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1 Introduction

This report summarizes two major works in the field of Q-Learning by Christopher Watkins
and John N Tsitsiklis. Q-Learning is a reinforcement learning technique that works by
learning an action-value function that gives the expected utility of taking a given action in
a given state and following a fixed policy thereafter. The report first starts with a brief
introduction to the filed of reinforcement learning along with an algorithm for Q-learning.
Next section introduces the problem addressed in the report followed by the convergence
proof of Watkins [1]. This is followed by the advanced proofs and further work continued by
Tsitsiklis [2]. Finally, the report provides the comparisons between these two works along
with the improvements and further studies done in the field of Q-learning.

1.1 Reinforcement learning

Reinforcement learning is an area of machine learning, concerned with how an agent ought
to take actions in an environment so as to maximize some notion of cumulative reward.
Reinforcement learning is learning what to do-how to map situations to actions—so as to
maximize a numerical reward signal. The learner is not told which actions to take, as in
most forms of machine learning, but instead must discover which actions yield the most
reward by trying them. In the most interesting and challenging cases, actions may affect
not only the immediate reward but also the next situation and, through that, all subsequent
rewards [4]. As an example, consider the dog being taught to fetch the ball. The dog is
awarded with a cookie (positive reward) or with scolding (negative reward) based on its
action of fetching the ball or not. Thus dog learns to fetch the ball as many times as it wants
the cookie. It gained the knowledge of how to fetch the ball by its experience and the drive
to do so was the positive reward.

1.2 Q-Learning

Q-learning is a reinforcement learning technique that works by learning an action-value
function that gives the expected utility of taking a given action in a given state and following
a fixed policy thereafter [4]. One of the strengths of Q-learning is that it is able to compare
the expected utility of the available actions without requiring a model of the environment.
In one-step Q-learning, the Q-value updation can be expressed as below [3]:

_ (1 - O‘n)Qn—l(l‘a CI,) + O‘n[rn + ’7Vn—1(yn)]a r=u1x, and a=a,
@n(r,) = { Qn-1(z,a) otherwise

where V,,(.) is the updated value function in state n.
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1.3 Problems to be addressed
i) Convergence of Q-Learning;:

This is an extract from Watkins’ work in his PhD Thesis. In his work, the convergence
is proved by constructing a notional Markov decision process called Action- Replay Process,
which is similar to the real process. Then it is shown that the Q-Values produced by the
one step Q-learning process after ‘n’ training examples, are the exact Optimal action values
for the start of the action-replay process for ‘n’ training examples.

The work [1] also continues to prove that, as more data is used, the optimal action-value
function at the start of action-replay process converges to the optimal action-value function
of the real process.

ii) Extensions to convergence theorem and Q-learning:

In his work, Tsitsiklis considers both discounted and un-discounted MDPs without assuming
all policies must lead to a zero-cost absorbing state. There are a set of different assumptions
and theorems proposed by Tsitsiklis in his work [2]. And here, the actual process is modeled
and not the Action-Replay Process as done in the work by Watkins.

2 Convergence of Q-Learning

Convergence of Q-Learning the way of proving that the learned action-value function, Q,
directly approximates Q*, the optimal action-value function, independent of the policy being
followed. Here, proving the convergence for Q-Learning can be stated to be same as proving
that Q,(z,a) — Q*(z,a) as n — co. The key to the convergence proof is an artificial con-
trolled Markov process called the Action-Replay Process (ARP), which is constructed from
the episode sequence and the learning rate sequence «,.

2.1 Action Replay Process (ARP)

The ARP is a purely notional Markov decision process, which is used as a proof device. This
process is constructed progressively from the sequence of observations. There is one better
way of illustrating the ARP mentioned in one of the technical notes. According to that
explanation, an ARP is described as a card game, where each episode < xy, as, ys, ¢, oy > is
written on the card. Here, x; is the current state of the process at t,a; is the action taken
at time ¢, y; is the resulting state when action a, is executed in state z;, r; is the immediate
reward of action a; at state x; and oy is the learning rate of the state < x;,t >. At the layer
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k, i.e. equivalent to say at card k, the state of the system is < x,k > and it corresponds
to each state x in the Real Process. The bottom card (numbered 0) has written on it the
agent’s initial values Q(x, a) for all pairs of x and a.

The next state of the ARP, given the current state (x,n) and action a, is determined ac-
cording to the following process. First, all the cards for episodes later than n are eliminated,
leaving just a finite deck. Cards are then removed one at a time from top of this deck and
examined until one is found whose starting state and action match x and a, say at episode
t. Then a biased coin is flipped, with a probability at a; of coming out heads, and (1 — ay)
of tails. If the coin turns up heads, the episode recorded on this card is replayed, a process
described below; if the coin turns up tails, this card too is thrown away and the search
continues for another card matching x and a.

If the bottom card is reached, the game stops in a special, absorbing, state, and just provides
the reward written on this card for x, a, namely Qo(z,a). Replaying the episode on card ¢
consists of emitting the reward r;, written on the card ¢ and then moving to the next state
<y, t —1 > in the ARP, where y; is the state real process went on the episode ¢. The next
state transition of the ARP will be taken based on just the remaining deck. No matter what
actions are chosen, if one starts at level k, each action will lead to a new state at lower level,
until finally one reaches the level 0 and the process terminates. Thus it is sure that the ARP
terminates. Below is the algorithm [1] for performing action a in the state < z, k >,

To perform a in < x,0 >,
terminate the ARP with the immediate reward of Qo(x,a),
and halt.
To perform a in < x,k > for k > 0,
ifz==,and a=a,
then begin
either ( with probability ay)
go to < yr, k — 1 > with an immediate reward of 7,
and halt,
or ( with probability 1-ay)
perform a in <z, k—1 >
end
else
perform a in < z,k — 1 >.

Watkins also makes a point in the work that the episodes need not form a continuous se-
quence, that is the y of one episode need not be the x of the next episode. Hence, this makes
the system non real-time. Thus this approach cannot be applied for on-line learning. The
further proof of convergence for on-line Q-Learning is provided by Tsitsiklis in his work.
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2.2 Action - Replay Theorem

The aim of this theorem is to prove that for all states x, actions a and stage n of ARP,
Qn(z,a) = Q4 pp(< x,n >,a). The proof for this theorem is given by Watkins is through
induction. Lets consider the initial state at level 0, Qq(x, a) is the optimal, indeed the only
possible Q-value of < x,0 >,a. Therefore,

Qo(z,a) = Q4rp(< 2,0 >, a)

Hence, the theorem holds for n = 0.
Now, lets assume that the Q-values @),,_1, generated by Q-learning rule, are optimal Q-values
for ARP at stage n — 1, that is

Qn—l(m7a) = QTLXRP(< r,n—1 >,CL)

1th

This implies that V,,_;(x) are the optimal values for n — 1" stage, that is

Virp(<z,n—1>) =maxQy,_i(z,a)
According to the Q-value updation equation,

(= an)Qn-a(z,a) + anrn + Va1 (yn)] ifr =x,,a=a,
@n(, @) = { 1 Qn_1(z,a) 1 otherwise

for all x,a not equal to x,, a,, performing a in < z,n > in ARP gives exactly same results
as performing a in < x,n — 1 >. Therefore we have,

Qirp(<z,n>0) = Qypp(<z,n—1> 0)
Therefore for all z,a not equal to z,,a, respectively, Q,(z,a) = Q% rp(< z,n >, a)

Now, considering the other case where action a,, is performed on the ARP state < x,,,n >.
The optimal action value in the ARP of < z,,a, > is,

QZRP(< Tp,N >, a’n) = O‘n(rn + W/VZRP(< Yn, 0 — 1)) + (1 - an)QZRP(< Ty, N — 1 >, an)
- an(rn + ’an—l(yn)) + (1 - an)Qn—l(xna an)

= Qn(y, ar)

Hence proved by induction that Q,(z,a) = Q% zp(< x,n >,a) for all z, a, and n > 0.
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2.3 Convergence of Q%,p to Q*

In this section, we discover what are the conditions under which Watkins proposes the
convergence of optimal action values for the action replay process at n'" stage to that for
the real precess as n — oo

The following are the assumptions made by Watkins in his work,

e There are infinite number of observations (n — 00).

e The learning rate «, for observations are positive and decreasing monotonically With
increasing n. i.e a,, — as n — o0.

e The sum of the learning rates «,, for observations is infinite. i.e.
oo _ [e.@] 2
Yo ay=o00and ) al < oo

The method used by Watkins to demonstrate that these assumptions are sufficient is
to show that if one starts from the n'h layer of the replay process, then the replay
process will approximate the real process to any given degree of accuracy for any given
finite number of stages, provided that n is chosen to be large enough.

Watkins considers the concept of depth of a state-action pair d(< z,k >, a) in the
replay process to be the sum of the learning factors for all observations of the form
[zaryy] with [ < k. Thus the probability of reaching < z,0 > becomes arbitrarily
small as depth, d(< z,k >,a), becomes large. This is because, as we go on to the
higher stages in the ARP, the chances of finding the same set of state-action pair as
that of the current stage becomes high and the need to iterate till we reach the end of
the layer, i.e. reaching 0-level, becomes very less. Thus if we choose sufficiently high
value for n, then the chances of reaching the bottom level becomes zero.

The d(< z,k >,a) — 0o as n — oo. This is followed by the third assumption made
above. For any given D, and any given ¢, it is possible to choose n such that,

max{a,} < ¢
m>n
For any such chosen n, it is then possible to choose n’ such that,

min{d(< z,n' > a) —d(< z,n >,a)} > D

z,a

Thus based on the above two conditions, it is possible to create a sequence of layers
(n1,ng, ns.....) such that, every layer has a depth of D between each of them. i.e. there
is at least a depth of D between the layer n; and layer no, layer ny and layer n3 and so
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on. It is therefore possible to chose an n so large that the minimum possible number
of replayed observations is larger than any chosen k with a probability as close to one
as desired.

It is also possible to choose a n so large that, the maximum learning rate a is so
small that the transition probabilities and reward means of the ARP are uniformly as
close as desired to the transition probabilities and reward means of the Real Process,
with a probability as close to 1 as desired. Thus when we choose a very large n, the
value of a becomes negligible and thus making the ARP tend toward the Real Process.

Thus, when we choose an n so large that Q% zp at the n' level of ARP is uniformly
close to the corresponding optimal action values of the Real Process and thus the proof
for convergence of Q% zp to Q. Thus we can say that, under the assumed condition,
the action value of the Q-learning process converges with a probability of 1 as n — oc.

3 Stochastic Approximation and Q-Learning

3.1 What has Tsitsiklis done on top of Watkins’s work 7

In Q-learning, transition probabilities and costs are unknown but information on them
is obtained either by simulation or by experimenting with the system to be controlled.
As a recursive algorithm, in each stage, the Q-learning uses new information to com-
pute an additive correction term to the old estimates. Since these correction terms
are random, QQ-learning has the same general structure as stochastic approximation
algorithms. Hence, by combining ideas from stochastic approximation theory and con-
vergence theory of parallel asynchronous algorithms, the work [2] has established the
convergence of Q-learning under various settings.

Besides a new proof for the results of [1], the author has extended convergence proof
of Q-learning in several directions.

— The convergence for undiscounted problems without assuming that all policies
must lead to a zero-cost absorbing state is shown. In [1], the author assumed
all policies lead to a zero-state absorbing state, i.e., proper policies. In [2], the
technicality requires that there exists at least one proper stationary policy and
every improper policies yield infinite expected cost for at least one initial state.
Also, the updated () values need to be bounded.

— The costs per stage is allowed to be unbounded random variables with finite
variance. In [1], the cost (or reward) must be bounded random variable.

— The convergence of Q-learning for the case of parallel implementation allowing the
use of outdated information is also established. Synchronous updates are assumed
in [1].
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— Regard the implementation, the action-replay process in [1] can be implemented
offline while the direct Q-learning algorithms in [2] is done online.

These convergence results in [2] do not follow from the available convergence theory
of stochastic approximation algorithms. Hence, the author first extended the classical
results of stochastic approximation theory and then showed that various settings of
Q-learning algorithms are special cases of these new results.

In this report, for simplicity, we mainly review results in [2] for the case of discounted
cost and synchronous updates only. The results on undiscounted costs are discussed
toward the end.

3.2 Stochastic approximation: Assumptions and results

The following algorithm consists of noisy updates for a vector x € R" to find fixed-point
solution of the equation F'(x) = x where F(z) = (Fi(x),..., F,(z)) for all z € R".

Let AV be the set of nonnegative integers. We employ a discrete ‘time’ variable ¢, taking
values in A/. This variable need not have any relation with real time; rather, it is used
to index successive updates. Let x(t) be the value of the vector z at time ¢ and let
7;(t) denote its i-th component. Let T* be an infinite subset of N indicating the set
of times at which an update of z; is performed. We assume that:

zi(t+1)=a(t), t¢T (1)
When z; is updated at times in 7%, the update equation is of the following form:
zi(t+ 1) = 25(t) + () (Fi(x(t)) — 25(t) + wi(t)), teT" (2)

Here, a;(t) is a stepsize parameter belonging to [0, 1], w;(¢) is a noise term. To unify
(1) and (2), it is convenient to assume that «;(t) = 0 for ¢ ¢ T". Since the set T" is
infinite, each component is updated infinitely many times.

Since T" is random in general (which can also be assumed deterministic), the vari-
ables introduced so far (x(t), o;(t), w;(t)) are viewed as random variables defined on a
probability space (2, F,P) and the assumptions deal primarily with the dependencies
between these random variables. Our assumptions also involve an increasing sequence
{F}2, of subfields of F and F(t) is meant to represent the history of the algorithm
up to, and including the point at which the stepsizes «;(t) for the t-th iteration are
selected, but just before the noise term w;(t) is generated.

The following assumptions impose on the statistics of the random variables involved
in the algorithm.

Assumption 1

a) z(0) is F(0)-measurable;
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b) For every ¢ and t, w;(t) is F(t + 1)-measurable;

)
c) For every i and t, «;(t) is F(t)-measurable;
d) For every i and ¢, E[wi(tﬂ}"(t)] = 0;

)

e) There exists constants A and B such that

E [wZ?(t)yf(t)} < A+ Bmax max|ay ()

for all 7, t.

Assumption 2:

a) For every i, Z a;(t) = oo;
=0

o0
b) There exists constants C' such that for every i, Z az(t) < C.
=0

Assumption 3. There exists a vector x* € R", a positive vector v, and a scalar 5 €
[0,1), such that [|F(z) — z*|, < Bl|lz — x*||, for all x € R™ where ||z||, = max; |ﬁ—| for
x € R".

When all components of v are equal to 1, ||.||, is the same as the maximum norm ||. |-

The following result regarding the convergence of x(t) is proved in [2].

Theorem 1 Let Assumptions 1, 2, 8 hold. Then, x(t) converges to x* with probability
1.

PROOF: See [2] for details.

Next, the author showed that the Q-learning algorithm can be viewed as special case
of stochastic approximation algorithm.

3.3 Q-learning and stochastic approximation

Consider a Markov decision problem defined on the a finite state space S. For every
i € S, there is a finite set U(i) of possible actions. A set of nonnegative scalars,
or transition probabilities, p;;(u),u € U(i),j € S such that }_;¢pij(u) = 1 for all
u € U(i). For every state i and control action u, the one-stage cost ¢;, is random
variable with finite variance. A stationary policy is a function 7 defined on S such
that m(:) € U(i) for all i € S. A policy 7 induces a Markov chain with transition
probabilities:

Pr(sT™(t+1) = jls"(t) = i) = pi;(n(i)).
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Given a stationary policy 7 and an initial state ¢ € S, the cost-to-go V™ is defined:

v —hmsupE[Zﬂcs”) (st |sT(0) =1
=0

T—o00

where 3 € (0, 1] is discount factor. We assume 3 < 1 for now. The optimal cost-to-go

is thus:
V¥ =inf V™.

Dynamic programming operator 7 : RISl — RISl with components T} is defined as:

(V) = Jé% { lei] + B pij(u) }

jES

T contraction w.r.t. norm ||| and V* unique fixed point.
Q-learning is a method to compute V* based on a reformulation of the Bellman equation
V* =T(V*). In particular, let P = {(z,u)|z € S,u € U(z)} set of all possible state-

action pairs and let cardinality |P| = n. After t iterations, vector Q(t) € R" with
components @y, (), (i,u) € P are updated as:

Qiu(t + 1) - Qzu(t) + aiu(t) [Ciu + 6 min Qs(i,u),v (t) - Qzu(t> (3)

veU (s(i,u))

o, (t) is a nonnegative stepsize coefficient which is set to 0 for those (i,u) € P for which
Qi 1s not updated in the current iteration. ¢;, is random cost and s(i,u) is random
successor state which is equal to j with probability p;;(u). All random samples are
drawn independently.

The Q-learning algorithm (3) is shown to have the form of a stochastic approximation
algorithm. Let F' be the mapping from R" to itself with components Fj, defined as

Fu(Q) = Ble) + BB _min - Quia]

vel(s(i,u))
Note that
E min Qs(i,u),v} me IIllIl va

veU/(s(i,u)) oS velU(j

It can be seen that if @) fixed point of F' then vector V with V; = min,cp ) Qi fixed
point point of T'. Rewrite the Q-learning equation:

Quu(t + 1) = Qiu(t) + cviu(t) (Fw(Q(t)) — Qiu(t) + wm(t)>
where the noise term wy, (t) is:

waalt) = i = Blea) +_min  Quiao®) = B[ _min  QuuaalIF®)]. ()

veU (s(,u)) veU (s(i,u))
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3.3.1 Q-learning satisfies the Assumptions 1, 2, 3

We can see from (4) that Efw;,(t)|F(t)] = 0. The conditional variance of min,ey(s(i,u)) @s(i,u)w
given F(t) is bounded above by max;es maxycy () @3,(t), and hence:

Ew3, ()| F(#)] < Var(ci, 2 (t
[win () F(8)] < Var(ciu) + max max @5, (t)

Hence, Q-learning satisfies assumption 1. Assumption 2 is satisfied by imposing the
conditions on the stepsizes a;,(t) for all (i,u) € P and ¢t. Also, it requires that every
state-action pair (7, u) is simulated an infinite number of times.

By definition of the mapping F', we have:

|EU(Q) - Fz (Q/>|oo S 6 max ) |ij - ij|7 VQ7Q,'

jESwEU (5
Hence, F' is contraction mapping w.r.t. maximum norm ||.||s. Hence, assumption 3 is
satisfied.

The convergence of Q-learning is established by Theorem 1.

3.3.2 Undiscounted Q-learning

Now consider Q-learning for undiscounted case § = 1. It is then assumed that there is
a cost-free state, say state 1, which is absorbing; that is, p1;(u) = 1 and ¢y, = 0 for all
u € U(1). We say that a stationary policy is proper if the probability of being at the
absorbing state converges to 1 as time converges to infinity; otherwise, we say that the
policy is improper.

Assumption 4

a) There exists at least one proper stationary policy.

b) Every improper stationary policy yields infinite expected cost for at least one
initial state.

In [1], the author assumed that all policies are proper which is stronger than that in
Assumption 4. When 8 = 1, the mapping T is not, in general, a contraction. However,

it is still true that the set {V c RISH VvV, = O} contains a unique fixed point of 7" and
this fixed point is equal to V*, as long as Assumption 4 holds.

Under Assumption 4, [2] showed that the convergence of Q-learning also follows from
Theorem 1.
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4 Conclusions

This report has reviewed the convergence proofs for Q-learning for Markov decision
processes under various settings. In [1], the author has proposed an action-replay pro-
cess which simulates a real Q-learning process. The simulated process is shown to be
convergent which implies the convergence of Q-learning. [2], the author proved the con-
vergence of Q-learning algorithms by extending the results in stochastic approximation
theory. [2] has extended the results in [1].

Further work is done by Barto, Bradtke Singh, on updating multiple Q-values in
every iteration. Also lot of work is done on convergence for un-discounted models of
Q-learning.
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