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1. Introduction 

 

Information theory and coding are two important pillars in the research of communication 

systems. In this project, we are going to cast some problems in information theory and 

coding from a stochastic control viewpoint.  

 

Information theory was established by Claude Shannon in 1948, which was considered as 

one of the most influential research results in the last century and led to revolutionary 

developments in digital communication theory.  

 

Information theory aims to find the fundamental limits on the processing of information 

and operations of signals, and it attempts to find the thresholds for reliable data 

compression and data communication. One of the most important quantities in 

information is the channel capacity (C). Consider the communication channel in Figure 1, 

which has input X and output Y.  

 

 

Figure 1 Communication channel model block diagram 

The channel capacity is defined as 

 max ( ; )
XP

C I X Y= , (1.1) 

Transmitter Channel Receiver X Y 
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where I(X; Y) denotes the mutual information between the channel input X and channel 

output Y. Channel capacity is a sharp upper limit to the transmission rate (R) used for 

reliable transmissions. That is to say, if R < C, one can have reliable transmission such 

that the probability of transmission error can be made arbitrarily small. However, if R > 

C, the probability of transmission error converges to 1 for long packets.            

 

Coding theory can be divided into two sub-areas, namely source coding and channel 

coding. Source coding is commonly known as compression, with the objective to remove 

redundant data. On the other hand, channel coding tries to add some redundancy to the 

data in order to protect the data from noise corruption during the transmission process. 

Channel coding is often realized by error-correcting codes, e.g., convolutional codes. 

Viterbi decoding algorithm is one option to decode the coded information. 

 

Recently, it has been shown that multiple coding/information theory research problems 

can be formulated using a stochastic control viewpoint and solved using standard 

stochastic control techniques, such as dynamic programming (DP). 

 

For instance, communication systems with feedback  [1]- [5] have been studied by viewing 

the encoding function as an optimal control action (during encoding process) and by 

using other theoretical concepts and tools provided by control theory, such as Robbins-

Monro stochastic approximation procedure, model of imperfect and delayed observations, 

belief update, least squares estimation and prediction, and dynamic programming 

decomposition. The stochastic control viewpoint on posterior matching-style feedback 
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communication schemes is a recent result which considers the feedback encoder design 

problem from a stochastic control perspective, and it has been further generalized into the 

concept of information-theoretic viewpoint on optimal control  [6]. 

 

Another example in coding theory is the interpretation of the Viterbi decoding algorithm 

based on state-space approach to dynamical system  [7]. It has been pointed out by Omura 

that Viterbi algorithm can be formulated as a dynamic programming solution to a 

generalized regulator control problem. By viewing the trellis-encoder as a discrete time 

dynamical system driven by an information source, Viterbi algorithm can be derived 

using dynamic programming/principle of optimality. 

 

The rest of this report is arranged as follows: Section 2 presents a stochastic control 

viewpoint in information theory. In this section, I will review the feedback schemes 

proposed by Schalkwijk and Kailath  [2] and Horstein  [3] [4] using the tools provided by 

control theory. Then, Coleman’s stochastic viewpoint on posterior matching (PM) 

scheme  [1] will be presented. Lastly, a brief summary of the extensions of PM scheme  [6] 

will be provided. Section 3 provides an example of the use of stochastic control tools in 

coding/decoding algorithms. The Viterbi decoding algorithm will be reviewed from a 

control viewpoint and derived using dynamic programming. Section 4 concludes the 

project with relevant discussions. 
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2. Stochastic control viewpoint in information theory 

 

Feedback structure has been adopted in many communication systems since it can 

provide various merits in term of improving the system performance, e.g., reducing 

decoding complexity in point-to-point communication and enlarging the achievable rate 

region/capacity region of multi-terminal communication system.  

 

Following milestone work done by various researchers, this section reviews the 

communication system with feedback from a stochastic control viewpoint, with the focus 

on the concepts and techniques provided by control theory.  

 

2.1 Feedback coding scheme by Schalkwijk and Kailath  

 

Schalkwijk and Kailath’s scheme  [2] considers the communication under additive white 

Gaussian noise (AWGN) by exploiting the merit of an immediate and noise-free feedback 

link. This capacity-achieving scheme recursively transmits the mean of the message 

interval which eventually leads to vanishing probability of error. The scheme was 

inspired by the Robbins-Monro stochastic approximation procedure as presented in  [2] 

 

The objective of Robbins-Monro stochastic approximation is to determine a zero of a 

function F(x) by measuring the values of the function F(x) at any desired point. However, 

the exact shape of F(x) cannot be accessed.  
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Moreover, one can only get a partial observation of the measurement, i.e. the 

measurement Y(x) is corrupted by noise, that is  

 ( ) ( )Y x F x Z= + , (2.1) 

where Z is an independent and identically distributed (i.i.d ) AWGN with zero mean and 

2σ  variance. 

 

Let , 1,2,...na n = ,  be a sequence satisfying the following conditions 

 

2

0;

;

,

n

n

n

a

a

a

≥

= ∞

< ∞

∑
∑

 (2.2) 

and F(x) and Z satisfy  

 

1. ( ) 0F x >  if x θ> ;  ( ) 0F x <  if x θ< ; 

2. inf{| ( ) |; | | 1/ } 0,F x xε θ ε< − < >  for all 0ε > ; 

3. 1 2| ( ) | | | ;F x K x Kθ≤ − +  

4. If [ ]22 ( ) ( ) ( )x E Y x F xσ = − , then 2 2sup ( )
x

xσ σ=  is finite. 

 

Start with an arbitrary initial guess X1 and update future guesses according to  

 1 ( )n n n n nX X a Y X+ = − , (2.3) 

and if 2

1| |E X < ∞ , then 

 2| | 0nE X θ− → . (2.4) 
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Furthermore, it the following conditions are met,  

 

5. 2 2( ) ( )xσ σ θ→  as x θ→ ; 

6. ( ) ( ) ( )F x x xα θ δ= − + , for 0α >  and 1( ) (| | ), 0x O x ρδ θ ρ+= − > ; 

7. There exist 0, 0t δ> > and 2sup{ | ( ) | ;| | } ;E Z x x tδ θ+ − ≤ < ∞  

8. 1/na nα= ,  2 aα > . 

 

Then,   

 
2

1( ) ~ 0,
(2 )

nn X N
a a

σ
θ

α+

 
−  − 

. (2.5) 

 

Now the coding scheme in  [2] can be established using the above result. 

 

First divide the unit interval into M message intervals with equal length. Then, select one 

message (to be transmitted) and find the middle point θ  of that message interval. Put a 

straight line ( ) ( ), 0F x xα θ α= − >  through θ . Start with 1 0.5X =  and send 

1 1( ) ( )F X Xα θ= − . 

 

At the receiving end, the receiver observes 1 1 1 1( ) ( )Y X X Zα θ= − + , computes 

2 1 1 1( /1) ( ),X X a Y X= − with 1/a α= , and feeds X2 back to the transmitter.  

 



 9 

At the next time, the transmitter sends 2 2( ) ( )F X Xα θ= − . The process will be executed 

recursively, and in this case ( )2 2

1( ) ~ 0, /nn X Nθ σ α+ − . 

In the Gaussian case, with 1/na nα= , from  

 
1 1/ ( );

( ) ( ) ,

n n n n

n n n n

X X n Y X

Y X X Z

α

α θ
+ = − ⋅

= − +
 (2.6) 

one can get 

 1

1

(1/ )
n

n i

i

X n Zθ α+
=

= − ∑ . (2.7) 

It is clear that 1nX +  can be viewed as the Maximum Likelihood Estimation of θ , and with 

distribution 2 2( , /( ))N nθ σ α . 

 

Therefore, after N  iterations, the probability of error is given by 

 

11
22

( )

e

M
P erfc

N
σ

α

− 
 

=  
 
 

, (2.8) 

which can be made arbitrarily small after enough iterations. 

 

Finally, one last remark for this scheme is that in order to ensure appropriate signaling 

rate, 1/M need to be made to decrease at a rate lightly less than 1/ N to prevent the rate 

ln /R M T=  goes to zero. A proper selection is given by 1/ 2(1 )( )M N N ε−=  which lead to 

error probability to be  

 
/ 2

2
2

e

N
P erfc

εα
σ

 
=  

 
. (2.9) 



 10 

2.2 Feedback coding scheme by Horstein 

 

Horstein’s feedback coding scheme considers an optimal strategy to transmit over a 

binary symmetric channel (BSC)  [4].  

 

This coding falls in the category of median feedback, which has been summarized in  [3].  

 

First, a simple example of median feedback was considered in  [3] which is a noiseless 

binary forward channel. Similar to the Schalkwijk and Kailath’s scheme, one can divide 

the unit interval into M message intervals with equal length where 2NM = , start with a 

uniform prior distribution at the receiver, with a priori mean 0 1/ 2m = .  

 

If the selected message point θ  (to be transmitted) is to the left of 0m , the transmitter 

sends zero(send 1 otherwise). Thus, if one is received, it tells the receiver that θ  is on the 

right hand side 0m , and the new receiver distribution is then uniform over (1/2, 1) with 

the new median 0 3/ 4m = . In the next step, the transmitter sends zero if (1/ 2,3/ 4)θ ∈  and 

sends one if (3/ 4,1)θ ∈ . This process will be repeated. 

 

It is clear that this idea related to a binary search algorithm, or bi-section method, which 

can determine θ  with probability 1. The corresponding rate is 
1
log( ) 1R M

N
= =  

bit/channel use. 
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Horstein’s scheme  [4] is a generalized version of the above procedure. In this case (BSC), 

the difference/complication is due to the crossover probabilities of BSC. However, the 

above method can be modified to accommodate the transmission over BSC, which was 

explained in  [3] using Figure 2.   

                             

Figure 2 Distribution of the message at the receiver (Horstein's coding scheme). 

 

The uniform distribution at the receiver is given by the diagonal line from (0, 0) to (1, 1) 

with median 0 1/ 2m = . If the first received bit is one, then the new distribution at the 

receiver can be presented by the other bent line in Figure 2 with the new median 1m  

which will fed back to the transmitter in the next iteration. Thus, the recursion can be 

described as follows:  

 

Start with the diagonal line (representing the uniform distribution over [0,1)) .  

 

CDF 
1 

1/2 

1 0 m0 m1 
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If zero is received, the slopes of the distribution that are on left hand side of the median 

are scaled by 2(1-p), and those on the right hand side are scaled by 2p , where p denotes 

the crossover probability of the BSC. If one is received, do the opposite.  

 

Horstein has demonstrated that a sequential version of this scheme will lead to a 

distribution such that most of the probability mass is concentrated close to one of the 

possible message point.
1
 Furthermore, this scheme can be shown to be capacity achieving 

and with vanishing small error after enough iterations. Please see  [3] [4] for references. 

 

2.3 Posterior matching feedback coding scheme 

 

In 2007, Shayevitz and Feder developed the idea of posterior matching (PM), and shown 

that the schemes of Schalkwijk/Kailath and Horstein can be derived as special cases of 

the PM scheme  [5]. Later, Coleman concluded that the above feedback schemes can be 

viewed from a stochastic control angle, i.e. the encoding functions (for message and the 

previous feedback) can be considered as stochastic control actions. He further provided 

the detailed formulation for PM under stochastic viewpoint in his work  [1]. 

 

Follow the footstep of Coleman  [1], we will now look at PM scheme from a stochastic 

control viewpoint.  

 

                                                 
1
 Please note that Horstein’s feedback scheme is related to and can be used to solve the aviation control 

problem that has been mentioned during the presentation, i.e. one wants to stabilize an aviation system 

which the control actions are sometimes inverted.  
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Figure 3 Communication system with feedback 

Consider the communication system in Figure 3. Let W be a message point which is 

uniformly distributed on [0,1), it is chosen and encoded into channel input Xn at time n, 

and the corresponding feedback is 1nY − . 

 

The channel capacity C is can be determined by the transition probability function 

| ( | )Y XP Xi  and the capacity-achieving input probability distribution ( )XP i , with the 

corresponding cumulative density function (CDF) given by ( )XF i . A transmission 

scheme with feedback is now 1{ :[0,1) }n

ng
−× →Y X , so the output at time n+1 is  

 1 1( , )nn nX g W Y+ += . (2.10) 

 

Denote F  as the space of all CDF functions on [0,1).  

Denote *F  as the set of all unit step functions on [0,1). 

Denote * *

wF ∈F  as the CDF that is a step function which the value of the function 

changes from zero to one at w. 

Denote the posterior CDF of W at time n as 
|

( ) ( | )n

n

n W Y
F F Y=i i .         

Encoder P(Yn|Xn) Decoder 

Z-1 

Xn Yn Ŵn W 

Yn-1 
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Then, the PM scheme is given by  

 1

1 1( , ) ( ( ))n

n n X nX g W Y F F W−
+ += = . (2.11) 

 

The receiver calculates the a-posteriori probability of the message point starting with a 

uniform distribution on the unit interval [0,1). The transmitter also shares this information 

with the help of feedback. The objective is to select encoding functions which will lead to 

a fast convergence of the posterior probability around the desired message point W. A 

good option is to match the posterior probability according to the channel. This is 

because the posterior probability best describes the receiver’s knowledge, so it is feasible 

to match the posterior probability into the desired input distribution. Furthermore, 

( )nF W is uniformly distributed on the unit interval, and 1nX +  is independent of 
nY  since 

the channel is memoryless. Thus, 1nY +  is also independent of 
nY . 

 

Now, we apply the Kullback-Leibler (KL) distance, the reduction in distance from the 

desired step function (CDF) at time n and n+1 is given by the log-likelihood ratio: 

 * *

1( || ) ( || )w n w nD F F D F F +−  (2.12) 

                               
1 1

10 0

( ) ( )
( ) log ( ) log

( ) ( )n nx x

x w x w
x w x w

dF x dF x

δ δ
δ δ

+= =

− −
= − − −∫ ∫  (2.13) 

                                                 1( )log
( )

n

n

dF w

dF w

+=   (2.14) 

Intuitively, with the help of feedback, the encoder is recursively pushing the posterior 

distribution function nF  towards the distribution of 
*

wF .  
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At this stage, we are ready to formulate this communication problem into a stochastic 

control problem. From the feedback, the posterior CDF 1iF −  can be used along with the 

message W to determine the next input symbol 

 1( , )i i iX u W F −=  (2.15) 

with :[0,1)iu × →F X  being the control action at time i. We want to always choose a 

control action iu  such that the expected reduction in KL distance is maximized. 

 

Stochastic control problem formulation:  

 

1. Define the state of at time i as the posterior CDF, 

 i iS F= ∈F  (2.16) 

2. Defined the state transition 

 
| 1 1

1

| 1 1

'' 0

( | ( , )) ( )
( )

( | ( '', )) ( '')

Y X i i i i

Y X i i i i

w

f y u F dF
dF

f y u w F dF w

− −

− −
=

=

∫

i i

i  (2.17) 

3. Define the control action 

 1 1( , ), :[0,1)i i

i i iu u s uγ − −= × →F X  (2.18) 

4. Define the reward at State s with control u as the expected reduction in KL 

distance. 

 

* *

1

1

( , ) ( || ) ( || ) | ,

( )
          log ,

( )

W n W n n n

n
n n

n

g u s E D F F D F F S f U u

dF W
E F f U u

dF W

+

+

 = − = = 

 
= = = 

  

 (2.19) 
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Then, various techniques offered by control theory can be used to solve this 

communication problem. Furthermore, it can be shown that PM scheme is an optimal 

iterative solution to this problem if we were to solve it.  

 

This is proven by using a neat property of the above stochastic control problem that 

maximizing the expected reduction in KL distance is equivalent to maximizing the 

mutual information 
1
( ; )nI W Y

n
.  

 

Proof:  Under the problem setup given by (2.15)-(2.19). The time average reward 

is given by 

 

1

1 1

1

1

1 1
( , ) ( ; | )

1
                               = ( ; | )

1
                               = ( ; ).

n n

i i i i

i i

n
i

i

i

n

E g U S I W Y F
n n

I W Y Y
n

I W Y
n

−
= =

−

=

 
= 

 
∑ ∑

∑  (2.20) 

 

On the other hand, by using Shannon’s channel coding theorem 

 
1 1 1
( ; ) ( ) ( | )n n nI W Y H Y H Y W

n n n
= −  (2.21) 

                                           1

1

1 1
( ) ( | , )

n
n i

i

i

H Y H Y Y W
n n

−

=

= − ∑  (2.22) 

                              1

1 1

1 1
( ) ( | , )

n n
i

i i

i i

H Y H Y Y W
n n

−

= =

≤ −∑ ∑  (2.23) 

                                   1

1 1

1 1
( ) ( | , , )

n n
i

i i i

i i

H Y H Y X Y W
n n

−

= =

= −∑ ∑  (2.24) 
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1 1

1 1
( ) ( | )

n n

i i i

i i

H Y H Y X
n n= =

= −∑ ∑  (2.25) 

                  
1

1
( ) ( | )

n

i i i

i

H Y H Y X
n =

= −∑  (2.26) 

                                                              C≤ .  (2.27) 

 

The above derivation used definition of mutual information (2.21), chain rule of 

entropy(2.22), 
1

( ) ( )
n

n

i

i

H Y H Y
=

≤∑  in (2.23), (2.10) in (2.24) and (2.25).
2
 Thus, PM scheme 

maximizes the mutual information 
1
( ; )nI W Y

n
 which is equivalent to maximizing the time 

average reward.  

 

Therefore, PM scheme is a solution to the stochastic control problem defined by  (2.15)-

(2.19). Furthermore, Shannon’s coding theorem ensures that PM scheme is capacity-

achieving due to the fact that 1iX + , 
iY are independent and iX  has a capacity-achieving 

distribution, which validate the optimality of the PM solution for any n.             QED  

 

Finally, it can be noted that the posterior probability evolves in a controlled-Markovian 

manner which is governed by the stochastic control problem defined by (2.16)-(2.19), as 

shown in Figure 4. 

                                                 
2
 Please note that in  [1], there seems to be some mismatch between the explanation and the corresponding 

equation number. 
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Figure 4 Posterior matching scheme as a stochastic control problem 

 

2.4 Extensions of PM: ideas of information-theoretic viewpoint on optimal 

control  

 

In the same spirit discussed in section 2.3, Gorantla and Coleman further extended their 

idea and established a general model which provides information-theoretic viewpoints on 

optimal control in coding and coding problems  [6]. They have also demonstrated the 

existence of an optimal scheme that operates with sufficient statistics in this two-agent 

sequential decision making problem by using dynamic programming decomposition, and 

showed that the decoded information stays in a space of beliefs on the source symbols.  

 

The cost function has also been generalized from  

 ˆ( , )i ig w w  (2.28) 

into   

   Encoder 

(Controller) 
P(Fn|Fn-1 , Un) 

Z
-1 

Un 

dFW
* 

Message 

  Point 

dFn-1
 

dFn
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 1 1
ˆ ˆ ˆ ˆ( , , , ) ( , , ) ( )i i i i i i i ig w x w w w w w xρ αη− −= +  (2.29) 

to accommodate different system structures, i.e. a cost function corresponding to the 

current and previous symbols. 

 

Now, we will briefly review a main result in  [6], which has been developed from the PM 

scheme as we discussed in section 2.3. Consider the following causal encoding/decoding 

optimal control problem as depicted in Figure 5. 

 

 

Figure 5 Causal coding and decoding optimal control problem 

 

Following (2.17), define the transition 

 ( )*

| 1| 1 1| 1, , ( , ) .i i i i i i i ib b y e b− − − −= Λ i  (2.30) 

Then, there exists an optimal policy pair * *( , )e d  of the form 

 

* 1 *

1 1 1 |

* *

| |

( , ) ( , );

( ) ( ) ,

i i

i i i i i

i

i i i i i i

e w y e w b

d y d b b

+
+ + +=

= =
 (2.31) 

and the corresponding cost is given by 

Encoder 
ēi

* Channel 
Q=P(Yn|Xn) 

Decoder 
ñi

* 

 

Delay 

Xi Yi Bi|i W i 

Bi-1|i-1 

Zi 

Filter 

Si-1 

Filter 

Si 
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 *,
1

min ( ; ) ( ) .
n

n n

in e
i

J I W Y E Xα
π

α η
=

  
= − +  

  
∑  (2.32) 

 

The idea of the proof is as follows: Dynamic programming has been used to investigate 

the KL divergence which determines the stability of the non-linear filter in the causal 

encoder and decoder via a Lyapunov function. Furthermore, due to the optimality of the 

posterior belief, the idea of using belief as decision variables has also been applied here. 

 

The exact proof is supported by various lemmas which can be found in  [6], and I will 

provide an outline of the proof using dynamic programming: 

 

1. Define the state 1 |( , )n n n ns z b−= and control action 1( , )n n nu e z+= .  

2. Consider the value function at last stage ( ) inf ( , )
n

n n n n n
u

V s g s u= and show it is equal to the 

negative KL distance of |n nb  and 1( )nz −Φ , where 
'

( ) ( | ') ( ')W
w W

b dw Q dw w b dw
∈

Φ = ∫ . 

3. For k = n-1, find 1 1( )n nV s− − . Then, show for any fixed encoder policy ne , the optimal 

choice is 1 1| 1n n nz b− − −= . 

4. By induction, show the optimal choice at any time k, 1 1| 1k k kz b− − −= . 

5. By using a similar argument as (2.19)-(2.27), i.e. ( )( )1

| 1| 1( , | ) || ( )i

i i i i i iI W Y Y E D B B−
− −= Φ , 

the proof can be concluded. 

 

In order to show the consistency of this generalized model to the communication 

feedback problem with PM scheme that we have considered earlier, one just need to view 
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1nF +  as |i iB  and view nF  as 1| 1i iB − −  to establish the system setup in section 2.3. In fact, the 

PM scheme falls in the category of likelihood ratio cost and information gain problem 

due to the fact that the reduction in KL distance (reward) is in the form of log-likelihood 

ratio of the posterior probabilities. 

 

It has also been shown in  [6] that the above model can be used in various optimal control 

problems including: 

 

• Hidden Markov model and non-linear filter; 

• Brain-machine interfaces; 

• Gauss-Markov inverse optimal control; 

• M/M/1 queue; 

• Blackwell’s trapdoor channel with inverse optimal control, etc.  

 

3. Stochastic control viewpoint in coding/decoding: 

Viterbi decoding algorithm 

 

In this section, I will provide an example of the application of stochastic control which 

has been used in another pillar of communication system, namely coding/decoding theory. 

The Viterbi algorithm will be formulated into a dynamic programming solution to a 

generalized regulator control problem and derived using dynamic programming 

decomposition  [7]. The detailed problem formulation and derivations are presented next. 
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An information source generates an output ( -1ku ) at each time index k. The encoder 

encodes the information symbol into b channel symbols, say y
k. Assume the trellis

3
 of 

this encoder is terminated at stage L, so the corresponding information symbols are given 

by 0 1 1{ , ,..., }Lu u u − .   

 

Assume the encoder has memory size v, so the encoded output at time k only depends on 

the last v symbols -1 -2 -{ ,  ,  ..., }.k k k vu u u  In addition, the state of the encoder at time k is also  

given by xk = -1 -2 -{ ,  ,  ..., }.k k k vu u u  The output is generated with the parity check matrix Gk 

and is given by  

 ( ), 1,2,...,k k k k L= =y G x . (3.1) 

Furthermore, this system can be model as a general regulator problem with  

 1k k k+ = +x Ax Bu  (3.2) 

where A shifts x
k
 by one unit and B is a vector with one at the last entry and zero 

otherwise.  

 

An example of convolutional encoder with rate 1/2 is shown in Figure 6 for 

demonstration proposes. In this encoder, the memory size 7v = . The information source 

is fed into the encoder from the left, and for every input bit, two output coded bits are 

generated.  

 

                                                 
3
 The trellis of an encoder can be constructed with the finite state machine diagram of the corresponding 

encoder. 
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Figure 6 An example of convolutional encoder 

 

The output channel symbols { }=
1 2 L

r r ,r , ...,r  are the noise corrupted version of the input 

channel input symbols 
1 2 L

y = {y ,y , ...,y } . Now, consider the negative log-likelihood 

posterior probability  

 

 

1

( ) ln ( )

        ln ( ).
L

k

J P

P
=

= −

= −∑ k k

y y | r

y | r
 (3.3) 

 

The objective now is to choose the sequence of symbols 0 1 1
ˆ ˆ ˆ{ , ,..., }Lu u u − such that ( )J y  is 

minimized. Or equivalently, ( )P y | r is maximized (maximum a-posteriori decoder). 

 

Please note that Viterbi decoding algorithm can be used for maximum likelihood 

decoding (ML) and extended for maximum a-posteriori decoding (MAP).  

 

In the maximum a-posteriori decoding (MAP), the objective of the decoder is to 

maximize 
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            ( ) ( ) .
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r | y y
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In MAP, the prior probability P(y) may be different and needs to be considered when 

minimizing ln ( )P− y | r . Therefore, minimizing ln ( )P− y | r  and ln ( )P− r | y  are different.    

 

However, in the maximum likelihood (ML) setup, maximizing ( )P y | r  and ( )P r | y  are 

equivalent since the prior probability P(y) is assumed to be the same. Omura’s work  [7] 

was actually based on maximum-likelihood (ML) decoding. In ML, the decoder has no 

prior knowledge of y, so the best it can do is to assume that the inputs are equi-probable, 

i.e. P(yk = 0) = P(yk = 1) = 1/2 at every entry y. Thus, P(y) is the same for all input vector 

y and can be eliminated during the maximization/minimization. Consequently, 

minimizations of ln ( )P− y | r  and ln ( )P− r | y  are the same (and inter-changeable) in the 

ML setup. In this report, I will continue with the MAP setup.  

 

Now, from a stochastic control viewpoint, we can view the sequence 0 1 1
ˆ ˆ ˆ{ , ,..., }Lu u u −  as the 

control actions at each time, and the goal is to minimize the total cost ( )J y . Apply a 

standard dynamic programming decomposition approach, define the intermediate cost 

(cost-to-go) as 

 
, 1,..,

1

( ) min ln ( ) , for 0,1,2,... 1,
j

L

L k
u j k

j k

V P k L− =
= +

 
= − = − 

 
∑k k kx y | r  (3.5)  

 0 ( ) 0LV =x , (3.6) 

where ( )P
k k

y | r  can be found using Bays’ rule as shown in (3.4). Then,  

 ( )1 1 ( 1) 1( ) min ln ( ) ( )
k

L k L k k
u

V P V− + + − + += − +
k k k

x y | r x . (3.7) 



 25 

To be more precise, start with the initial state x0. Find 0û  by searching for the state in the 

next time slot which has the smallest value of 1 1( )LV − x  and is reachable under the 

condition (3.2). This guarantees that 1 1 1 0 0
ˆ ˆ( ) ( )L LV V− −= +x Ax Bu is the smallest in the next 

step under the condition of (3.2). This process is recursively executed till xL is reached.  

 

It can be noted that instead of the performing a brute-force search for the minimum which 

has exponential complexity, Viterbi algorithm utilized dynamic programming to realize a 

step-by-step minimization. One can efficiently eliminate the non-survivor paths  [8] during 

the step-step minimization and a low decoding complexity can be reached. 

 

4. Conclusions 

 

In this project, we have reviewed some communication problems from a control 

prospective. By looking at the communication system with feedback and Viterbi 

algorithm from a stochastic viewpoint, multiple concepts and tools offered by control 

theory became available which greatly facilitated the study of this project, including 

Robbins-Monro stochastic approximation procedure, model of imperfect and delayed 

observations, belief update, least squares estimation and prediction, model of general 

regulator problem, and dynamic programming decomposition.   

  

In fact, many other research problems in communications can also be cast from a 

different angle and viewed as stochastic control problems, i.e. shortest path problems in 
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networking, e.g., Dijkstra’s algorithm, capacity regions of multi-terminal systems with 

feedback, e.g., multiple access channel with feedback, speech communication problems 

involving hidden Markov models, etc.   

 

By applying the techniques of the stochastic control theory, some of these problems may 

be simplified, and others may be solved with more efficient methods, e.g. dynamic 

programming techniques. Furthermore, by viewing the communication problems from 

the stochastic control viewpoint, some useful insights may be obtained and eventually 

lead to new research ideas and topics, e.g. interdisciplinary research. 
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