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This report discusses some topics in discrete time stochastic control, specifically a paper by Graham C. 
Goodwin, Peter J. Ramadge and Peter E. Caines published in 1981. 



 
 

 
 

Glossary and Notation 

 

State space representation of system: 

                 

           

 

ARMAX representation: 

                            
       

            
          

     
       

     
           

     

     
       

     
           

     

 

Glossary: 

  : System state vector 

  : Input vector 

  : Output vector 

  
 : Desired output  

    : Unit delay operator, i.e.            

  : Dimension of output    

 : Dimension of input    

   Maximum delay, i.e.               

   : Initial conditions 

  : Estimate of algorithm system parameters 

(Note:     in the paper) 

  : Actual algorithm system parameters (Note: 

   in the paper) 

  : Algorithm state vector 

 

Variable Simplifications: 

   
 
                

   
 
     

  

     
 
              

       

Special Notation: 
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Introduction 
In 1981, Graham C. Goodwin, Peter J. Ramadge and Peter E. Caines published a paper entitled “Discrete 

Time Stochastic Adaptive Control” in the Society for Industrial and Applied Mathematics’ (SIAM) journal 

Control and Optimization. Their paper established the global convergence of a stochastic adaptive 

control algorithm for discrete time linear systems. This algorithm could “learn” the system dynamics and 

asymptotically perform as well as could be achieved if the system parameters were known.   

This report aims to summarize and discuss some of the results of their paper. It starts by giving the 

reader some background on adaptive control, formulating the general problem and explaining how to 

move from a state-space to an ARMAX model. It then, in our opinion, clarifies the resulting SISO unit-

delay algorithm by rectifying a few typos and tying up some loose ends. Finally, it walks the reader 

through the proof of global convergence, concludes with a few general remarks and includes some 

simulation results in our Appendix C. 

 

Problem Formulation 

Background 
The general discrete adaptive control problem can be formulated as follows: 

                             

                          

Where    and    are the state of the system and observation available to the decision maker at time   

respectively, and evolve according to past state values  , control inputs  , and some noise process  . 

The dynamics of this evolution are known, excluding the set of (possibly time dependant) parameters  .  

As a result, the decision maker must choose a control policy with an incomplete understanding of the 

governing dynamics, and is thus faced with the added complexity of learning the values of the 

parameters  . Depending on the specifications of the control objective: regulation, tracking, cost 

minimization… etc, and time horizon: finite or infinite, the decision maker must determine the control 

inputs, faced with a tradeoff of between trying to meet the current required output or better 

understanding the dynamics in hopes of improving future performance.  

There are two major approaches to adaptive control: implicit and explicit. In the explicit case an 

estimate of the missing parameters is computed online through estimation and the control policy uses 

these estimates to determine the control input. In the implicit case, the control policy is updated 

without explicitly computing the missing system parameters. In the paper being considered, the authors’ 

algorithm takes the latter approach; while a set of parameters is estimated, they represent parameters 

in the control policy and not explicitly the missing system parameters. 
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Intense research in adaptive control methods was motivated by aircraft control in the 1950’s. Aircrafts 

have highly non-linear dynamics and so would be linearized about several different operating points 

depending on flight conditions. Control engineers were looking for innovative ways to deal with the 

resulting parameter changes and turned to adaptive control techniques [Robust Adaptive Control]. 

This particular paper looks at systems where the governing dynamics are linear. The authors however, 

prove their results for a class of systems in auto-regressive moving average (ARMA) form. This may be 

unfamiliar to those used to working with a state space representation (as was our case), and so the 

authors included a transformation that demonstrates the equivalence of the two models (Appendix B). 

The process is very similar to changing a state space model into its s-domain transfer function 

representation and will be discussed presently.  

State-Space to ARMA 
The authors start with a fairly general model for a discrete time stochastic linear system: 

                 

           

Where             are the system state, output, control input and a stochastic process on         

respectively, and           are matrices of appropriate dimensions. As we are dealing with the 

discrete case,   takes on discrete values.  It can be shown that this system can be put in the equivalent 

auto-regressive moving average (ARMA) form: 

Equation 1 

                            
       

             
          

     
       

     
           

     

      
       

     
           

     

Where    is the unit delay operator,   is the characteristic polynomial of  , and        and        

are (in the most general case) matrices of polynomials. (Please carefully note that, with the exception of 

 , there is no simple relationship between script and plain text variables, ex.   and  .) 

By recursively applying the state update equation, it is found that a future state (at time      can be 

related to an earlier state (at time  ) by: 

Equation 2 

       
                          

 

   

 

Letting   have characteristic polynomial: 
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The transformation hinges on the Cayley-Hamilton theorem, which shows every matrix solves its own 

characteristic polynomial. These results are used to solve for     –   
       

          . 

Thus if we take   to be   in (Equation 2) we can sub in these results getting: 

Equation 3 

            
     

 

   

                       

 

   

 

Further, if we rearrange (Equation 2) to describe        for             we can sub this back into 

(Equation 3) and after some index manipulation we get: 

Equation 4 

                                             
 
   

   
   

 
   

                        
 
     

We can then multiply by  , add   where needed and use        to obtain a linear equality 

involving                   and          . This equality is of ARMA form and, with some attention to 

detail, the coefficients of the entries of          and          can be computed in terms of  ,  , and 

 . Many of these details can be found in the paper’s appendix B. With this equivalence established the 

authors prove the remainder of the results for systems of this form.  

 

Specific Objectives 
The objective of this paper is to prove the global convergence of a class of adaptive control algorithms 

for the aforementioned ARMA system (Equation 4). By global convergence the authors mean that for all 

initial system and algorithm states the algorithm will: 

R1: ensure:       
   

 

 
     

    
    

R2: ensure:       
   

 

 
     

    
    

R3: whenever it exists, minimize:     
   

 
 

 
         

         
 
    

In the general case it is assumed that the dimension of the output   is  , while the dimension of the 

input   is  . The deterministic sequence    
   what we are trying to track. The process             is 

defined on the underlying probability space        . We define   to be the sigma-algebra generated 

by the initial conditions                                  ,    to be the sigma algebra-generated by 

            , and thus           is a filtration. 
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The authors also require the following conditional independence and variance conditions: 

                          

      
                      

Note that these are stronger conditions than simply requiring the unconditional expectation and 

variance of    to be zero and   (which follows as a result of the above). 

Finally we require    to be measurable with respect to the sigma-algebra generated by the initial 

conditions    and outputs       , and note that this is in general smaller than   . 

 

Existence of a solution for the SISO unit-delay case 

Particularities of the Objectives 
In the single input single output (SISO) case, (where the dimension of the input and output vectors are 

one), the authors motivate the objective by first exploring the limit in (R3). Before we discuss how they 

proceeded we would first like to explore the meaning of the term ourselves.  

At any given instance we seek to minimize the expected square of the error: 

        
     

By the towering property of the expectation this can be rewritten as: 

           
           

Where the inner expectation is conditioned on the sigma-algebra generated by all the information that 

could possibly be available at the time of deciding on a control input. (Recalling that from (Equation 1) 

the control input can affect the output no sooner than   time steps later.) 

We now change the exterior expectation to a sample mean in order to capture the time evolution, 

getting the term in (R3): 

   
   

 
 

 
          

         

 

   

 

Motivation of Minimal Variance Control Policy 
The authors show that the term inside the above sum (and (R.3)) is bounded below by a constant   . To 

do so they first expand the quadratic, then use the linearity of the expectation and the fact that   
  is 

deterministic (and therefore      measurable) to get: 
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Where they have defined                    ,the innovation, and                  
 . They then 

show that     
     a constant, and that the algorithm brings    

   

 

 
     

  
    to zero almost surely, 

which proves that in the limit the solution is optimal. 

To do so the authors begin by using a lemma in the paper’s Appendix C, factoring        as: 

                              

The details of which are omitted from the paper. However it is worth considering the degree of the 

polynomials; from our understanding this decomposition (in the way that its used) seems to require 

       . 

This decomposition is absolutely critical in the proof since when subbed into (Equation 1) we get: 

Equation 5 

                                  
                 

Where every term on the right side of the equation is delayed by at least   time steps. This allows for 

two important manipulations.  

Firstly, along with (Equation 4) which we recall describes    in terms of past values, we can write: 

       

   

   

                        

Where            is      measurable. So taking the conditional expectation of both sides, (and 

recalling the zero mean noise requirements), we get: 

Equation 6 

                              

This in turn gives: 

   
 
                  

   

   

             

From this the authors easily show: 

Equation 7 
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We also note from (Equation 6) that            can be made to take on any value by appropriate choice 

of control input. Note that from the conditions in (Eq.4),   is guaranteed to be non-zero (since by 

factoring out the minimum delay  ,         has a constant term). 

These two results (Equation 6) & (Equation 7) really serve to motivate the search for the adaptive 

control strategy and the proof of its convergence.  

The SISO unit-delay Algorithm 
Note that this explanation differs slightly from that of the authors, includes some minor corrections, 

uses a slightly different notation, and is re-indexed to start at    .  

Setup 
Define algorithm state vector (using   ): 

   
 
                 

         

                
           

    
         

 
         

         

 

 

 

Define additional scalar state variable: 

   
 
    

    

Define   , a vector of the same dimensions as    that estimates the algorithm system parameters, 

either arbitrarily or with whatever information is available. 

 

Updating 
Now for           

1) Determine     

 

2) Update parameter estimate according to: (with      discussed later) 

Equation 8 

        
  

    
          

   

 

3) Solve* the below equation for    , noting that it is the only unknown: 

  
        

  

 

4) Update the algorithm state vector with the new information: 

                             
           

   



 
 

7 
 

5) Update  :  

          
    

 

*Note that solving for    will involve dividing by the corresponding entry in  . If    or    are chosen at 

random then division by zero is a probability zero event. 

Basis of the Algorithm 
While (Equation 6) and (Equation 7) motivate the search for a solution, they do not explain the authors’ 

choice of state vector in the algorithm above. This choice becomes more obvious when we take the 

conditional expectation of (Equation 5) and substract         
  from each side getting: 

                     
                        

              
  

Where   has been replaced by 1 (which according to Appendix C causes          ) and noting the 

unit delay operator is allowed to operated on the sigma-algebra. Looking closely we see that this is of 

the form: 

                     
      

      
  

Referring again to Appendix C for polynomial degrees.  

Explain(4.6) in the paper. 

Introduce z_t, e_t, v_t in a meaningful way. 

The Proof 

Main idea 
The bulk of the proof consists of showing bounded mean square output tracking error. Upon obtaining 

this result the others (R.1 & R.2) follow nicely. The strategy here is to show that: 

   
   

 

 
       

 
       

 

   

  

(Recalling      
 
              

                 
      ). The first term is the best possible 

estimate of the next output. Notice that it is not computable as the required information is not available 

to the system. The second term is the algorithm’s estimate of the next output, given the current system 

parameters. This is done by defining the stochastic equivalent to a Lyapunov function. 

The major steps of the proof are as follows: 
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1. Using the “Lyapunov function” mentioned above, along with the Neuveu Martingale 

Convergence Theorem show:  

Equation 9 

   
   

 
 

    
 
 

 
       

 
      

 

   

 

2. As a second step, show that  

Equation 10 

       
   

 
 

    
  

 

 
   

3. Thus deduce that 

Equation 11 

   
   

 

 
       

 
       

 

   

 

4. The conclusions regarding the boundedness of the input and output sequences will be derived 

while progressing through steps 1 and 2. 

Proof Details 

Base Assumption and Initial Note 

Recall assumptions:  

A1:            

A2:                                    

A3:                                                             

A4:        
  

 
                   

The following outline more or less mirrors the proof described in the original paper. This minimizes the 

amount back and forth for the reader. Some of the less obvious steps will be outlined and explained in a 

way that allow readers less familiar with measure-theoretic probability to follow easily. On that note, 

should the reader require a refresher, many important concepts of probability with Matingales are 

outlined in Appendix A. 

Some of the lemmas are left unproved. This is done in the interest of remaining concise and because the 

goal of the report was to study adaptive control, not necessarily to delve in Martingale theory or 

obscure lemmas. 
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Proof 

To obtain condition Equation 9 the authors, through a series of manipulations, define a stochastic 

Lyapunov function V. 

Part 1: Obtaining  a stochastic Lyapunov-type equation 

First,     
 
      is defined.     is the error between the real algorithm parameters and the estimated 

algorithm parameters. As the point of the algorithm is to reduce this error over time, this seems as a 

good starting point for a Lyapunov function. I.e. it could have a role similar to energy in dynamical 

systems: if its value continually decreases, we can expect some converging behavior of the system. 

Thus, the authors define a new stochastic process        
 
   . Thus, recalling Equation 8 we get: 

          
  

    
       

(Recall that         
 ) 

          
  

    
       

 

       
  

    
        

        
   

    
    
        

   

      
  
    
         

  

Were vt is as defined previously. We thus get1 

        
   

    
     
             

   

    
     
        

   

      
  
    
             

            

     
   

The following variables are then defined 

           
                  

        

                 
                   

   represents the difference in the actual output at the next instant (first term), and the next output 

predicted by the algorithm. 

   represents the difference between the tracking error and the optimal prediction error. Ideally, the 

algorithm send this value to 0. 

                                                           
1 Using the following substitutions 
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Taking the expectation (see Appendix B2.1 for some pointers if needed) and then substituting    and    

where appropriate: 

Equation 12 

                 
   

    
         

   

      
  
    
           

  
   

      
  
    
        

       

Note that for a function Vt to be a stochastic Lyapunov, it needs to be a supermartingale and non-

negative. Therefore, some more modification should be made to Equation 12. 

Additionally, note that Equation 12 is nearly in a form where the MCT could be used. This would be 

desirable as it would provide information regarding the summability of 
   

    
        . This motivates the 

next few steps: 

Getting Inequality 

Note:              
         

         
     

    
  

    
     

    
   

Thus Equation 12 becomes: 

                
   

    
         

   

     
      

  
   

      
  
    
        

       

And rewriting          
              

         
 : 

                
   

    
      

    

 
          

   

     
      

  
   

      
  
    
        

       

Using 

          
    

 
     

One easily obtain: 

             
    

 
      

Where the condition on   is such that      
    

 
 is positive real (such a   guaranteed to exist by 

Which expresses    as regression of    through a positive real transfer function. Note this will allow the 

use of the lemma A.4 (found in [1]) (Kalam-Popov-Yakubovich Lemma2). This ensures us that there exists 

                            
    such that      

                                                           
2
 Sometimes referred to as positive real lemma 
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Then, the following variable is defined: 

      
  

      
 

Substituting where appropriate: 

                
  
    

 
   

    
          

       
 

    
 

   

      
  
    
        

       

Notice that the second and third terms combine: 

                
    
    

  
       

 

    
 

   

      
  
    
        

       

Noting that           

                
    
    

 
       

 

    
 

   

      
  
    
        

 

      
       

 

    
 

   

      
  
    
        

       

By lemma A.2 (found in [1]]): 

 
    
     
      

  
  

 

   

 

Thus, MCT can finally be used. Taking      
    
     
      

  
, following result is obtained (taking in account 

that      ): 

Equation 13 

 
    
 

    
  

 

   

      

Next, Kronecker’s lemma (see Appendix B2.2) is used to obtain a long-range average conclusion based 

on Equation 13: 

Note that in our case, the sequence  
    
 

    

 
    and    satisfy the lemma’s requirements and we thus have 

   
   

 

 
 
 

  
 

      
 

  
       

 

   

 

Hence the objective of the first part: 
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Part 2. The previous result is used to prove the required claims. 

Useful lemmas: 

Going back to the main proof development: 

From lemma A.5 (which follows easily once A.1 (see B2.3 for some clarifications) is obtained), if we 

reconsider our system as having input yt and wt, there exists an N’ such that: 

Equation 14 

 

 
     

  

 

   

  
 
       

  

 

   

                 

This is one of our objectives: the inputs are mean squared bounded. 

Recalling that r(N) is an affine combination of       
          

        
          

  (affine because 

the y*’s produce a constant as they are computed offline). 

Thus Equation 15 follows pretty easily: 

Equation 15 

    

 
 
  
 
       

                 

 

   

 

Keeping in mind that           
     and using a trick similar to what was used in Appendix B2.3 to 

bound    
  the following is obtained (M2 arises because the y* are actually computable): 

 

 
       

 

 

   

 
 

 
     

 

 

   

    
 

 
       

 

 

   

 

By: 

   
   

   
 

 
     

        

 

   

  

We must have: 
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Thus:  

Equation 16 

 

 
       

 

 

   

 
 

 
     

 

 

   

                  

Then substituting Equation 16 in Equation 15: 

Equation 17 

    

 
 
  
 
     

                       

 

   

 

N’, N’’ defined in Equation 15 and Equation 16 respectively. Equation 14and Equation 17 provide bounds 

for 
    

 
. 

Proof by Contradiction 

Now, assume a sample unbounded input sequence 
 

 
       

  
   . If the algorithm is correct, this should 

not be allowed and we should have a contradiction. 

According to our assumption and by the definition of     : 

   
   

   
    

 
   

Thus, from Equation 17 

   
   

 

 
     

   

 

   

 

Now define: 

      
 

 
     

 

 

   

 

Starting from Equation 17: 
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Paralleling the original proof again: 

since                   , there is some subsequence      such that 

   
   

    
     

  
 

  
 

  
     

      

  

   

 

Which contradicts:  

   
   

 
 

    
 
 

 
     

       

 

   

 

Thus, by contradiction 
 

 
       

  
    is bounded. This proves our second objective: mean square 

bounded inputs. 

From the above boundedness condition, and the nonnegative nature of 
    

 
: 

   
   

       

 
   

It is thus rather intuitive that 

   
   

   
 

    
 
 

 
   

Following the original proof,              measurable. We thus, finally, have the following: 

        
                   

       

   
   

 

 
         

                 

 

   

 

And we are done. 
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Appendix A: Preliminary Knowledge 

Martingale Theory and Measure-Theoretic Probability 
A key principle used in proving the proposed properties of the algorithm is the Martingale Convergence 

Theorem. In a nutshell, the Martingale convergence theorem is somewhat analogous to the monotonic 

convergence theorem in the sense that it provides condition for which a Martingale (a certain kind of 

sequence of random variables) converges. 

Some preliminary background in measure-theoretic probability is required. It will be assumed that the 

reader understands what is meant by  -algebra and      -measurable in the context of the 

measurable spaces         and         

In the special case where a function (most commonly a random variable) is said to be   -measurable, 

the second measurable space is understood to be      . Where   is the Borel  -algebra. 

Definition:   algebra generated by a collection of maps on   

Suppose the following collection of maps:          such that          . Then, the   algebra 

generated by that collection is as follows: 

                            

i.e. it is the smallest   algebra such that all    are  -measurable. 

Some Intuition 

Say we run some experiment. Some information about   is obtained by observing the result of some 

random variable Y. The algebra generated is the collection of events F, for which, for each w, we can 

decide whether or not F has occurred based on the Y observations 

Definition: Filtration 
A sequence                is called a filtration of the measurable space       if the following holds: 

    is a sub-algebra of      

             

Some Intuition: 

In the discrete space case, sigma algebras can be seen as partitions of the whole space into atoms. As 

sigma algebras include all their unions/complements, the second condition is equivalent to “refining” 

the space as n grows. 

Adapted 
A stochastic process             is said to be adapted to a filtration      if the following holds: 

    is   -measurable    
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We are now ready to introduce the concept of Martingale. Informally, a Martingale is a mathematical 

model of a fair wager. 

Martingale 
An adapted stochastic process                 is a called a Martingale if 

      is a filtration, and   is adapted to it 

    is integrable    

                  

Similarly, one can define sub and super-martingales as follows (respectively favourable and 

unfavourable games): 

Sub: 

                   

Super: 

                   

One can think of the filtration as the amount of knowledge about the process available at instant n. If Xn 

is a betting game, a fair game would leave the player, in expectation, with Xn fortune after the n+1 

game. Hence we have the terms unfavourable game for a supermartingale and favourable for a 

submartingale. 

Statement of (a) Martingale Convergence Theorem 
Let                 be a sub martingale. Additionally, suppose         is bounded (i.e. absolutely 

integrable). Then there exists a finite integrable random variable such that: 

   
   

            

Requires Proof. 

Corollary 1 
A positive supermartingale converges to a finite r.v. 

Requires Proof. 

Some Properties 
(P1) A random variable X is     -measurable if and only if it is a function of Y. 

Requires Proof. 

(P2) If X is   measurable, 
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Requires Proof. 

(P3) If       then 

                                     

Requires Proof. 

Appendix B: Details on the paper’s Lemma and Derivation 

B1: Statement Without Proof: Neveu’s Martingale Convergence Theorem 

(MCT)(Lemma A.3) 
Let                be sequences of non-negative random variables adapted to and increasing sequence 

of  -algebras    such that  

                          

If            
 , then   converges almost surely to a finite random variable T and            

  

Proof Sketch: 

Corollary 1 (above) implies that a non-negative supermartingale converges with probability one. 

                     

With the above requirement on     can be seen as a supermartingale with some diminishing terms (due 

to their sum converging and their non-negativity) added to it. It is thus expected that they should not 

affect convergence. Hence,  

          with T a non-negative random variable (requires proof) 

Let’s now define: 

         

   

   

 

Thus: 

                        

   

   

 

Notice that sine   is non-negative: 
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Hence: 

                        

   

   

                

Again using the convergence argument presented above, we have      a.s., Z non-negative. Which 

forces 

          

 

 

 

Which concludes our proof sketch. 

B2: Following Along the Proof: 

B2.1 

To properly condition Equation 12 on                       , there are a few points to note: 

 By definition, bt-1 is a function of                                 
        

  , and by (P1) 

it is thus measurable with respect to an algebra included in       and so measurable w.r.t.     . 

 By a similar argument (this time using equation4.6 from the paper), et-vt is      measurable as 

well. 

 By property (P2) we then have ,                       and                        

                                             by linearity of expectations and (P3) on 

the second term. 

                                      , by (P2) 

       
                (see first part of the paper) 

B2.2 Kronecker’s Lemma 
If        

                                                   . For some              and 

     then we have the following: 

   
   

 

  
       

 

   

 

Requires proof. 

For an accessible proof consult Wikipedia article on Kronecker’s Lemma. 

B2.3 Clarifications on Lemma A.1 
Following the paper and using simple back substitution it is straightforward to obtain 
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To obtain the next inequality we use the following trick: 

Let          , where             , then 

    
                                       

Now, obviously we have               

This, by symmetry and norm distributivity, gives: 

                       

One similarly obtains: 

                       

                      

Thus, replacing each mixed term in the initial     
  equation, we obtain: 

    
            

       
              

 

   

 

 

  

One extra step: 

            

 

   

 

 

                     

 

   

 

 

  

By repeated Triangle Inequality and Cauchy-Schwartz Inequality. Thus  

    
            

       
                      

 

   

 

 

  

The rest of the proof falls pretty easily as in the original paper. We do note the following: 

         
 

  
 

  instead of     
 

  
 

 . This ultimately has no incidence as    is a constant and gets 

absorbed in K3. 
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Appendix C: Simulation Results 
The below simulations show the result of the algorithm attempting make the arbitrary system: 

                        

           

                   
   

 track two reference sequences. Notice the “learning” period at the beginning. 

 

Figure 1: Tracking a fixed reference signal of 10 for 200 time steps. 

 

 

Figure 2: Tracking a sinusoidal reference. 
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