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I. INTRODUCTION

Physical sampling of water for off-site analysis is nec-
essary for many applications like monitoring the quality of
drinking water in reservoirs, understanding marine ecosys-
tems, and measuring contamination levels in fresh-water
systems. Robotic sampling enables to strategically collect
water samples based on real-time measurements of physical
and chemical properties gathered with onboard sensors. In
this paper, we present a multi-robot, data-driven, water-
sampling strategy, where autonomous surface vehicles plan
and execute water sampling using the chlorophyll density as
a cue for plankton-rich water samples.

Our focus is to address the problem of monitoring a region
and collecting water samples with emphasis on selecting
good sampling locations, but without a priori knowledge
of where these locations might be. We use a heterogeneous
robotic team composed of two robotic boats, an explorer
that can measure variables that suggest sample utility and
a sampler that can collect physical samples (Figure 1). Das
et al. [1] proposed a probabilistic method for a single AUV
that can monitor and sample. In our case, we divide the
task between two robots. This provides an efficient trade
off between system complexity, payload capacity, and run
time, besides improving the quality of the collected samples
— where quality is expressed as the sum of measured values
over samples collected.

Fig. 1. Two Clearpath Heron ASVs (a), one equipped with a water quality
sensor (b), another with a water sampling apparatus (c).

In particular, such a task leads to two related subproblems:
exploration and sampling. We propose an exploration strat-
egy for the explorer — the robot with the water quality sensor
— that makes real-time observations to create a preliminary
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map. The sampler is then informed about the potential
locations for sampling. Our method is based on the concept
of frontier-based exploration, similar to that introduced by
Yamauchi [2] for indoor map building and exploration. The
robot decides according to the latest information and this
approach scales well with the size of the region, unlike some
common coverage approaches that employ a lawn-mower
coverage pattern. Notice that the absence of prior information
on the spatial distribution of the data of interest prevents
us from using alternative powerful selective coverage meth-
ods [3], [4].

II. PROBLEM STATEMENT

Two robotic boats are deployed in a continuous two-
dimensional area of interest £ C R? with a user pre-defined
boundaries. We assume that such an area is obstacle-free, as
in many marine science expeditions. Both of them move via
differential drive, are using GPS to localize, and can com-
municate continuously via a WiFi channel. As the mission
evolves, the explorer selects a series of destination poses
where to get more measurements and builds a more reliable
model of the area, that is a map that has low uncertainty; at
the same time, the sampler receives measurements from the
explorer and uses this information to decide where to take a
sample. The mission progresses up to the mission duration
T, which generally depends on the specific logistics of the
mission. All & units of the water sampling apparatus should
be used in such a timeframe. This process leads to two related
problems:

1) Exploration: explorer selects a sequence of poses Q =
(40, q15 -+ qn), With g; € &, so that the model of the
area converges to the true phenomenon. Note that this
process can be run online, and the explorer can take
decisions as new measurements y; associated with GPS
locations x’ are collected. The efficiency is determined
by traveled distance and quality of the map.

2) Sampling: based on all the measurements Y, the sam-
pler selects a number of locations £, where to take
physical samples, where |£| = k and [ € L <=
Jy' € Y|x' = I. The final objective is to maximize the
sum of the values at sampled locations (3, .. f(I))
within the maximum duration of the mission 7;,,.

Intuitively, the better the performance of the explorer, the
better the performance of the sampler.

ITII. INFORMED STRATEGIC SAMPLING

The proposed system is based on using a variant of
frontier-based exploration by the explorer, while a variant



of the secretary hiring problem for the sampler.

A. Gaussian Process Frontier-based Exploration

Starting with zero knowledge about the spatial phe-
nomenon in the given region, the explorer’s objective is
to select locations L* = [x!,x2,...,x™] over time such
that the phenomenon is mapped efficiently. Note that while
the robot is traveling to those locations, measurements
Y = [y}, 9%, ..., y'] with associated GPS locations X =
[x!,x2?,...,x'] are collected at the frequency rate of the
sensor. The goal is to optimize the time and the traveled
distance to create a good model f (x) of the phenomenon
f(x).

With finite time and finite battery life of the robot, it
is not feasible to take measurements at every location in
the region of interest £. Hence, we use Gaussian Processes
(GP) [5] to model the spatial field. Mean and covariance
functions should be formulated to completely define a GP.
As done in the mainstream approach, mean is assumed to
be zero, and a radial basis kernel is used as covariance
function. Our exploration technique uses a one-step look
ahead, where the robot decides on a set of locations to
visit at epoch m only after reaching the chosen location of
epoch m — 1. We propose two methods to generate a list of
locations (Figure 2). One of the approaches is to consider
locations on the outer-most contour between a region with
high variance and a region with low variance (Figure 2(a)).
An easier method is to consider all the locations on a
fixed planning window centered on the current position of
the robot (Figure 2(b)). The location with highest predicted
variance and least distance is chosen as the current target.

Fig. 2. Candidate locations generated by two techniques at a mission time
step. Red circles represent the potential candidate locations [. Black lines
show the contours.

B. Look-back Selective Sampling

As formalized in Section II, given M measurements i.e.,
candidate sampling positions, we need to choose k£ sample
locations that optimize the quality of the final result. Since
we are looking at simultaneous decision making along with
the explorer, there is a need for optimal stopping criteria —
in other words, when does the sampler decides to use one
of the remaining water sampling units? This problem has
similarities with the classic Secretary Problem that uses op-
timal stopping theory. Secretary Problem algorithm suggests
we reject first 2 candidates and then stopping at the first
candidate with a higher ranking than all the ones evaluated
until current time. Our problem is a variant of this problem as
we need to choose k sample points instead of just one, hence

we use a stopping threshold of ;-. Unlike Secretary Problem,
we have an advantage of looking back and choosing an old
candidate if there is no better candidate location in the future.
We want to maximize the sum of the values at sampled
locations (3 ;. f(1)) with a minimum distance constraint
(Ty) thus preventing acquisition of spatially neighboring
samples. The value for T, is application specific and also
depends on the possible error in robot localization. We still
need a stopping rule to make our decision.

IV. EXPERIMENTS AND DISCUSSION

We evaluated the system both in simulation and in the
field on real robots. We have used three different setups
to extensively evaluate the proposed system: 1) Simulated
robots exploring and sampling from a synthetically created
world, 2) Real world data (chlorophyll concentration in the
flood plains of Amazon) used to create a world for simulated
robots, and 3) deployment of two robotic boats in a reservoir
to map the chlorophyll density distribution in the reservoir
and collect water samples rich in chlorophyll content. Due to
space constraint, we only present Figure 3 that illustrates the
performance of the whole system, explorer and the sampler
working together to achieve good sample quality.
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Fig. 3. Sampling scores achieved by the complete system, using different
combinations of explorers and the look-back selective sampler.

We compared our proposed system — GP-frontier Explorer
+ Look-back Selective Sampling — to two other methods
used in practice. The results show that the multirobot system
with our proposed components performs well by achieving
samples with high sampling scores.

With respect to future and ongoing work, we are scaling up
the approach for application over larger regions in more chal-
lenging outdoor environments. The consideration of time-
varying models will also be an interesting step towards more
large-scale deployment in marine environments.
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