

by induction, the unmodi�ed problem (i.e. N = K + 1) also has an optimal priority policy by

solving the modi�ed MAB problem; i.e. give top priority to state s∗and follow the priority

rule π̂ for the remaining states. In order to solve for π̂, we can reapply the above logic and

remove the second best state after s∗and solve the reduce problem with N = K − 1, which also

has an optimal priority rule by induction. This entails ordering the states by their reward

rates in a decreasing order which is equivalent to Gittins index theorem.
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