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Abstract

In the course lectures, we have discussed a lot regarding unconstrained Markov De-

cision Process (MDP). The dynamic programming decomposition and optimal policies

with MDP are also given. However, in this report we are going to discuss a different

MDP model, which is constrained MDP. There are many realistic demand of studying

constrained MDP. For instance, in the wireless sensors networks, each sensor need to

decide whether or not (1 or 0) to report its observation to the sink node. The policy

of choosing action at each sensor should not only be based on observations and past

actions, but also left battary. In these kind of application scenarios with constraint, to

derive the optimal policies, constraint should be put into consideration.

I Introduction

The material presented in this reported mainly from the [1] and the lecture notes of

ECSE509.In the lectures, we have already discussed about infinite horizon MDP with av-

erage cost. The model about to be discussed would be the same, however with an extra

constraint when deriving polcies. Some proofs in original paper which are almost the same

as lecture notes will be omitted.

I.1 System Model

Assume there is a system, which has finite state space S = {0, 1, 2, . . . ,N}. An controller

will decide the action At in each state based on the past observations and actions Ht−1 =

(X0,A0,X1,A2, . . . ,Xt−1,At−1). The action space is denoted as A. We are interested in the

controlled Markov process, that is state Xt+1 depends only on Xt and At. That is,

P(Xt+1 = y|Ht−1,Xt = x; At = a) = P(Xt+1 = y|Xt = x; At = a) (1)

At each epoch t, there is a incurred reward Ct depends on the state Xt and action At.

Assume the system horizon is infinite and consider average cost. The optimal control policy
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should attain the following equation.

Rx(u) = lim
n

inf n−1Eu
[ n−1∑

k=0

C(Xk,Ak)|X0 = x], (2)

For the reward, it is more common to adopt supremum, however in this report we are

interested in the worst-performance reward.

Aide from the reward, the system will incur a cost denoted as D(Xk,Ak).

Kx(u) = lim
n

sup n−1Eu
[ n−1∑

k=0

D(Xk,Ak)|X0 = x], (3)

The objective here is even under worst situation, the system cost should be less than a

prefixed value α. That is,

Kx(u) ≤ α (4)

for any x.

The reason that an extra constraint is put here is sometimes we want to guarantee even

in worst situation, the system can be controlled to work properly. Take the wireless sensor

networks example agian, we want to maximize the battery life of each node, so the sink can

have observations from as many sensor as possible.

Assume U0 is a subset of U, whose control policies are able to meet the constraint (4).

We want a policy from U0 can attain following equation.

Rx = sup
u∈U0

Rx(u) (5)

A policy which can attain Rx and at the same time satifying (4) is named as optimal policy.

There are three different kind of control polcies. A general control policy space U, which

depends all past observations and control actions, u = {u0,u1, . . .} ∈ U and ut = gt(Ht−1,Xt =

x).

As we are studying controlled MDP, optimal policies have been proved in the class to

depend only on previous state and action. This kind of Markov policies are belonging to
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a space F, which is a subspace of U. Any policy f = { f0, f1, . . .} ∈ F can be represented as

ft = gt(Xt−1,At−1).

A more restricted simple or non-randomized stationary policy is represented as G, which

is the subspace of both F and U. G can be characterized by a simple mapping g : S→ A and

g(x) acquires meaning as an element of A and is viewed as a deterministic vector.

In the later proof we need a mixed policy, whose space is denoted as Fm. A mixed

policy fq is a stationary policy that randomize between two simple policies g1 and g2.

fq = qg1 + (1 − q)g2, with q ∈ [0, 1].

I.2 Preliminaries and Unconstrained Problem

In this section, some important results and assumptions from lecture notes related with

average cost MDP are listed here.

Assumption 1: Here we assume that process {Xn} is irreducible and only have one

recurrent class. Then we will have the hitting time for a particular state y starting from state

x ∈ S is finite.

sup
x∈S

sup
g∈G

Eg(Tx) < ∞ (6)

Remark It has been proved in the paper that above equation will also hold in the case f ∈ F

Assumption 2: Under all Markov policies g, Markov Chain Pg is irreduciable and non-

periodic and steady state P∗(g) equal to

P∗(g) = lim
n

P0Pn (7)

where P0 is the initial state.

Remark Although we are going to discuess only non-periodic case. If in the periodic case,

we apply the Cesaro means as following

P̂
∗

=
1
n

∞∑

n=0

Pn (8)
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According to [3] Theroem A.2, for irreducible transition matrix, P̂
∗

will also reach a unique

positive stationary solution, whose each row π is also indentical and meets πe = 1. So any

results in this report based on non-periodic assumption will also apply for periodic case.

Lemma 1. F and G are sequentially compact. Both P and P∗ are continuous functions on F.

Proof. Since A is compact, therefore F are tight.Since G belong to F. G is closed and A is

compact, so G is also sequentially compact. According to weak convergence of probability measures,

P is continuous functions on F.

Assume P∗ is not continuous function on F. Assume for some fn → f0 there is a subsequence fm

belonging to fn, which cannot obtain fm → f0. However, according to the properties of P∗, we have

P∗(fm)P(fm) = P∗(fm), which implies P∗P(f0) = P∗. Recall that there is only one recurrent class.

Here, we have two and we got a contradiction. Hence, P∗ is also continuous function on F

Theorem 2. Assume S be finite and A compact. Further assume state 0 is accessible from each

x ∈ S. Then we will have

sup
x∈S

sup
g∈G

Eg(Tx) < ∞ (9)

and

sup
x∈S

sup
f∈F

Ef(Tx) < ∞ (10)
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Proof.

Ef(Tx) = σ[knP(Tx = kn)) = σ[P(Tx > k(n − 1)) − P(Tx > kn)]kn

sup Ef(Tx) = σ[sup(P(Tx > k(n − 1))) − sup(P(Tx > kn))]kn

Since sup(P(Tx > kn)) ≤ βk

≤ σ[βk−1 − βk]kn

≤ n(β0 + β1 + . . . + βk)

≤ n(1 − βk)/(1 − β) since n(1 − βk) < n

Thus we have

sup Ef(Tx) ≤ n(1 − βk)
(1 − β)

<
n

1 − β < ∞

(11)

Theorem 3. Suppose there exists a scalar c and a bounded vector h such that the DPE

c + h(x) = sup
a∈A

[C(x, a) +
∑

y∈S
Pxy(a)h(y)] (12)

is satisfied for each x ∈ S. Then any policy g ∈ G specified by

g(x) = arg sup
a∈A

[C(x, a) +
∑

y∈S
Pxy(a)h(y)] (13)

attains

J = sup
u∈U

Rx(u) (14)

The proof of this theorem is the same as we did for unconstrained MDP, hence is omitted here.

Write equation (13) into vector form and set right side equal to its supremum, we will

have

Je + h(ĝ) = C(ĝ) + P(ĝ)h(ĝ) (15)

Premultiply above equation by P∗(ĝ), we will get

P∗(ĝ)Je + P∗(ĝ)h(ĝ) = P∗(ĝ)C(ĝ) + P∗(ĝ)P(ĝ)h(ĝ)

P∗(ĝ)Je = P∗(ĝ)C(ĝ)

Je = P∗(ĝ)C(ĝ)

(16)

6



The second equation is due to P∗(ĝ)h(ĝ) = P∗(ĝ)P(ĝ)h(ĝ). The last equation is because P∗(ĝ)

is the steady state, each row of which is euqal and satisfies πe = 1. These results are from

the lecture notes.

Lemma 4. Let the DPE be satisfied. Then the h appearing in (13) is a constant vector.

II Lagrange Formulation

We first restate the problem as following.

Rx(u) = lim
n

inf n−1Eu
[ n−1∑

k=0

C(Xk,Ak)|X0 = x], s.t Kx(u) ≤ α (17)

Under the help of Lagrange multiplier, above question (17) is possible be translated into an

unconstrained dynamic programming equation with a parameter λ.

Jλx (u) = lim
n

inf n−1Eu
[ n−1∑

k=0

Bλ(Xk,Ak)|X0 = x], (18)

where

Bλ(x, a) = C(x, a) − λD(x, a) (19)

Based on assumptions, results of previous section and lecture notes regarding uncontrainted

DPE, above problem would have at least one solution gλ ∈ Ĝ
λ
. Therefore, the supremum

Jλ = supu Jλx (u) is attained by at least one gλ. Also, according to the accessibility hypothesis,

the initial state has no impact here. Before trying to derive the optimal policy regarding this

new DPE, there are some necessary properties of Jλ need to be proved.

Define a new notation Ĝ
λ

which denote those g ∈ G satisfying the constrained DPE with

parameter λ. Then let,

Ĝη = ∪λ≤η(λ, Ĝ) (20)

Lemma 5. Jλ, Rλ, and Kλ are all monotone non-increading in λ, where Jλ = Jλ(gλ), Rλ = Rλ(gλ)

and Kλ = Kλ(gλ).
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Proof:

Jλ+η(gλ) − Jλ(gλ) ≤ Jλ+η(gλ+η) − Jλ(gλ)

≤ Jλ+η(gλ+η) − Jλ(gλ+η)

≤ 0

(21)

The first inequality holds because gλ+η is the optimal solution of supremum Jλ+η.

The second inequality holds because Jλ(gλ+η) ≤ Jλ(gλ). The third inequality is derived as following:

Jλ+η(gλ+η) − Jλ(gλ+η) = lim
n

inf n−1Eu=gλ+η

[ n−1∑

k=0

−ηD(Xk,Ak)|X0 = x]

= −ηKλ+η

≤ 0

(22)

where the last inequality is from the positiveness of D(x, a). Hence, Jλ+η(gλ+η) ≤ Jλ(gλ) and so Jλ is

monotome non-increasing in λ.

Jλ+η(gλ) − Jλ(gλ) = lim
n

inf n−1Eu
[ n−1∑

k=0

−ηD(Xk,Ak)|X0 = x]

= −ηKλ

≤ 0

(23)

Based on (21)-(23), we can conclude that Kλ is also monotone non-increasing on λ because,

−ηKλ ≤ −ηKλ+η

Kλ+η ≤ Kλ
(24)

For Rλ, assume it is not monotone non-increasing. Then Rλ < Rλ+η. Based on equation (24),

following inequations holds.

Rλ − λKλ < Rλ+η − λKλ+η

Jλ(gλ) < Jλ(gλ+η)

(25)

It is a obvious contradiction of last inequality, since Jλ(gλ+η) ≤ Jλ(gλ).
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Lemma 6. Jλ is uniformly absolutely continuous with

−Kλ ≤
(dJλ

dλ

)+ ≤ − lim
η↓0

Kλ+η (26)

Also, the derivative

dJλ

dλ
= −Kλ (27)

exists for almost all λ ≥ 0.

Proof:

Based on the equations (21) and (24), we will have

|Jλ+η − Jλ| ≤ ηKλ ≤ ηK0

As Kλ is monotone non-increasing in λ. Also due to D(x, a) is a continuous function on a compact

set, so K0 is also bounded. As Kλ is continuous almost everywhere. From equation (21) we have

−ηK(λ) ≤ Jλ+η− Jλ ≤ −ηKλ+η ≤ 0, divide it by η, then Kλ possesses limits from the right and obtains

an equality in (26) for almost all λ. The right derivative should coincide with ordinary derivative by

the absolute continuity. Hence we can have equ.(26). Then according to squeeze theorem, we can get

equ.(27) from equ.(26).

We know in the normal constrained optimization problem, the reason we introduce

Lagrange multiplier is to let the optimiztion problem meet the constraint. Here we define a

γ with the similar functionality.

γ = inf{λ : Kλ ≤ α} (28)

Lemma 7. Let K(g) ≤ α for some g ∈ G. Then γ ≤ ∞.

The proof in original paper is not quite clear. Here we give a more detailed proof, which is still

based on the contradiction.
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Assume the claim is false, so that γ = ∞ and for any λ we will have Kλ > α. By definition

Jλ , Jλ(gλ) = Rλ − λKλ

< Rλ − λα, as Kλ > α

< R0 − λα, as Rλ is non − increasing

(29)

Also, by the assumption of the theorem, K(g) ≤ α for some g ∈ G. Therefore, ∃δ > 0, such that

K(g) = α − δ for this g. Then we have

J(g) = R(g) − λK(g)

= R(g) − λ(α − δ)

= R(g) − λα + λδ)

(30)

Then, for any λ

J(g) − J(gλ) = R(g) − λα + λδ − (Rλ − λKλ)

= [R(g) − R(gλ)] + [λ(Kλ − α)] + λδ

(31)

Case I:If the first term in above equation is postive, then J(g) − J(gλ) > 0 for all λ.

Case II: If the first term is negative, then pick λ such that λ ≥ R(gλ−R(g))
δ , then we also have

J(g) − J(gλ) > 0. What we can conclude from Case I and Case II is as long as λ is sufficiently large

∃λ such that J(g) − J(gλ) > 0, which is cleary a contradiction to the fact that

gλ = arg max
g∈G
{J(g)}

. Therefore, we conclude that Lemma is correct.

Lemma 8. R(g) and K(g) are continuous on G and Jλ(g) is continuous on R+ ×G.

Proof: C(x, a), D(x, a) and P∗ are continuous, which implies P∗(gn)C(gn) → P∗(gn)C(gn) and

P∗(gn)D(gn)→ P∗(gn)D(gn). Since R = P∗(gn)C(gn), K = P∗(gn)D(gn) and Jλ(g) = R(g)−λK(g),

Jλ(gn)→ Jλ(g0). Therefore, Jλ(g) is continuous on R+ ×G.

Theorem 9. For any η, space Ĝη is compact.
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Proof: Since Ĝη is a subspace of ([0, η] ×G), it is already totally bounded. What we still need to

show is it is closed. Define a sequence λn → λ0, and assume gλn → g0, with gλn ∈ Ĝ
λn . We must

show that g0 ∈ Ĝ
λ0 . From the lecture notes, given an average cost infinite horzion MDP whose cost

function is B(x, a), we have

Jλne + hλn = Bλn(gλn) + P(gλn)hλn (32)

Each term in above equation converges to their limit since they are all continuous , that is

Jλ0e + hλ0 = Bλ0(gλ0) + P(gλ0)h (33)

Note that the continuity of h is from directly of equation Lemma 4. What still remains to show is

that right hand side of maximal. First fix x and define a function f (n, a) as follows

f (n, a) , C(x, a) − λnD(x, a) +
∑

y∈S
Pxy(a)hλn(y) (34)

Then the x coordinate on the right side of (33) reads limn supa f (n, a). However, f (n, a) converges

uniformly in n with respect to A. We also see that f (n, ) is uniformly continuous, and not that

{gn(x)} converges. These facts enable us to conclude that

lim
n

sup
a∈A

f (n, a) = sup
a∈A

lim
n

f (n, a) (35)

which shows that the right side of (33) is the supremum over A for each x ∈ S

III The Optimal Policy

In previous sections, some important properties regarding the newly defined DPE has been

shown and proved. These properties are necesary to derive the optimal policy for the

constrained dynamic programming problem.

Consider the policies in the general policy space U. There might be some policies are

optimal to the unconstrained problem however fail to satisfy the constraint Kx(u) ≤ α. There

might be also policies inside space U, which meets the constraint howover they might not
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be able to attain the largest reward J. An intuitive guess about the optimal policy would be

certain randomization between these two policies, as continuity of Jλ and compactness of

Ĝη have been proved respectively. An important assumption is made here before deriving

optimal policies.

Assumption 3: Assume there at least exist policies g0, which is an unconstrained supre-

mum and defined in the following way. g0 fails to meet the constraint.

g0 = arg sup
g∈G

R(g)

K(g0) > α

(36)

Suppose further there exists a g ∈ G such that

K(g) < α (37)

Theorem 10. Suppose that for some λ ≥ 0 and some f ∈ F we have K(f) = α and Jλ(f) = Jλ for all

x ∈ S. Therefore

R(f) ≥ Rx(u) + λ[α − Kx(u)] (38)

Proof. As Jλ(f) = supu Jλx (u), we have Jλ(f) ≥ Jλx (u) for all u and x. Since Jλ = R(f) − λK(f) =

R(f) − λα and Jλx (u) = Rx(u) − λKx(u), it is easy to attain

R(f) ≥ Rx(u) + λ[α − Kx(u)] (39)

If u ∈ U0, where U0 is the policy space attains the constraint Kx(u) ≤ α, so the second term of

right-hand side is positive. Therefore, R(f) ≥ Rx(u) for each u ∈ U0 and x ∈ S.

Remark Theorem 10 indicates that if such λ and corresponding gλ exist, the optmial policy

in fact is a simple policy belonging to G. The remaining question now is what will happen

when there is no such λ exists? Following theorem will discuss such case and show that

even in this case it is possible for us to construct a mixed policy fq, which will randomize

between two simple policies.
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Theorem 11. If Assumption 3 made in the beginning of this section holds, there exists a constrained

optimal policy in mixed policy space Fm.

Proof:

Case I: if Kλ = α for some λ, any corresponding gλ ∈ Ĝ satisfies the conditions of Theorem 10, and

is therefore optimal policy. Note that Ĝ is the policy space for DPE (18).

Case II: Suppose no such λ as the above exists. Since Kλ is non-increasing and γ ∈ (0,∞), we have

lim
λ↑γ

Kλ = α0

lim
λ↓γ

Kλ = α0

(40)

in which α0 < α < α0. Let {λ+
n } be a sequence that increases to γ, along which the corresponding

gλ
+
n ∈ Ĝ converges, since G is compact. Theorem 9 has proved that Ĝγ is also compact. therefore

ḡ = lim gλ
+
n ∈ Ĝγ and K(ḡ) = α0. In similar the decreasing sequence {λ−n } yields g = lim gλ

−
n ∈ Ĝγ

with K(ḡ) = α0. Recall in the beginning we define a mixed policy space Fm, whose element is named

as fq.

Let

fq = qg + (1 − q)ḡ (41)

Whether this fq satisfies the conditions in Theroem 10 and therefore is an optimal policy?

To answer above question, what need to be shown is whether able to find a q ∈ [0, 1], such that

Jγ = Jγ(fq) and K(fq) = α.

Since Jλ has been proved to be contious. Hence, Jγ = Jγ(gγ) = Jγ(g) = Jγ(ḡ). It is also

straightforward that Bγ(fq) = qBγ(g) + (1− q)Bγ(ḡ) and P(fq) = qP(g) + (1− q)P(ḡ). Moreover, (4)

has shown that hγ is the same for g and ḡ. Therefore, we have

Jγe + hγ = Bγ(g) + P(g)hγ

Jγe + hγ = Bγ(ḡ) + P(ḡ)hγ
(42)

Premultiplying the first term in (42) by q and second term y 1 − q and then adding them together,
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we will get

Jγe + hγ = Bγ(fq) + P(fq)hγ (43)

Premultiplying both side by P∗(fq), we can attain following equation

P∗(fq)Jγe + P∗(fq)hγ = P∗(fq)Bγ(fq) + P∗(fq)P(fq)hγ (44)

since P∗(g) = limn P0Pn, then P∗(fq)hγ = P∗(fq)P(fq)hγ Then above equation can be simplified as

P∗(fq)Jγe = P∗(fq)Bγ(fq)

Jγ = P∗(fq)Bγ(fq)

= Jγ(fq)

(45)

The above second equation is because P∗ is the steady state, each row of which is euqal and satisfies

πe = 1. Last equation is due to similar argument used when we are deriving equation (16). Therefore,

we have shown Jγ = Jγ(fq), and now what remains to be shown is whether we can get K(fq) = α.

Since fq is continuous on q, Dγ(fq) = qDγ(g) + (1− q)Dγ(ḡ), P∗(fq) and P(fq) are all continuous.

Recall that

K(fq)e = P∗(fq)D(fq) (46)

As both P∗(fq) and D(fq) are continuous, K(fq) is also continuous. If we choose q = 0, K(fq) = α0 < α

and q = 1, K(fq) = α0 < α. Therefore, we can find a q ∈ (0, 1), such that K(fq) = α.

Remark Above theorem has told as even in reality we can not obtain an obtimal λ, the optimal

policy is nice enough to be a convex combination of two simple policy. However, in the reality

Assumption 3 we made in the beginning of this section might not hold. One possible situation is

that the unconstrained policy which can obtain supremum of R, in the meanwhile it can also meet

the constraint (γ = 0). The other situation is that all element of policy space unable to meet the

constraint (necessary but not sufficient that γ = ∞). The theorem derived here is not applicable for

above two situations. However, these two situations are also not interesting to us.
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III.1 A Practical Approach

In previous section, we have proved that it is possible to find a simple policy or a mixed

policy to satisfy the constraint of system. However, a more interesting question is how to

obtain an optimal policy when we trying to solve a constrained MDP in reality. In [2], the

authors provided an apporach which can help us have a understanding about how to solve

this kind of constrained MDP. First find the optimal λ, where Q-learning algorithm is used

for a feasible α. The iteration algorithm is

λk+1 = λk + (K(gλ) − α) (47)

where k is the interation number and value iteration is used to solve the Jλ and then we get

optimal λ∗.

Now, following below procedure, a mixed policy g∗ can be obtained.

• a) Perturb λ∗ by δ, λ− = λ∗ − δ and λ+ = λ∗ + δ

• b) Use value iteration algorithm find gλ
−

and gλ
+

• c) Apply policies gλ
−

and gλ
+
, we can obtain K(gλ

−
) and K(gλ

+
). Find q, by solving

qK(gλ
−
) + (1 − q)K(gλ

+
) = α

• d) Using new policy g∗ = qgλ
+

+ (1 − q)gλ
−

IV Summary

In this report, we mainly studied the ideas in [1]. To solve the Markov decision process

with constraint, Lagrange mutiplier has been introduced to reduce the problem to an un-

constrained optimization parameterized by λ. Assume finite {S}, compact {A}, continuity of

probabilities and an accessibility condition, these lead to the existence of an optimal policy.
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The optimal policy is always stationary, either non-randomized stationary or consist of a

mix of two non-randomized policies.

V Appendix

There are a few confusing statements and typos in the paper. We have either elaborated or

corrected them in the above sections.

• In the statement of Theorem 2.5, inside the equation there is a typo f ∈ F instead of

f ∈ S

• Equation 2.7 and 2.8, in the sum part there should be N instead of n, as the state space

is [1, 2, . . .N].

• Equation 3.13 of original paper the right hand side should be supa∈A limn f (n, a), in-

stead of suma∈A limn f (n, a)

• Lemma 3.3 is not very clear. A more rigorous prove has been given as Lemma 5 in

this report.

• Between equation 4.9 and 4.10, it should be q ∈ [0, 1] instead of γ ∈ [0, 1]

• Between equation 4.10 and 4.11, there is a typo. The correct equation should be

Bγ(fq) = qBγ(g) + (1 − q)Bγ(ḡ)

• Inside the line below equation 5.1, it should be Kλ = α instead of Jλ = α.

• Also Theorem 2, Lemma 7 in the original proof is kind of unclear. Many proofs present

here are more detailed and straightforward compared to the original proofs in the [1].
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